RU2524835C2 - Метаматериалы для поверхностей и волноводов - Google Patents

Метаматериалы для поверхностей и волноводов Download PDF

Info

Publication number
RU2524835C2
RU2524835C2 RU2011108686/08A RU2011108686A RU2524835C2 RU 2524835 C2 RU2524835 C2 RU 2524835C2 RU 2011108686/08 A RU2011108686/08 A RU 2011108686/08A RU 2011108686 A RU2011108686 A RU 2011108686A RU 2524835 C2 RU2524835 C2 RU 2524835C2
Authority
RU
Russia
Prior art keywords
electromagnetic
effective
metamaterial
waveguide structure
waveguide
Prior art date
Application number
RU2011108686/08A
Other languages
English (en)
Other versions
RU2011108686A (ru
Inventor
Дэвид Р. СМИТ
Руопенг ЛЮ
Тие Цзюн ЦУЙ
Цянг ЧЕНГ
Джона ГОЛЛУБ
Original Assignee
Дьюк Юниверсити
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Дьюк Юниверсити filed Critical Дьюк Юниверсити
Publication of RU2011108686A publication Critical patent/RU2011108686A/ru
Application granted granted Critical
Publication of RU2524835C2 publication Critical patent/RU2524835C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/02Refracting or diffracting devices, e.g. lens, prism
    • H01Q15/04Refracting or diffracting devices, e.g. lens, prism comprising wave-guiding channel or channels bounded by effective conductive surfaces substantially perpendicular to the electric vector of the wave, e.g. parallel-plate waveguide lens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/08Microstrips; Strip lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/2005Electromagnetic photonic bandgaps [EPB], or photonic bandgaps [PBG]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/08Microstrips; Strip lines
    • H01P3/081Microstriplines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P7/00Resonators of the waveguide type
    • H01P7/08Strip line resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0086Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices having materials with a synthesized negative refractive index, e.g. metamaterials or left-handed materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/44Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Aerials With Secondary Devices (AREA)
  • Waveguides (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

Изобретение относится к метаматериалам для поверхностей. Технический результат - обеспечение возможности управления и манипуляции электромагнитными волнами (пучками) за счет расширения электромагнитных свойств и проявления новых электромагнитных откликов. Устройство волновода на основе комплементарных элементов из метаматериала, содержащее волноводную структуру, содержащую проводящую поверхность, имеющую несколько отдельных электромагнитных откликов, относящихся к соответствующим отверстиям, которые представляют собой комплементарные элементы из метаматериала, выполненным в проводящей поверхности, причем указанные несколько отдельных электромагнитных откликов обеспечивают эффективную магнитную проницаемость для электромагнитных волн, распространяющихся по существу в волноводной структуре, в направлении, параллельном проводящей поверхности. 9 н. и 42 з.п. ф-лы, 11 ил.

Description

ПЕРЕКРЕСТНЫЕ ССЫЛКИ НА РОДСТВЕННЫЕ ЗАЯВКИ
[0001] Приоритет этой заявки заявляется по дате подачи Предварительной заявки на патент США №61/091,337, поданной 22 августа 2008 года, включенной в настоящий документ посредством ссылки.
ЗАЯВЛЕНИЕ В ОТНОШЕНИИ ФЕДЕРАЛЬНОГО ФИНАНСИРОВАНИЯ ИССЛЕДОВАНИЯ ИЛИ РАЗРАБОТКИ
[0002]
ОБЛАСТЬ ТЕХНИКИ
[0003] Представленная в настоящем документе технология относится к искусственно структурированным материалам, таким как метаматериалы, которые функционируют как искусственные электромагнитные материалы. Некоторые подходы предлагают поверхностные структуры и/или волноводные структуры, которые реагируют на электромагнитные волны в радиочастотном (РЧ) диапазоне, микроволновом диапазоне и/или на более высоких частотах, таких как инфракрасные или видимые частоты. В некоторых подходах электромагнитные отклики включают отрицательное преломление. Некоторые подходы обеспечивают поверхностные структуры, которые включают структурированные метаматериальные элементы в проводящей поверхности. Некоторые подходы обеспечивают волноводные структуры, которые включают структурированные метаматериальные элементы в одной или нескольких ограничивающих проводящих поверхностях волноводной структуры (например, ограничивающие проводящие полосы, излучатели или плоскости планарных волноводов, конструкции передающих линий или одноплоскостные структуры с направленными модами).
ПРЕДПОСЫЛКИ И СУЩНОСТЬ ИЗОБРЕТЕНИЯ
[0004] Искусственно структурированные материалы, такие как метаматериалы, могут расширить электромагнитные свойства традиционных материалов и могут проявлять новые электромагнитные отклики, которых может быть трудно добиться в традиционных материалах. Метаматериалы могут проявлять сложные анизотропии и/или градиенты электромагнитных параметров (таких как диэлектрическая проницаемость, магнитная проницаемость, показатель преломления и волновое сопротивление), которые могут быть воплощены в электромагнитных устройствах, таких как устройства клоакинга (см., например, J.Pendry и др., "Способ электромагнитного клоакинга", заявка на патент США №11/459,728, включенная в настоящий документ посредством ссылки) и GRIN линзы (см., например, D.R.Smith и др., "Метаматериалы", заявка на патент США №11/658,358, включенная в настоящий документ посредством ссылки). Кроме того, можно разработать метаматериалы с отрицательной диэлектрической проницаемостью и/или с отрицательной магнитной проницаемостью, например, обеспечить среду с отрицательным коэффициентом преломления или неопределенную среду (т.е. имеющую тензорно-неопределенную диэлектрическую проницаемость и/или магнитную проницаемость; см., например, D.R.Smith и др., "Неопределенные материалы", заявка на патент США №10/525,191, включенная в настоящий документ посредством ссылки).
[0005] Основная концепция линии передачи с "отрицательным показателем преломления" формируется путем замены шунтирующей емкости индуктивностью, а последовательной индуктивности - емкостью, как показано, например, в книге автора Pozar, СВЧ-техника (Microwave Engineering, Wiley 3-е изд.). Подход линии передачи к метаматериалам был исследован Itoh и Caioz (Калифорнийский Университет в Лос-Анжелесе) и Eleftheriades и Balmain (Торонто). Смотрите, например, EIek и др. «Двумерная унипланарная линия передачи метаматериала с отрицательным коэффициентом преломления», New Journal of Physics (том 7, выпуск 1 стр.163 (2005 г.) и патент США №6859114.
[0006] Передающие линии (TL), раскрытые Caioz и Itoh, основаны на взаимной замене последовательной индуктивности и шунтирующей емкости традиционных TL, чтобы получить эквивалент TL среды с отрицательным показателем преломления. Поскольку шунтирующая емкость и последовательная индуктивность всегда существуют, всегда имеется зависящее от частоты двойное поведение TL, которое приводит к "обратной волне" на низких частотах и типичной прямой волне на более высоких частотах. По этой причине Caioz и Itoh назвали свою TL из метаматериала "композитной право/левосторонней" TL, или CRLH TL. CRLH TL формируется путем использования сосредоточенных конденсаторов и катушек индуктивности, или эквивалентных схемных элементов, чтобы создать TL, которая работает в одном измерении. Концепция CRLH TL была расширена до двумерных структур Caioz и Itoh, а также Grbic и Eleftheriades.
[0007] Использование комплементарного двойного кольцевого резонатора (CSRR) как элемента микрополосковой цепи, было предложено F. Falcone и др. в "Принцип Бабине, примененный к разработке метаповерхностей и метаматериалов", Phys.Rev.Lett., Том.93, выпуск 19, 197401. CSRR был продемонстрирован в качестве фильтра в микрополосковой геометрии этой же группой ученых. Смотрите, например, Marques и др. в "Неэмпирический анализ частотно-селективных поверхностей на основе традиционных и комплементарных двойных кольцевых резонаторов", Journal of Optics A: Pure and Applied Optics, том 7, выпуск 2, стр.S38-S43 (2005), и Bonache и др. в "Микрополосковые полосовые фильтры с Широкой полосой пропускания и компактными размерами" (Microwave and Optical Technical letters (46:4, стр.343, 2005). Было изучено использование CSRR как структурированных элементов в плоскости заземления микрополосковой линии. Эти группы продемонстрировали микрополосковую линию, эквивалентную среде с отрицательным показателем преломления, сформированным с использованием CSRR, структурированных в плоскости заземления, и емкостных прерывателей в верхнем проводнике. Эта работа была также распространена на компланарные микрополосковые линии.
[0008] Двойной кольцевой резонатор (SRR) по существу реагирует на лежащее вне плоскости магнитное поле (т.е. направленное вдоль оси SRR). Комплементарный SRR (CSRR), с другой стороны, по существу реагирует на лежащее вне плоскости электрическое поле (т.е. направленное вдоль оси CSRR). CSRR можно рассматривать как Бабине-сопряженный SRR, при этом раскрытые здесь варианты выполнения могут включать элементы CSRR, встроенные в проводящую поверхность, например, как профилированные отверстия, травления или перфорации листового металла. В некоторых приложениях, как описано в этом документе, проводящая поверхность со встроенными элементами CSRR является ограничивающим проводником для волноводной структуры, такой как плоский волновод, микрополосковая линия и т.д.
[0009] Тогда как двойной кольцевой резонатор (SRR) по существу взаимодействует с лежащим вне плоскости магнитным полем, некоторые приложения метаматериалов используют элементы, которые по существу взаимодействуют с лежащим в плоскости электрическим полем. Эти альтернативные элементы могут быть названы как электрические LC (ELC) резонаторы, причем иллюстративные конфигурации приведены в статье D.Schurig и др. "Резонаторы, связанные электрическим полем, для метаматериалов с отрицательной диэлектрической проницаемостью", Appl.Phys.Lett., 88, 041109 (2006). Хотя электрический LC (ELC) резонатор по существу взаимодействует с лежащим в плоскости электрическим полем, комплементарный электрический LC (CELC) резонатор по существу реагирует на лежащее в плоскости магнитное поле. Резонатор CELC можно рассматривать как Бабине-сопряженный резонатор ELC, при этом раскрытые в этом документе варианты выполнения могут включать элементы CELC резонатора (в качестве альтернативы или в дополнение к CSRR элементам), встроенные в проводящую поверхность, например, как профилированные отверстия, травления или перфорации листового металла. В некоторых приложениях, как описано в этом документе, проводящая поверхность со встроенными CSRR и/или CELC элементами является ограничивающим проводником для волноводной структуры, такой как плоский волновод, микрополосковая линия и т.д.
[0010] Некоторые варианты выполнения, описанные в этом документе, используют комплементарные электрические LC (CELC) элементы из метаматериала для обеспечения эффективной магнитной проницаемости для волноводных структур. В различных вариантах выполнения эффективная (относительная) магнитная проницаемость может быть больше единицы, меньше единицы, но больше нуля, или меньше нуля. В качестве альтернативы или дополнительно, некоторые варианты выполнения, описанные в этом документе, используют элементы комплементарного двойного кольцевого резонатора (CSRR) из метаматериала, для обеспечения эффективной диэлектрической проницаемости для плоских волноводных структур. В различных вариантах выполнения эффективная (относительная) диэлектрическая проницаемость может быть больше единицы, меньше единицы но больше нуля, или меньше нуля.
[0011] Иллюстративные не ограничивающие признаки различных вариантов выполнения включают:
- Структуры, для которых эффективная диэлектрическая проницаемость, магнитная проницаемость или показатель преломления близки к нулю;
- Структуры, для которых эффективная диэлектрическая проницаемость, магнитная проницаемость или показатель преломления меньше нуля;
- Структуры, для которых эффективная диэлектрическая проницаемость или магнитная проницаемость является неопределенным тензором (т.е. имеют как положительные, так и отрицательные собственные значения);
- Градиентные структуры, например, для фокусировки пучка, коллимирования пучка или управления пучком;
- Согласующие импеданс структуры, например, для уменьшения вносимых потерь;
- Фидерные структуры для антенных решеток;
- Использование комплементарных элементов из метаматериала, таких как CELC и CSRR, для по существу независимого настраивания магнитных и электрических откликов, соответственно, поверхности или волновода, например, в целях согласования импеданса, создания градиентов или управления дисперсией;
- Использование комплементарных элементов из метаматериала с регулируемыми физическими параметрами для создания устройств, имеющих соответствующим образом регулируемые электромагнитные отклики (например, для регулировки угла управления устройства управления пучком или фокусного расстояния устройства фокусировки пучка);
- Поверхностные структуры и волноводные структуры, которые работают на РЧ, микроволновых или даже более высоких частотах (например миллиметрового, инфракрасного и видимого диапазонов длин волн).
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
[0012] Эти и другие признаки и преимущества будут лучше и более полно поняты со ссылкой на следующее подробное описание иллюстративных не ограничивающих примеров реализации в сочетании с чертежами, на которых:
[0013] Фиг.1-1D изображают волноводную комплементарную ELC (с магнитным откликом) структуру (Фиг.1) и связанные с этой структурой графики эффективной диэлектрической проницаемости, магнитной проницаемости, волнового сопротивления и показателя преломления (Фиг.1А-1D);
[0014] Фиг.2-2D изображают волноводную комплементарную SRR (с электрическим откликом) структуру (Фиг.2) и связанные с этой структурой графики эффективной диэлектрической проницаемости, магнитной проницаемости, волнового сопротивления и показателя преломления (Фиг.2А-2D);
[0015] Фиг.3-3D изображают волноводную структуру с обоими CSRR и CELC элементами (например, чтобы обеспечить эффективный отрицательный показатель преломления) (Фиг.3) и связанные с этой структурой графики эффективной диэлектрической проницаемости, магнитной проницаемости, волнового сопротивления и показателя преломления (Фиг.3A-3D);
[0016] Фиг.4-4D изображают волноводную структуру с обоими CSRR и CELC элементами (например, чтобы обеспечить эффективный отрицательный показатель преломления) (Фиг.4) и связанные с этой структурой графики эффективной диэлектрической проницаемости, магнитной проницаемости, волнового сопротивления и показателя преломления (Фиг.4a-4D);
[0017] Фиг.5-5D изображают микрополосковую комплементарную структуру ELC (Фиг.5) и связанные с этой структурой графики эффективной диэлектрической проницаемости, магнитной проницаемости, волнового сопротивления и показателя преломления (Фиг.5А-5D);
[0018] Фиг.6-6D изображают микрополосковую структуры с обоими CSRR и CELC элементами (например, чтобы обеспечить эффективный отрицательный показатель преломления) (Фиг.6) и связанные с этой структурой графики эффективной диэлектрической проницаемости, магнитной проницаемости, волнового сопротивления и показателя преломления (Фиг.6А-6D);
[0019] Фиг.7 изображает иллюстративную CSRR решетку как 2D-структуру планарного волновода;
[0020] Фиг.8-1 изображает получаемую диэлектрическую проницаемость и магнитную проницаемость элемента CSRR, а Фиг.8-2 изображает зависимость полученных диэлектрической проницаемости и магнитной проницаемости от геометрического параметра элемента CSRR;
[0021] Фиг.9-1, 9-2 изображают данные в двумерном представлении для реализации 2D-структуры планарного волновода, соответственно, для приложений управления пучком и фокусировки пучка;
[0022] Фиг.10-1, 10-2 изображают иллюстративную CELC решетку как 2D-структуру планарного волновода, обеспечивая неопределенную среду, и
[0023] Фиг.11-1, 11-2 изображают основанную на волноводе линзу с градиентом показателя преломления, выполненную как фидерная структура для решетки антенных излучателей.
ПОДРОБНОЕ ОПИСАНИЕ
[0024] Различные варианты выполнения, описанные в этом документе, включают "комплементарные" элементы метаматериала, которые можно рассматривать как Бабине-комплементарные исходных элементов метаматериала, таких как двойные кольцевые резонаторы (SRR) и электрические LC резонаторы (ELC).
[0025] SRR элемент действует как искусственный магнитный дипольный "атом", создавая по существу магнитный отклик на магнитное поле электромагнитной волны. Его Бабине-сопряженный комплементарный, двойной кольцевой резонатор (CSRR) действует как электрический дипольный "атом", внедренный в проводящую поверхность и создающий по существу электрический отклик на электрическое поле электромагнитной волны. Хотя конкретные примеры, описанные в этом документе, используют CSRR элементы в различных структурах, в других вариантах выполнения они могут быть заменены на альтернативные элементы. Например, любая по существу планарная проводящая структура, имеющая по существу магнитный отклик на лежащее вне плоскости магнитное поле (далее именуемые «элементами М-типа», примером этого является SRR), может определять комплементарную структуру (далее именуемую «комплементарными элементами М-типа», примером этого является CSRR), что является по существу эквивалентной формой отверстия, травления, полости и т.д. в проводящей поверхности. Комплементарные элементы М-типа будут иметь Бабине-сопряженный отклик, т.е. по существу электрический отклик на лежащее вне плоскости электрическое поле. Различные элементы М-типа (каждый определяющий соответствующий комплементарный элемент М-типа) могут включать: вышеупомянутые двойные кольцевые резонаторы (в том числе одинарный двойной кольцевой резонатор (CSRR), сдвоенный двойной кольцевой резонатор (DSRR), двойные кольцевые резонаторы, имеющие несколько зазоров и т.д.), омега-образные элементы (см. C.R.Simovski и S.He, ArXiv::physics/0210049), элементы из пары проводов (см. G.Dolling и др., Opt.Lett. 30, 3198 (2005)), или любые другие проводящие структуры, которые по существу магнитно поляризованы (например, путем индукции Фарадея) в ответ на воздействие внешнего магнитного поля.
[0026] ELC элемент действует как искусственный электрический дипольный "атом", создавая по существу электрический отклик на электрическое поле электромагнитной волны. Его Бабине-сопряженный, комплементарный, электрический LC (CELC) элемент действует как магнитный дипольный "атом", внедренный в проводящую поверхность и создающий по существу магнитный отклик на магнитное поле электромагнитной волны. Хотя конкретные примеры, описанные в этом документе, используют CELC элемент в различных структурах, в других вариантах выполнения он может быть заменен альтернативными элементами. Например, любая по существу планарная проводящая структура, имеющая по существу электрический отклик на лежащее в плоскости электрическое поле (далее именуемая как «элемент Е-типа», примером этого является ELC элемент) может определить комплементарную структуру (далее именуемую «комплементарным элементом Е-типа», примером этого является CELC), что является по существу эквивалентной формой отверстия, травления, полости и т.д. в проводящей поверхности. Комплементарный элемент Е-типа будет иметь Бабине-сопряженный отклик, т.е. по существу магнитный отклик на лежащее в плоскости магнитное поле. Различные элементы Е-типа (каждый определяет соответствующий комплементарный элемент Е-типа) могут включать: емкостно-подобные структуры, соединенные с ориентированными в противоположные стороны петлями (как показано на Фиг.1, 3, 4, 5, 6, 10-1, с другими иллюстративными примерами, изображенными в статье D.Schurig и др. «Резонаторы, связанные электрическим полем, для метаматериалов с отрицательной диэлектрической проницаемостью", Appl.Phys.Lett., 88, 041109 (2006), и в статье Н.-Т.Сеn и др., «Комплементарные планарные терагерцовые метаматериалы», Opt.Exp.15, 1084 (2007)), замкнутые кольцевые элементы (см. R.Liu и др. «Оптика с широкополосным градиентным индексом, основанная на не-резонансных метаматериалах», не опубликовано; смотрите приложение), I-образную или формы «собачей кости» структуру (см. R.Liu и др. «Широкополосный клоакинг в плоскости заземления», Science, 323, 366 (2009)), крестообразные структуры (см. H.-T.Cen и др., ссылка дана выше), или любые другие проводящие структуры, которые по существу электрически поляризованы в ответ на приложенное электрическое поле. В различных вариантах выполнения комплементарный элемент Е-типа может иметь по существу изотропный магнитный отклик в плоскости магнитного поля, или по существу анизотропный магнитный отклик в плоскости магнитного поля.
[0027] Хотя элемент М-типа может иметь по существу магнитный отклик (вне плоскости), в некоторых подходах элемент М-типа может дополнительно иметь (в плоскости) электрический отклик, который является также существенным, но имеет меньшую величину, чем (например, с меньшей восприимчивостью) магнитный отклик. В этих подходах соответствующий комплементарный элемент М-типа будет иметь по существу (вне плоскости) электрический отклик и, кроме того (в плоскости), магнитный отклик, который также является существенным, но имеет меньшую величину, чем (например, с меньшей восприимчивостью) электрический отклик. Аналогичным образом, тогда как элемент Е-типа может иметь по существу (в плоскости) электрический отклик, в некоторых подходах элемент Е-типа может дополнительно иметь (вне плоскости) магнитный отклик, который также является существенным, но имеет меньшую величину, чем (например, с меньшей восприимчивостью) электрический отклик. В этих подходах соответствующий комплементарный элемент Е-типа будет иметь по существу (в плоскости) магнитный отклик и, кроме того (вне плоскости), электрический отклик, который также является существенным, но имеет меньшую величину, чем (например, с меньшей восприимчивостью) магнитный отклик.
[0028] Некоторые варианты выполнения обеспечивают волноводную структуру, имеющую одну или несколько ограничивающих проводящих поверхностей, которые включают комплементарные элементы, такие как описаны выше. В контексте волновода количественное присваивание величин традиционно связано с объемными материалами - таких как диэлектрическая проницаемость, магнитная проницаемость, показатель преломления и волновое сопротивление - могут быть определены для планарных волноводов и микрополосковых линий структурированных с комплементарными структурами. Например, один или несколько комплементарных элементов М-типа, таких как CSRR, структурированных в одной или нескольких ограничивающих поверхностях волноводной структуры, могут быть охарактеризованы как имеющие эффективную диэлектрическую проницаемость. Следует отметить, что эффективная диэлектрическая проницаемость может проявлять как большие положительные, так и большие отрицательные значения, а также значения между нулем и единицей, включительно. Устройства могут быть разработаны, основываясь по меньшей мере частично на диапазоне свойств, которые проявляют элементы М-типа, как будет описано далее. Численные и экспериментальные способы количественного выполнения этого задания хорошо определены.
[0029] В качестве альтернативы или дополнительно, в некоторых вариантах выполнения комплементарные элементы Е-типа, такие как CELC, структурированные в волноводную структуру таким же образом, как описано выше, имеют магнитный отклик, который может быть охарактеризован как эффективная магнитная проницаемость. Комплементарные элементы Е-типа, таким образом, могут проявлять как большие положительные, так и большие отрицательные значения эффективной магнитной проницаемости, а также эффективные магнитные проницаемости, которые варьируются между нулем и единицей, включительно. (На протяжении всего этого описания в описании диэлектрической и магнитной проницаемости для комплементарных структур Е-типа и комплементарных структур М-типа указываются, как правило, вещественные части, за исключением случаев, когда контекст диктует иное, как должно быть очевидно для специалиста в данной области.) Поскольку оба типа резонаторов могут быть использованы в контексте волновода, может быть достигнуто практически любое эффективное состояние материала, в том числе с отрицательным показателем преломления (как диэлектрическая проницаемость, так и магнитная проницаемость меньше нуля), что позволяет осуществлять значительный контроль над волнами, распространяющимися через эти структуры. Например, некоторые варианты выполнения могут обеспечивать эффективные материальные параметры, по существу соответствующие преобразованию оптической среды (в соответствии со способом оптического преобразования, например, как описано в заявке на патент США №11/459,728, озаглавленной «Электромагнитный клоакинг» на имя J.Pendry и др.).
[0030] При использовании различных комбинаций комплементарных элементов Е-типа и/или М-типа может быть образован широкий спектр устройств. Например, практически все устройства, которые были продемонстрированы Caioz и Itoh, использующие CRLH TL, имеют аналоги в волноводных структурах из метаматериала, описанных в этом документе. Совсем недавно, Silvereinha и Engheta предложили интересное согласующее устройство, основанное на создании области, в которой эффективный показатель преломления (или коэффициент распространения) близок к нулю (CITE). Эквивалент такой среде может быть создан путем структурирования комплементарных элементов Е-типа и/или М-типа в ограничивающих поверхностях волноводной структуры. На чертежах показаны и описаны иллюстративные примеры не ограничивающих реализации согласующего устройства с нулевым показателем преломления и других устройств с использованием структурированных волноводов, и несколько изображений, показывающих, как могут быть применены структурированные не ограничивающие структуры.
[0031] Фиг.1 показывает иллюстративный пример не ограничивающих волноводных комплементарных ELC (магнитный отклик) структур, а Фиг.1А-1D показывают соответствующие иллюстративные графики эффективного показателя преломления, волнового сопротивления, диэлектрической и магнитной проницаемостей. Хотя изображенный пример показывает только один элемент CELC, другие подходы обеспечивают большое количество CELC (или других комплементарных Е-типа) элементов, расположенных на одной или нескольких поверхностях волноводной структуры.
[0032] Фиг.2 показывает иллюстративный пример не ограничивающих волноводных комплементарных SRR (электрический отклик) структур, а Фиг.2А-2D показывают соответствующие иллюстративные графики эффективного показателя преломления, волнового сопротивления, диэлектрической и магнитной проницаемостей. Хотя изображенный пример показывает только один элемент CSRR, другие подходы обеспечивают большое количество CSRR (или других комплементарных М-типа) элементов, расположенных на одной или нескольких поверхностях волноводной структуры.
[0033] Фиг.3 показывает иллюстративный пример не ограничивающей волноводной структуры с обоими CSRR и CELC элементами (например, для обеспечения эффективного отрицательного показателя преломления), в котором CSRR и CELC структурировании на противоположных поверхностях планарного волновода, а Фиг.3A-3D показывают соответствующие иллюстративные графики эффективного показателя преломления, волнового сопротивления, диэлектрической и магнитной проницаемостей. Хотя изображенный пример показывает только один элемент CELC на первой ограничивающей поверхности волновода и один элемент CSRR на второй ограничивающей поверхности волновода, другие подходы обеспечивают большое количество комплементарных элементов Е-типа и/или М-типа, расположенных на одной или нескольких поверхностях волноводной структуры.
[0034] Фиг.4 показывает иллюстративный пример не ограничивающей волноводной структуры как с CSRR элементами, так и с CELC элементами (например, для обеспечения эффективного отрицательного показателя преломления), в которой CSRR и CELC структурированы на одной и той же поверхности плоского волновода, а Фиг.4А-4D показывают соответствующие иллюстративные графики эффективного показателя преломления, волнового сопротивления, диэлектрической и магнитной проницаемостей. Хотя изображенный пример показывает только один элемент CELC и один элемент CSRR на первой ограничивающей поверхности волновода, другие подходы обеспечивают большое количество комплементарных элементов Е-типа и/или М-типа, расположенных на одной или нескольких поверхностях волноводной структуры.
[0035] Фиг.5 показывает иллюстративный пример не ограничивающей микрополосковой комплементарной ELC структуры, а Фиг.5А-5D показывают соответствующие иллюстративные графики эффективного показателя преломления, волнового сопротивления, диэлектрической и магнитной проницаемостей. Хотя изображенный пример показывает только один элемент CELC в плоскости заземления микрополосковой структуры, другие подходы обеспечивают большое количество CELC (или других комплементарных Е-типа) элементов, расположенных на одной или обеих частях микрополосковой структуры, или в плоскости заземления микрополосковой структуры.
[0036] Фиг.6 показывает иллюстративный пример не ограничивающей структуры микрополосковой линии как с CSRR элементами, так и с CELC элементами (например, для обеспечения эффективного отрицательного показателя преломления), а Фиг.6A-6D показывают соответствующие иллюстративные графики эффективного показателя преломления, волнового сопротивления, диэлектрической и магнитной проницаемостей. Хотя изображенный пример показывает только один элемент CSRR и два элемента CELC в плоскости заземления микрополосковой структуры, другие подходы обеспечивают большое количество комплементарных элементов Е-типа и/или М-типа, расположенных на одной или обеих частях микрополосковой структуры в плоскости заземления микрополосковой структуры.
[0037] Фиг.7 иллюстрирует использование CSRR решетки в качестве 2D волноводной структуры. В некоторых подходах 2D волноводная структура может иметь ограничивающие поверхности (например, верхнюю и нижнюю металлические пластины, изображенные на Фиг.7), которые структурированы с комплементарными элементами Е-типа и/или М-типа для реализации функциональных возможностей, таких как согласование импеданса, создание градиента или управление дисперсией.
[0038] Как пример создания градиента, структура CSRR, показанная на Фиг.7, была использована для формирования как структур для управления пучком с помощью градиента показателя преломления, так и структур для фокусировки пучка. Фиг.8-1 иллюстрирует один иллюстративный элемент CSRR и полученные диэлектрическую и магнитную проницаемости, соответствующие CSRR (в геометрии волновода). При изменении параметров в конструкции CSRR (в данном случае кривизны каждого изгиба CSRR), показатель преломления и/или импеданс могут быть настроены, как показано на Фиг.8-2.
[0039] CSRR структура, изложенная, как показано на Фиг.7, с по существу линейным градиентом показателя преломления, введенным в направлении поперек направления падающего направляющего пучка, создает выходной пучок, который поворачивается до угла, отличающегося от угла падающего пучка. Фиг.9-1 показывает иллюстративные данные в двумерном представлении, полученные при осуществлении 2D волноводной планарной структуры с управлением пучком. Устройство отображения двумерных данных было описано довольно подробно в литературе [В.J.Justice, J.J.Mock, L.Guo, A.Degiron, D.Schurig, D.R.Smith, «Пространственное отображение внутреннего и внешнего электромагнитного поля метаматериалов с отрицательным показателем преломления», Optics Express, Том 14, стр.8694 (2006)]. Аналогичным образом, использование параболического градиента показателя преломления в направлении поперек падающего пучка в CSRR решетке создает фокусирующую линзу, например, как показано на Фиг.9-2. В более общем плане, поперечный профиль показателя преломления, который является вогнутой функцией (параболической или другой), будет оказывать положительный эффект фокусировки так, как показано на Фиг.9-2 (соответствующий положительному фокусному расстоянию); поперечный профиль показателя преломления, который является выпуклой функцией (параболической или другой), будет оказывать отрицательный эффект фокусировки (что соответствует отрицательному фокусному расстоянию, например, принимать коллимированный пучок и передавать расходящийся пучок). Для подходов, в которых элементы метаматериала содержат настраиваемые элементы метаматериала (см. ниже), варианты выполнения могут обеспечивать устройство с электромагнитной функцией (например, управления пучком, фокусировки пучка и т.д.), которая может быть настроена соответствующим образом. Так, например, устройство управления пучком может быть отрегулировано таким образом, чтобы обеспечивать по меньшей мере первый и второй углы отклонения; устройство фокусировки пучка может быть отрегулировано таким образом, чтобы по меньшей мере обеспечивать первое и второе фокусные расстояния и т.д. Пример 2D среды, образованной с помощью CELC, показан на Фиг.10-1 и 10-2. На этих чертежах анизотропия в плоскости CELC используется для формирования «неопределенной среды», в которой первый лежащий в плоскости компонент магнитной проницаемости отрицателен, а другой лежащий в плоскости компонент положителен. Такая среда создает частичную перефокусировку волн от линейного источника, как показано на экспериментально полученном изображении двумерных данных на Фиг.10-2. Фокусирующие свойства объемной «неопределенной среды» уже сообщались ранее [D.R.Smith, D.Schurig, J.J.Mock, P.Kolinko, P.Rye, «Частичная фокусировка излучения пластиной неопределенной среды», Applied Physics Letters, Том 84, стр.2244 (2004)]. Эксперименты, показанные на этих чертежах, подтверждают конструктивный подход и показывают, что волноводные элементы из метаматериала могут быть получены с помощью усложненных функций, включая анизотропию и градиентную технику.
[0040] На Фиг.11-1 и 11-2 основанная на волноводе структура с градиентом показателя преломления (например, имеющая пограничные проводники, которые содержат комплементарные элементы Е-типа и/или М-типа, как показано на Фиг.7 и 10-1) расположена в качестве фидерной структуры для решетки антенных излучателей. В иллюстративном варианте выполнения, показанном на Фиг.11-1 и 11-2, фидерные структуры коллимируют волны от одного источника, которые затем возбуждают решетку антенных излучателей. Этот тип конфигурации антенны хорошо известен как конфигурация линз Ротмана. В этом иллюстративном варианте выполнения волноводный метаматериал обеспечивает линзу с эффективным градиентом показателя преломления внутри планарного волновода, с помощью которого плоская волна может быть создана точечным источником, расположенным на фокальной плоскости линзы с градиентом показателя преломления, о чем свидетельствует "точки возбуждения", показанные на Фиг.11-2. Для антенны с линзой Ротмана можно разместить несколько точек возбуждения на фокальной плоскости линзы с градиентом показателя преломления, выполненной из метаматериала, и соединить элементы антенны с выходом волноводной структуры, как показано на Фиг.11-1. Из хорошо известной теории оптики, разность фаз между каждой антенной будет зависеть от положения возбуждающего источника, так что может быть осуществлено формирование пучка с фазированной решеткой. Фиг.11-2 представляет собой изображение данных в двумерном представлении, показывающее изображение данных в двумерном представлении от линейного источника, возбуждающего в фокусе планарный волновод из метаматериала с градиентом показателя преломления, что приводит к коллимированному пучку. Хотя иллюстративная фидерная структура, изображенная на Фиг.11-1 и 11-2, изображает конфигурацию с линзой типа Ротмана, для которой фазовые различия антенны по существу определяются расположением точек возбуждения, в других подходах фазовые различия антенны определяются путем выполнения точек возбуждения стационарными и регулировки электромагнитных свойств (и, следовательно, характеристик распространения фазы) линзы с градиентом показателя преломления (например, путем развертывания регулируемых элементов из метаматериала, как это обсуждается ниже), тогда как другие варианты выполнения могут сочетать в себе оба подхода (т.е. корректировку как положения точки возбуждения, так и параметров линзы, чтобы в совокупности достичь требуемого фазового различия антенны).
[0041] В некоторых подходах волноводная структура, имеющая порт входа или область входа для получения электромагнитной энергии, может содержать согласующий импеданс слой (IML), расположенный в порту входа или области входа, например, для улучшения вносимых потерь на входе путем сокращения или по существу устранения отражений в порту входа или области входа. В качестве альтернативы или дополнительно, в некоторых подходах волноводная структура, имеющая порт выхода или область выхода для передачи электромагнитной энергии, может содержать согласующий импеданс слой (IML), расположенный в порту выхода или области выхода, например, для улучшения вносимых потерь на выходе путем сокращения или по существу устранения отражений в порту выхода или области выхода. Согласующий импеданс слой может иметь такой профиль волнового сопротивления, который обеспечивает по существу непрерывное изменение волнового сопротивления, от изначального волнового сопротивления на внешней поверхности волноводной структуры (например, когда волноводная структуры примыкает к соседней среде или устройству) до конечного волнового сопротивления на границе между IML и областью градиента показателя преломления (например, что обеспечивает функции устройства, такие как управление пучком или фокусировку пучка). В некоторых подходах по существу непрерывное изменение волнового сопротивления соответствует по существу непрерывному изменению показателя преломления (например, когда поворот расположения одного вида элементов регулирует эффективный показатель и эффективное волновое сопротивление в соответствии с фиксированным соответствием так, как изображено на Фиг.8-2), тогда как в других подходах волновое сопротивление может быть изменено по существу независимо от показателя преломления (например, путем развертывания комплементарных элементов как Е-типа, так и М-типа и независимо поворачивая расположения двух видов элементов, чтобы соответственно независимо настраивать эффективный показатель преломления и эффективное волновое сопротивление).
[0042] Хотя иллюстративные варианты выполнения обеспечивают пространственное расположение комплементарных элементов из метаматериала, имеющих разнообразные геометрические параметры (такие как длина, толщина, радиус кривизны, или размер элементарной ячейки) и, соответственно, разнообразные индивидуальные электромагнитные отклики (например, как показано на Фиг.8-2), в других вариантах выполнения другие физические параметры комплементарных элементов из метаматериала варьируются (в качестве альтернативы или в дополнение к варьируемым геометрическим параметрам), чтобы обеспечить варьируемые индивидуальные электромагнитные отклики. Например, варианты выполнения могут включать комплементарные элементы из метаматериала (такие как CSRR или CELC), которые дополняют оригинальные элементы из метаматериала, которые включают емкостные зазоры, а также комплементарные элементы из метаматериала могут быть параметризованы путем варьирования емкости емкостных зазоров оригинальных элементов из метаматериала. Эквивалентно этому, замечая, что из теоремы Бабине следует, что емкость в элементе (например, выполненная в форме планарного встречно-штыревого конденсатора с меняющимся количеством штырей и/или с меняющейся длиной штыря) становится индуктивностью в комплементарном элементе (например, выполненной в форме меандровой линии индуктивности, имеющей меняющееся число витков и/или меняющуюся длину витка), комплементарные элементы могут быть параметризованы путем варьирования индуктивности комплементарных элементов из метаматериала. В качестве альтернативы или дополнительно, варианты выполнения могут содержать комплементарные элементы из метаматериала (таких как CSRR или CELC), которые являются комплементарными изначальным элементам из метаматериала, которые содержат индуктивные схемы, при этом комплементарные элементы из метаматериала могут быть параметризованы путем варьирования индуктивностей в индуктивных цепях из изначальных элементов из метаматериала. Эквивалентно этому, замечая, что из теоремы Бабине следует, что индуктивность в элементе (например, выполненная в форме меандровой линии индуктивности, имеющей меняющееся число витков и/или меняющуюся длину витка) становится емкостью в комплементарном элементе (например, выполненной в форме планарного встречно-штыревого конденсатора с меняющимся количеством штырей и/или с меняющейся длиной штыря), комплементарные элементы могут быть параметризованы путем варьирования емкости комплементарных элементов из метаматериала. Кроме того, по существу пленарный элемент из метаматериала может иметь свои емкости и/или индуктивности, дополненные путем присоединения сосредоточенной емкости или сосредоточенной индуктивности. В некоторых подходах варьируемые физические параметры (например, геометрические параметры, емкости, индуктивности) определяются в соответствии с регрессионным анализом, касающимся электромагнитных откликов на варьируемые физические параметры (см. регрессионные кривые на Фиг.8-2).
[0043] В некоторых вариантах выполнения комплементарные элементы из метаматериала представляют собой регулируемые элементы, имеющие регулируемые физические параметры, соответствующие индивидуальным регулируемым электромагнитным откликам элементов. Например, варианты выполнения могут включать комплементарные элементы (такие, как CSRR) с регулируемыми емкостями (например, путем добавления варакторов между внутренней и внешней металлическими областями CSRR, как описано в статье A.Velez и J.Bonarche, «Варакторно-нагруженные комплементарные двойные кольцевые резонаторы (VLCSRR) и их применение к перестраиваемым передающим линиям из метаматериала», IEEE Microw.Wireless Compon.Lett. 18, 28 (2008)). В другом подходе, в котором варианты выполнения волновода имеют верхний и нижний проводники (например, полосу и плоскость заземления) с промежуточной диэлектрической подложкой, комплементарные элементы из метаматериала, встроенные в верхний и/или нижний проводник, могут быть регулируемыми путем обеспечения диэлектрической подложки с нелинейным диэлектрическим откликом (например, сегнетоэлектрик) и приложения напряжения смещения между двумя проводниками. В еще одном подходе светочувствительный материал (например, полупроводниковый материал, такой как GaAs, или кремний n-типа) может быть помещен рядом с комплементарным элементом из метаматериала, а электромагнитный отклик элемента может быть отрегулирован путем выборочного приложения оптической энергии к светочувствительному материалу (например, чтобы вызвать фотолегирование). В еще одном подходе магнитный слой (например, из ферримагнитного или ферромагнитного материала) может быть помещен рядом с комплементарным элементом из метаматериала, а электромагнитный отклик элемента может быть отрегулирован путем приложения магнитного поля смещения (например, как описано в J.Gollub и др. «Гибридные резонансные явления в структуре из метаматериала с интегрированным резонансным магнитным материалом», ArXiv:0810.4871 (2008)). Хотя иллюстративные варианты выполнения, приведенные в этом документе, могут использовать регрессионный анализ, касающийся электромагнитных откликов на геометрические параметры (см. регрессионные кривые на Фиг.8-2), варианты выполнения с регулируемыми элементами могут использовать регрессионный анализ, касающийся электромагнитных откликов на регулируемые физические параметры, которые по существу коррелируют с электромагнитными откликами.
[0044] В некоторых вариантах выполнения с регулируемыми элементами, имеющими регулируемые физические параметры, регулируемые физические параметры могут регулироваться в ответ на один или несколько внешних вводимых параметров, таких как вводимое напряжение (например, напряжения смещения для активных элементов), вводимый ток (например, прямая инжекция носителей заряда в активные элементы), оптические вводы (например, освещение светочувствительного материала), или полевые вводы (например, смещающие электрические / магнитные поля для подходов, которые включают сегнетоэлектрики / ферромагнетики). Соответственно, некоторые варианты выполнения обеспечивают способы, которые включают определение соответствующего значения регулируемых физических параметров (например, путем регрессионного анализа), затем обеспечивая один или несколько управляющих вводов, соответствующих определенным соответствующим значениям. Другие варианты выполнения обеспечивают адаптивные или регулируемые системы, которые содержат блок управления, имеющий схему, выполненную с возможностью определения соответствующих значений регулируемых физических параметров (например, путем регрессионного анализа) и/или обеспечения одного или нескольких управляющих вводов, соответствующих определенным соответствующим значениям.
[0045] Хотя некоторые варианты выполнения используют регрессионный анализ, связывающий электромагнитные отклики с физическими параметрами (в том числе регулируемыми физическими параметрами), для вариантов выполнения, в которых соответствующие регулируемые физические параметры определяются с помощью одного или нескольких управляющих вводов, регрессионный анализ может непосредственно связывать электромагнитные отклики с управляющими вводами. Например, если регулируемым физическим параметром является регулируемая емкость варактора, как определено из приложенного напряжения смещения, регрессионный анализ может связывать электромагнитные отклики с регулируемой емкостью, или же регрессионный анализ может связывать электромагнитные отклики с приложенным напряжением смещения.
[0046] Хотя некоторые варианты выполнения обеспечивают по существу узкополосные отклики на электромагнитное излучение (например, для частот в окрестности одной или нескольких резонансных частот комплементарных элементов из метаматериала), другие варианты выполнения обеспечивают по существу широкополосные отклики на электромагнитное излучение (например, для частот, по существу меньших чем, по существу больших чем, или в ином случае по существу отличающихся от одной или нескольких резонансных частот комплементарных элементов из метаматериала). Например, варианты выполнения могут рассредотачивать Бабине-комплементарные широкополосные элементы из метаматериала, как описано в статье R.Liu и др. «Широкополосная оптика с градиентным показателем преломления, основанная на нерезонансных метаматериалах», не опубликована; см. Приложение) и/или в статье R.Liu и др. «Широкополосный клоакинг в плоскости заземления», Science 323, 366 (2009)).
[0047] Хотя предшествующие иллюстративные варианты выполнения являются планарными вариантами выполнения, которые по существу двумерны, другие варианты выполнения могут рассредотачивать комплементарные элементы из метаматериала в по существу не планарных конфигурациях и/или в по существу трехмерных конфигурациях. Например, варианты выполнения могут обеспечивать по существу трехмерную стопку слоев, причем каждый слой имеет проводящую поверхность со встроенными комплементарными элементами из метаматериала. В качестве альтернативы или дополнительно, комплементарные элементы из метаматериала могут быть встроены в проводящие поверхности, которые являются по существу не планарными (например, цилиндры, сферы и др.). Например, устройство может содержать искривленную проводящую поверхность (или несколько), которые содержат комплементарные элементы из метаматериала, при этом искривленная проводящая поверхность может иметь радиус кривизны, который по существу больше, чем характерный масштаб длины комплементарных элементов из метаматериала, но сопоставим или по существу меньше, чем длина волны, соответствующая рабочей частоте устройства.
[0048] Хотя технология в этом документе был описана в связи с иллюстративными не ограничивающими реализациями изобретения, изобретение не должно быть ограничено этим описанием. Изобретение ограничивается формулой изобретения охватывает все соответствующие и эквивалентные конфигурации, вне зависимости от того, раскрыты они или не раскрыты в настоящем документе.
[0049] Все документы и другие источники информации, на которые сделаны ссылки выше, включены в настоящий документ в полном объеме посредством ссылки.

Claims (51)

1. Устройство волновода на основе комплементарных элементов из метаматериала, содержащее:
волноводную структуру, содержащую проводящую поверхность, имеющую несколько отдельных электромагнитных откликов, относящихся к соответствующим отверстиям, которые представляют собой комплементарные элементы из метаматериала, выполненным в проводящей поверхности, причем указанные несколько отдельных электромагнитных откликов обеспечивают эффективную магнитную проницаемость для электромагнитных волн, распространяющихся по существу в волноводной структуре, в направлении, параллельном проводящей поверхности.
2. Устройство по п.1, в котором эффективная магнитная проницаемость по существу равна нулю.
3. Устройство по п.1, в котором эффективная магнитная проницаемость по существу меньше нуля.
4. Устройство по п.1, в котором эффективная магнитная проницаемость в направлении, параллельном проводящей поверхности, представляет собой первую эффективную магнитную проницаемость в первом направлении параллельно направлению проводящей поверхности, а указанные несколько соответствующих отдельных электромагнитных откликов дополнительно обеспечивают вторую эффективную магнитную проницаемость во втором направлении, параллельном проводящей поверхности и перпендикулярном первому направлению.
5. Устройство по п.4, в котором первая эффективная магнитная проницаемость по существу равна второй эффективной магнитной проницаемости.
6. Устройство по п.4, в котором первая эффективная магнитная проницаемость по существу отличается от второй эффективной магнитной проницаемости.
7. Устройство по п.6, в котором первая эффективная магнитная проницаемость больше нуля, а вторая эффективная магнитная проницаемость меньше нуля.
8. Устройство волновода на основе комплементарных элементов из метаматериала, содержащее:
волноводную структуру, содержащую одну или несколько проводящих поверхностей, имеющих несколько отдельных электромагнитных откликов, относящихся к соответствующим отверстиям, которые представляют собой комплементарные элементы из метаматериала, выполненным в указанной одной или нескольких проводящих поверхностях, причем указанные несколько отдельных электромагнитных откликов обеспечивают эффективный показатель преломления для электромагнитных волн, распространяющихся по существу в волноводной структуре, который по существу меньше или равен нулю.
9. Устройство волновода на основе комплементарных элементов из метаматериала, содержащее:
волноводную структуру, содержащую одну или несколько проводящих поверхностей, имеющих несколько отдельных электромагнитных откликов, относящихся к соответствующим отверстиям, которые представляют собой комплементарные элементы из метаматериала, выполненным в пределах указанной одной или нескольких проводящих поверхностей, причем указанные несколько отдельных электромагнитных откликов обеспечивают изменяющийся в пространстве эффективный показатель преломления для электромагнитных волн, распространяющихся по существу в волноводной структуре.
10. Устройство по п.9, в котором волноводная структура по существу представляет собой планарную двумерную волноводную структуру.
11. Устройство по п.9, в котором волноводная структура ограничивает входной порт для приема вводимой электромагнитной энергии.
12. Устройство по п.11, в котором входной порт ограничивает импеданс входного порта для по существу не отражения вводимой электромагнитной энергии.
13. Устройство по п.12, в котором указанные несколько соответствующих отдельных электромагнитных откликов дополнительно обеспечивают эффективное полное волновое сопротивление, которое градиентно приближается к импедансу входного порта во входном порту.
14. Устройство по п.11, в котором волноводная структура ограничивает выходной порт для передачи выводимой электромагнитной энергии.
15. Устройство по п.14, в котором выходной порт ограничивает импеданс выходного порта для по существу не отражения выводимой электромагнитной энергии.
16. Устройство по п.14, в котором указанные несколько соответствующих отдельных электромагнитных откликов дополнительно обеспечивают эффективное полное волновое сопротивление, которое градиентно приближается к импедансу выходного порта в выходном порту.
17. Устройство по п.14, в котором волноводная структура реагирует на по существу коллимированный пучок вводимой электромагнитной энергии, определяющей направление входного пучка, обеспечивая по существу коллимированный пучок выводимой электромагнитной энергии, определяющей направления выходного пучка, по существу отличное от направления входного пучка.
18. Устройство по п.17, в котором волноводная структура ограничивает осевое направление, направленное от входного порта к выходному порту, при этом изменяющийся в пространстве эффективный показатель преломления имеет, посередине между входным портом и выходным портом, по существу линейный градиент вдоль направления, перпендикулярного аксиальному направлению.
19. Устройство по п.14, в котором волноводная структура реагирует на по существу коллимированный пучок вводимой электромагнитной энергии, чтобы обеспечивать по существу сходящийся пучок выводимой электромагнитной энергии.
20. Устройство по п.19, в котором волноводная структура ограничивает аксиальное направление, направленное от входного порта к выходному порту, при этом изменяющийся в пространстве эффективный показатель преломления имеет, посередине между входным портом и выходным портом, по существу вогнутое изменение вдоль направления, перпендикулярного аксиальному направлению.
21. Устройство по п.14, в котором волноводная структура реагирует на по существу коллимированный пучок вводимой электромагнитной энергии, чтобы обеспечивать по существу расходящийся пучок выводимой электромагнитной энергии.
22. Устройство по п.21, в котором волноводная структура ограничивает аксиальное направление, направленное от входного порта к выходному порту, при этом изменяющийся в пространстве эффективный показатель преломления включает, посередине между входным портом и выходным портом, по существу выпуклое изменение вдоль направления, перпендикулярного аксиальному направлению.
23. Устройство по п.14, дополнительно содержащее:
один или несколько антенных излучателей, соединенных с выходным портом.
24. Устройство по п.23, дополнительно содержащее:
один или несколько электромагнитных излучателей, соединенных с входным портом.
25. Устройство по п.14, дополнительно содержащее:
один или несколько электромагнитных приемников, соединенных с входным портом.
26. Устройство волновода на основе комплементарных элементов из метаматериала, содержащее:
волноводную структуру, содержащую одну или несколько проводящих поверхностей, имеющих несколько регулируемых отдельных электромагнитных откликов, относящихся к соответствующим отверстиям, которые представляют собой комплементарные элементы из метаматериала, выполненным в указанной одной или нескольких проводящих поверхностях, причем указанные несколько отдельных регулируемых электромагнитных откликов обеспечивают один или несколько регулируемых эффективных параметров среды для электромагнитных волн, распространяющихся по существу в волноводной структуре.
27. Устройство по п.26, в котором указанный один или несколько регулируемых эффективных параметров среды включают регулируемую эффективную диэлектрическую проницаемость.
28. Устройство по п.26, в котором указанный один или несколько регулируемых эффективных параметров среды включают регулируемую эффективную магнитную проницаемость.
29. Устройство по п.26, в котором указанный один или несколько регулируемых эффективных параметров среды включают регулируемый эффективный показатель преломления.
30. Устройство по п.26, в котором указанный один или несколько регулируемых эффективных параметров среды включают регулируемое эффективное полное волновое сопротивление.
31. Устройство по п.26, в котором регулируемые отдельные электромагнитные отклики регулируются одним или несколькими внешними вводимыми параметрами.
32. Устройство по п.31, в котором указанный один или несколько внешних вводимых параметров включают один или несколько вводов напряжения.
33. Устройство по п.31, в котором указанный один или несколько внешних вводимых параметров включают один или несколько оптических вводов.
34. Устройство по п.31, в котором указанный один или несколько внешних вводимых параметров включают внешнее магнитное поле.
35. Способ определения физических параметров комплементарных элементов из метаматериала, включающий:
выбор структуры параметров электромагнитной среды для электромагнитных волн, распространяющихся по существу в волноводной структуре, и
определение соответствующих физических параметров для нескольких отверстий, которые представляют собой комплементарные элементы из метаматериала, выполненных с возможностью расположения в одной или нескольких проводящих поверхностях волноводной структуры для обеспечения структуры эффективных параметров электромагнитной среды, которые по существу соответствуют выбранной структуре параметров электромагнитной среды.
36. Способ по п.35, в котором дополнительно:
фрезеруют указанные несколько отверстий в указанной одной или нескольких проводящих поверхностях.
37. Способ по п.35, в котором при определении соответствующих физических параметров их определяют либо в соответствии с регрессионным анализом, либо в соответствии со справочной таблицей.
38. Способ определения физических параметров комплементарных элементов из метаматериала, включающий:
выбор электромагнитной функции для электромагнитных волн, распространяющихся по существу в волноводной структуре, и
определение соответствующих физических параметров для множества отверстий, которые представляют собой комплементарные элементы из метаматериала, выполненных с возможностью расположения в одной или нескольких проводящих поверхностях волноводной структуры для обеспечения электромагнитной функции, такой как эффективного отклика среды.
39. Способ по п.38, в котором электромагнитная функция представляет собой функцию управления пучком волновода.
40. Способ по п.39, в котором функция управления пучком волновода определяет угол отклонения пучка, а выбор функции управления пучком волновода включает выбор угла отклонения луча.
41. Способ по п.38, в котором электромагнитная функция представляет собой функцию фокусировки луча волновода.
42. Способ по п.41, в котором функция фокусировки луча волновода определяет фокусное расстояние, а выбор функции фокусировки луча волновода включает выбор фокусного расстояния.
43. Способ по п.38, в котором электромагнитная функция представляет собой фазосдвигающую функцию антенной решетки.
44. Способ по п.38, в котором при определении соответствующих физических параметров их определяют либо в соответствии с регрессионным анализом, либо в соответствии со справочной таблицей.
45. Способ регулирования физических параметров комплементарных элементов из метаматериала, включающий:
выбор структуры параметров электромагнитной среды для электромагнитных волн, распространяющихся по существу в волноводной структуре, и
для одной или нескольких проводящих поверхностей волноводной структуры, имеющих множество отверстий, которые представляют собой комплементарные элементы из метаматериала, с соответствующими регулируемыми физическими параметрами, определение соответствующих значений соответствующих регулируемых физических параметров для обеспечения структуры эффективных параметров электромагнитной среды, которые по существу соответствуют выбранной структуре параметров электромагнитной среды.
46. Способ по п.45, в котором соответствующие регулируемые физические параметры представляют собой функции одного или нескольких управляющих вводов, при этом способ включает:
обеспечение одного или нескольких управляющих вводов, соответствующих определенным соответствующим значениям соответствующих регулируемых физических параметров.
47. Способ по п.45, в котором выполняют определение либо в соответствии с регрессионным анализом, либо в соответствии со справочной таблицей.
48. Способ регулирования физических параметров комплементарных элементов из метаматериала, включающий:
выбор электромагнитной функции для электромагнитных волн, распространяющихся по существу в волноводной структуре, и
для одной или нескольких проводящих поверхностей волноводной структуры, имеющих несколько отверстий, которые представляют собой комплементарные элементы из метаматериала, с соответствующими регулируемыми физическими параметрами, определение соответствующих значений соответствующих регулируемых физических параметров для обеспечения электромагнитной функции как эффективного отклика среды.
49. Способ по п.48, в котором указанные соответствующие регулируемые физические параметры являются функциями одного или нескольких управляющих вводов, при этом способ включает:
обеспечение одного или нескольких управляющих вводов, соответствующих определенным соответствующим значениям соответствующих регулируемых физических параметров.
50. Способ по п.48, в котором выполняют определение либо в соответствии с регрессионным анализом, либо в соответствии со справочной таблицей.
51. Способ использования комплементарных элементов из метаматериала, включающий:
доставку электромагнитной энергии к входному порту волноводной структуры для получения эффективного отклика среды внутри волноводной структуры, причем эффективный отклик среды представляет собой функцию структуры отверстий, представляющих собой комплементарные элементы из метаматериала, в одном или нескольких ограничивающих проводниках волноводной структуры.
RU2011108686/08A 2008-08-22 2009-08-21 Метаматериалы для поверхностей и волноводов RU2524835C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US9133708P 2008-08-22 2008-08-22
US61/091,337 2008-08-22
PCT/US2009/004772 WO2010021736A2 (en) 2008-08-22 2009-08-21 Metamaterials for surfaces and waveguides

Publications (2)

Publication Number Publication Date
RU2011108686A RU2011108686A (ru) 2012-09-27
RU2524835C2 true RU2524835C2 (ru) 2014-08-10

Family

ID=41707602

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011108686/08A RU2524835C2 (ru) 2008-08-22 2009-08-21 Метаматериалы для поверхностей и волноводов

Country Status (13)

Country Link
US (3) US10461433B2 (ru)
EP (2) EP3736904A1 (ru)
JP (2) JP5642678B2 (ru)
KR (3) KR20170056019A (ru)
CN (2) CN102204008B (ru)
AU (1) AU2009283141C1 (ru)
BR (1) BRPI0912934A2 (ru)
CA (1) CA2734962A1 (ru)
CL (1) CL2011000318A1 (ru)
IL (1) IL211356B (ru)
MX (1) MX2011001903A (ru)
RU (1) RU2524835C2 (ru)
WO (1) WO2010021736A2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2666965C2 (ru) * 2016-12-19 2018-09-13 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Диэлектрический метаматериал с тороидным откликом

Families Citing this family (159)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7733289B2 (en) 2007-10-31 2010-06-08 The Invention Science Fund I, Llc Electromagnetic compression apparatus, methods, and systems
US20090218523A1 (en) * 2008-02-29 2009-09-03 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Electromagnetic cloaking and translation apparatus, methods, and systems
US20090218524A1 (en) * 2008-02-29 2009-09-03 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Electromagnetic cloaking and translation apparatus, methods, and systems
US8638504B2 (en) * 2008-05-30 2014-01-28 The Invention Science Fund I Llc Emitting and negatively-refractive focusing apparatus, methods, and systems
US8531782B2 (en) * 2008-05-30 2013-09-10 The Invention Science Fund I Llc Emitting and focusing apparatus, methods, and systems
US8164837B2 (en) * 2008-05-30 2012-04-24 The Invention Science Fund I, Llc Negatively-refractive focusing and sensing apparatus, methods, and systems
US8773775B2 (en) 2008-05-30 2014-07-08 The Invention Science Fund I Llc Emitting and negatively-refractive focusing apparatus, methods, and systems
US8736982B2 (en) 2008-05-30 2014-05-27 The Invention Science Fund I Llc Emitting and focusing apparatus, methods, and systems
US8817380B2 (en) * 2008-05-30 2014-08-26 The Invention Science Fund I Llc Emitting and negatively-refractive focusing apparatus, methods, and systems
US8773776B2 (en) * 2008-05-30 2014-07-08 The Invention Science Fund I Llc Emitting and negatively-refractive focusing apparatus, methods, and systems
US8638505B2 (en) * 2008-05-30 2014-01-28 The Invention Science Fund 1 Llc Negatively-refractive focusing and sensing apparatus, methods, and systems
US9019632B2 (en) 2008-05-30 2015-04-28 The Invention Science Fund I Llc Negatively-refractive focusing and sensing apparatus, methods, and systems
US8493669B2 (en) 2008-05-30 2013-07-23 The Invention Science Fund I Llc Focusing and sensing apparatus, methods, and systems
US8837058B2 (en) 2008-07-25 2014-09-16 The Invention Science Fund I Llc Emitting and negatively-refractive focusing apparatus, methods, and systems
US8730591B2 (en) * 2008-08-07 2014-05-20 The Invention Science Fund I Llc Negatively-refractive focusing and sensing apparatus, methods, and systems
US10461433B2 (en) 2008-08-22 2019-10-29 Duke University Metamaterials for surfaces and waveguides
US8174341B2 (en) * 2008-12-01 2012-05-08 Toyota Motor Engineering & Manufacturing North America, Inc. Thin film based split resonator tunable metamaterial
US8490035B2 (en) * 2009-11-12 2013-07-16 The Regents Of The University Of Michigan Tensor transmission-line metamaterials
CN101976759B (zh) * 2010-09-07 2013-04-17 江苏大学 一种开口谐振环等效左手媒质贴片天线
KR20130141527A (ko) * 2010-10-15 2013-12-26 시리트 엘엘씨 표면 산란 안테나
ITRM20110596A1 (it) * 2010-11-16 2012-05-17 Selex Sistemi Integrati Spa Elemento radiante di antenna in guida di onda in grado di operare in banda wi-fi, e sistema di misura delle prestazioni di una antenna operante in banda c e utilizzante tale elemento radiante.
US8693881B2 (en) 2010-11-19 2014-04-08 Hewlett-Packard Development Company, L.P. Optical hetrodyne devices
KR20120099861A (ko) * 2011-03-02 2012-09-12 한국전자통신연구원 평면형 메타물질을 포함한 마이크로스트립 패치 안테나 및 그 동작 방법
CN102810734A (zh) * 2011-05-31 2012-12-05 深圳光启高等理工研究院 一种天线及具有该天线的mimo天线
CN102683863B (zh) * 2011-03-15 2015-11-18 深圳光启高等理工研究院 一种喇叭天线
CN102683884B (zh) * 2011-03-15 2016-06-29 深圳光启高等理工研究院 一种超材料变焦透镜
CN102683870B (zh) * 2011-03-15 2015-03-11 深圳光启高等理工研究院 一种发散电磁波的超材料
US8421550B2 (en) * 2011-03-18 2013-04-16 Kuang-Chi Institute Of Advanced Technology Impedance matching component and hybrid wave-absorbing material
CN102694232B (zh) * 2011-03-25 2014-11-26 深圳光启高等理工研究院 一种阵列式超材料天线
US9117040B2 (en) * 2011-04-12 2015-08-25 Robin Stewart Langley Induced field determination using diffuse field reciprocity
CN102480007B (zh) * 2011-04-12 2013-06-12 深圳光启高等理工研究院 一种汇聚电磁波的超材料
CN102480008B (zh) * 2011-04-14 2013-06-12 深圳光启高等理工研究院 汇聚电磁波的超材料
CN102751576A (zh) * 2011-04-20 2012-10-24 深圳光启高等理工研究院 一种喇叭天线装置
EP2700125B1 (en) * 2011-04-21 2017-06-14 Duke University A metamaterial waveguide lens
CN102760927A (zh) * 2011-04-29 2012-10-31 深圳光启高等理工研究院 一种实现波导过渡的超材料
CN102769163B (zh) * 2011-04-30 2015-02-04 深圳光启高等理工研究院 超材料过渡波导
CN102890298B (zh) * 2011-05-04 2014-11-26 深圳光启高等理工研究院 一种压缩电磁波的超材料
CN102280703A (zh) * 2011-05-13 2011-12-14 东南大学 基于电谐振结构的零折射率平板透镜天线
CN102299697B (zh) * 2011-05-31 2014-03-05 许河秀 复合左右手传输线及其设计方法和基于该传输线的双工器
CN103036032B (zh) * 2011-06-17 2015-08-19 深圳光启高等理工研究院 低磁导率的人工电磁材料
WO2012171295A1 (zh) * 2011-06-17 2012-12-20 深圳光启高等理工研究院 一种人造微结构及其应用的人工电磁材料
CN102810758B (zh) * 2011-06-29 2015-02-04 深圳光启高等理工研究院 一种新型超材料
CN102810759B (zh) * 2011-06-29 2014-09-03 深圳光启高等理工研究院 一种新型超材料
CN102800983B (zh) * 2011-06-29 2014-10-01 深圳光启高等理工研究院 一种新型超材料
WO2013000223A1 (zh) * 2011-06-29 2013-01-03 深圳光启高等理工研究院 一种人工电磁材料
WO2013004063A1 (zh) * 2011-07-01 2013-01-10 深圳光启高等理工研究院 人工复合材料和人工复合材料天线
CN102480033B (zh) * 2011-07-26 2013-07-03 深圳光启高等理工研究院 一种偏馈式微波天线
CN102904057B (zh) * 2011-07-29 2016-01-06 深圳光启高等理工研究院 一种新型人工电磁材料
CN103036040B (zh) * 2011-07-29 2015-02-04 深圳光启高等理工研究院 基站天线
WO2013016939A1 (zh) * 2011-07-29 2013-02-07 深圳光启高等理工研究院 基站天线
CN102480045B (zh) * 2011-08-31 2013-04-24 深圳光启高等理工研究院 基站天线
CN102480043B (zh) * 2011-08-31 2013-08-07 深圳光启高等理工研究院 基站天线
CN102969572B (zh) * 2011-09-01 2015-06-17 深圳光启高等理工研究院 一种低频负磁导率超材料
CN103022686A (zh) * 2011-09-22 2013-04-03 深圳光启高等理工研究院 天线罩
CN103035992A (zh) * 2011-09-29 2013-04-10 深圳光启高等理工研究院 微带线
CN103094706B (zh) * 2011-10-31 2015-12-16 深圳光启高等理工研究院 基于超材料的天线
CN103136397B (zh) * 2011-11-30 2016-09-28 深圳光启高等理工研究院 一种获得电磁响应曲线特征参数的方法及其装置
CN103134774B (zh) * 2011-12-02 2015-11-18 深圳光启高等理工研究院 一种获得超材料折射率分布的方法及其装置
CN103136437B (zh) * 2011-12-02 2016-06-29 深圳光启高等理工研究院 一种获得超材料折射率分布的方法和装置
CN103136404B (zh) * 2011-12-02 2016-01-27 深圳光启高等理工研究院 一种获得超材料折射率分布的方法和装置
CN103159168B (zh) * 2011-12-14 2015-09-16 深圳光启高等理工研究院 一种确定具有最大带宽特性的超材料单元结构的方法
ITRM20120003A1 (it) * 2012-01-03 2013-07-04 Univ Degli Studi Roma Tre Antenna ad apertura a bassa figura di rumore
CA2804560A1 (en) 2012-02-03 2013-08-03 Tec Edmonton Metamaterial liner for waveguide
CN102593563B (zh) * 2012-02-29 2014-04-16 深圳光启创新技术有限公司 基于超材料的波导装置
CN103296476B (zh) * 2012-02-29 2017-02-01 深圳光启高等理工研究院 一种多波束透镜天线
CN103296446B (zh) * 2012-02-29 2017-06-30 深圳光启创新技术有限公司 一种超材料及mri成像增强器件
CN103296442B (zh) * 2012-02-29 2017-10-31 洛阳尖端技术研究院 超材料及由超材料制成的天线罩
CN103296448B (zh) * 2012-02-29 2017-02-01 深圳光启高等理工研究院 一种阻抗匹配元件
CN102983408B (zh) * 2012-03-31 2014-02-19 深圳光启创新技术有限公司 一种超材料及其制备方法
CN103367904B (zh) * 2012-03-31 2016-12-14 深圳光启创新技术有限公司 定向传播天线罩和定向天线***
CN102709705B (zh) * 2012-04-27 2015-05-27 深圳光启创新技术有限公司 一种mri磁信号增强器件
US9411042B2 (en) 2012-05-09 2016-08-09 Duke University Multi-sensor compressive imaging
US9268016B2 (en) * 2012-05-09 2016-02-23 Duke University Metamaterial devices and methods of using the same
US9917476B2 (en) 2012-05-22 2018-03-13 Sato Holdings Kabushiki Kaisha Adaptive coupler for reactive near field RFID communication
CN102723606B (zh) * 2012-05-30 2015-01-21 深圳光启高等理工研究院 一种宽频低色散超材料
CN102780086B (zh) * 2012-07-31 2015-02-11 电子科技大学 基于谐振环微结构阵列的新型双频贴片天线
DE102012217760A1 (de) * 2012-09-28 2014-04-03 Siemens Ag Entkopplung von Split-Ring-Resonatoren bei der Magnetresonanztomographie
US10534189B2 (en) * 2012-11-27 2020-01-14 The Board Of Trustees Of The Leland Stanford Junior University Universal linear components
RU2548543C2 (ru) * 2013-03-06 2015-04-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Владивостокский государственный университет экономики и сервиса" (ВГУЭС) Способ получения метаматериала
US9385435B2 (en) 2013-03-15 2016-07-05 The Invention Science Fund I, Llc Surface scattering antenna improvements
KR101378477B1 (ko) * 2013-03-22 2014-03-28 중앙대학교 산학협력단 기판 집적형 도파관 안테나
US9246208B2 (en) * 2013-08-06 2016-01-26 Hand Held Products, Inc. Electrotextile RFID antenna
US9140444B2 (en) 2013-08-15 2015-09-22 Medibotics, LLC Wearable device for disrupting unwelcome photography
US9647345B2 (en) 2013-10-21 2017-05-09 Elwha Llc Antenna system facilitating reduction of interfering signals
US9923271B2 (en) 2013-10-21 2018-03-20 Elwha Llc Antenna system having at least two apertures facilitating reduction of interfering signals
US9935375B2 (en) * 2013-12-10 2018-04-03 Elwha Llc Surface scattering reflector antenna
US10236574B2 (en) 2013-12-17 2019-03-19 Elwha Llc Holographic aperture antenna configured to define selectable, arbitrary complex electromagnetic fields
US20150200452A1 (en) * 2014-01-10 2015-07-16 Samsung Electronics Co., Ltd. Planar beam steerable lens antenna system using non-uniform feed array
US10135148B2 (en) * 2014-01-31 2018-11-20 Kymeta Corporation Waveguide feed structures for reconfigurable antenna
US10431899B2 (en) 2014-02-19 2019-10-01 Kymeta Corporation Dynamic polarization and coupling control from a steerable, multi-layered cylindrically fed holographic antenna
US10522906B2 (en) * 2014-02-19 2019-12-31 Aviation Communication & Surveillance Systems Llc Scanning meta-material antenna and method of scanning with a meta-material antenna
US9448305B2 (en) 2014-03-26 2016-09-20 Elwha Llc Surface scattering antenna array
US9843103B2 (en) 2014-03-26 2017-12-12 Elwha Llc Methods and apparatus for controlling a surface scattering antenna array
US9711852B2 (en) 2014-06-20 2017-07-18 The Invention Science Fund I Llc Modulation patterns for surface scattering antennas
US9853361B2 (en) 2014-05-02 2017-12-26 The Invention Science Fund I Llc Surface scattering antennas with lumped elements
US9882288B2 (en) 2014-05-02 2018-01-30 The Invention Science Fund I Llc Slotted surface scattering antennas
US10446903B2 (en) 2014-05-02 2019-10-15 The Invention Science Fund I, Llc Curved surface scattering antennas
US9966668B1 (en) * 2014-05-15 2018-05-08 Rockwell Collins, Inc. Semiconductor antenna
US9595765B1 (en) * 2014-07-05 2017-03-14 Continental Microwave & Tool Co., Inc. Slotted waveguide antenna with metamaterial structures
CN104241866B (zh) * 2014-07-10 2016-05-18 杭州电子科技大学 一种基于双十字架型的宽带低耗小单元左手材料
US9964659B2 (en) 2014-07-31 2018-05-08 Halliburton Energy Services, Inc. High directionality galvanic and induction well logging tools with metamaterial focusing
CN104133269B (zh) * 2014-08-04 2018-10-26 河海大学常州校区 基于超材料的表面波的激发和长距离传输结构
JP6273182B2 (ja) * 2014-08-25 2018-01-31 株式会社東芝 電子機器
EP3010086B1 (en) 2014-10-13 2017-11-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Phased array antenna
WO2016064478A1 (en) * 2014-10-21 2016-04-28 Board Of Regents, The University Of Texas System Dual-polarized, broadband metasurface cloaks for antenna applications
CN104319485B (zh) * 2014-10-25 2017-03-01 哈尔滨工业大学 平面结构微波波段左手材料
CN104538744B (zh) * 2014-12-01 2017-05-10 电子科技大学 一种应用于金属圆柱体的电磁硬表面结构及其构建方法
CA2969310A1 (en) * 2014-12-31 2016-07-07 Halliburton Energy Services, Inc. Modifying magnetic tilt angle using a magnetically anisotropic material
US9954563B2 (en) 2015-01-15 2018-04-24 VertoCOMM, Inc. Hermetic transform beam-forming devices and methods using meta-materials
CN108464030B (zh) 2015-06-15 2021-08-24 希尔莱特有限责任公司 用于与波束形成天线通信的方法和***
US10014585B2 (en) * 2015-07-08 2018-07-03 Drexel University Miniaturized reconfigurable CRLH metamaterial leaky-wave antenna using complementary split-ring resonators
US9620855B2 (en) 2015-07-20 2017-04-11 Elwha Llc Electromagnetic beam steering antenna
US9577327B2 (en) 2015-07-20 2017-02-21 Elwha Llc Electromagnetic beam steering antenna
US10170831B2 (en) 2015-08-25 2019-01-01 Elwha Llc Systems, methods and devices for mechanically producing patterns of electromagnetic energy
CN105470656B (zh) * 2015-12-07 2018-10-16 复旦大学 一种基于梯度超表面的可调线极化波束分离器
CN105823378B (zh) * 2016-05-06 2017-05-10 浙江大学 一种三维全极化的超表面隐身衣
CN107404002B (zh) * 2016-05-19 2024-06-11 佛山顺德光启尖端装备有限公司 调节电磁波的方法和超材料
CN106297762B (zh) * 2016-08-16 2019-08-16 南京工业大学 一种利用亥姆霍兹共鸣器的非线性特性改变声学超构材料通频带的方法
EP3309897A1 (de) * 2016-10-12 2018-04-18 VEGA Grieshaber KG Hohlleitereinkopplung für eine radarantenne
US10361481B2 (en) 2016-10-31 2019-07-23 The Invention Science Fund I, Llc Surface scattering antennas with frequency shifting for mutual coupling mitigation
US11165129B2 (en) 2016-12-30 2021-11-02 Intel Corporation Dispersion reduced dielectric waveguide comprising dielectric materials having respective dispersion responses
US10763290B2 (en) * 2017-02-22 2020-09-01 Elwha Llc Lidar scanning system
US11233333B2 (en) * 2017-02-28 2022-01-25 Toyota Motor Europe Tunable waveguide system
US10359513B2 (en) 2017-05-03 2019-07-23 Elwha Llc Dynamic-metamaterial coded-aperture imaging
US10075219B1 (en) 2017-05-10 2018-09-11 Elwha Llc Admittance matrix calibration for tunable metamaterial systems
US9967011B1 (en) 2017-05-10 2018-05-08 Elwha Llc Admittance matrix calibration using external antennas for tunable metamaterial systems
US10135123B1 (en) * 2017-05-19 2018-11-20 Searete Llc Systems and methods for tunable medium rectennas
US10236961B2 (en) 2017-07-14 2019-03-19 Facebook, Inc. Processsing of beamforming signals of a passive time-delay structure
EP3685469A4 (en) * 2017-09-19 2021-06-16 B.G. Negev Technologies & Applications Ltd., at Ben-Gurion University SYSTEM AND METHOD FOR CREATING AN INVISIBLE SPACE
US20190094408A1 (en) * 2017-09-22 2019-03-28 Duke University Imaging through media using artificially-structured materials
US10892553B2 (en) 2018-01-17 2021-01-12 Kymeta Corporation Broad tunable bandwidth radial line slot antenna
US10451800B2 (en) 2018-03-19 2019-10-22 Elwha, Llc Plasmonic surface-scattering elements and metasurfaces for optical beam steering
CN108521022A (zh) * 2018-03-29 2018-09-11 中国地质大学(北京) 一种全透射人工电磁材料
US10727602B2 (en) * 2018-04-18 2020-07-28 The Boeing Company Electromagnetic reception using metamaterial
US11329359B2 (en) 2018-05-18 2022-05-10 Intel Corporation Dielectric waveguide including a dielectric material with cavities therein surrounded by a conductive coating forming a wall for the cavities
US11476580B2 (en) 2018-09-12 2022-10-18 Japan Aviation Electronics Industry, Limited Antenna and communication device
CN109728441A (zh) * 2018-12-20 2019-05-07 西安电子科技大学 一种可重构通用型超材料
CN110133376B (zh) * 2019-05-10 2021-04-20 杭州电子科技大学 用于测量磁介质材料介电常数和磁导率的微波传感器
CN110441835B (zh) * 2019-07-09 2021-10-26 哈尔滨工程大学 一种基于巴比涅复合梯度相位超构材料的非对称反射器件
CN110729565B (zh) * 2019-10-29 2021-03-30 Oppo广东移动通信有限公司 阵列透镜、透镜天线和电子设备
US11092675B2 (en) 2019-11-13 2021-08-17 Lumotive, LLC Lidar systems based on tunable optical metasurfaces
US11670867B2 (en) 2019-11-21 2023-06-06 Duke University Phase diversity input for an array of traveling-wave antennas
US11670861B2 (en) 2019-11-25 2023-06-06 Duke University Nyquist sampled traveling-wave antennas
US11888233B2 (en) * 2020-04-07 2024-01-30 Ramot At Tel-Aviv University Ltd Tailored terahertz radiation
CN111555035B (zh) * 2020-05-15 2023-03-21 中国航空工业集团公司沈阳飞机设计研究所 角度敏感超材料及相控阵***
CN111755834B (zh) * 2020-07-03 2021-03-30 电子科技大学 一种类共面波导传输线结构的高品质因子微波超材料
CN111786059B (zh) * 2020-07-06 2021-07-27 电子科技大学 一种连续可调频率选择表面结构
CN112864567B (zh) * 2021-01-08 2021-08-24 上海交通大学 一种利用金属背板和介质空腔制作透射性可调波导的方法
EP4278414A1 (en) * 2021-01-14 2023-11-22 Latys Intelligence Inc. Reflective beam-steering metasurface
CN113097669B (zh) * 2021-04-16 2021-11-16 北京无线电测量研究所 一种可调谐滤波器
CN113224537B (zh) * 2021-04-29 2022-10-21 电子科技大学 应用于无线输电的类f-p腔体超材料微带天线设计方法
US20220399651A1 (en) * 2021-06-15 2022-12-15 The Johns Hopkins University Multifunctional metasurface antenna
CN113363720B (zh) * 2021-06-22 2023-06-30 西安电子科技大学 一种融合罗德曼透镜与有源超表面的涡旋波二维扫描***
CN114361940A (zh) * 2021-12-13 2022-04-15 中国科学院上海微***与信息技术研究所 一种超表面结构调控太赫兹量子级联激光器色散的方法
WO2023153138A1 (ja) * 2022-02-14 2023-08-17 ソニーグループ株式会社 波動制御装置、波長変換素子、演算素子、センサ、偏光制御素子及び光アイソレータ
US11429008B1 (en) 2022-03-03 2022-08-30 Lumotive, LLC Liquid crystal metasurfaces with cross-backplane optical reflectors
US11487183B1 (en) 2022-03-17 2022-11-01 Lumotive, LLC Tunable optical device configurations and packaging
US11487184B1 (en) 2022-05-11 2022-11-01 Lumotive, LLC Integrated driver and self-test control circuitry in tunable optical devices
US11493823B1 (en) 2022-05-11 2022-11-08 Lumotive, LLC Integrated driver and heat control circuitry in tunable optical devices

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6985118B2 (en) * 2003-07-07 2006-01-10 Harris Corporation Multi-band horn antenna using frequency selective surfaces

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2492540A1 (fr) * 1980-10-17 1982-04-23 Schlumberger Prospection Dispositif pour diagraphie electromagnetique dans les forages
US6040936A (en) 1998-10-08 2000-03-21 Nec Research Institute, Inc. Optical transmission control apparatus utilizing metal films perforated with subwavelength-diameter holes
AU2001249241A1 (en) * 2000-03-17 2001-10-03 The Regents Of The University Of California Left handed composite media
WO2003081795A2 (en) * 2002-03-18 2003-10-02 Ems Technologies, Inc. Passive intermodulation interference control circuits
CA2430795A1 (en) * 2002-05-31 2003-11-30 George V. Eleftheriades Planar metamaterials for controlling and guiding electromagnetic radiation and applications therefor
US7522124B2 (en) * 2002-08-29 2009-04-21 The Regents Of The University Of California Indefinite materials
US7071888B2 (en) * 2003-05-12 2006-07-04 Hrl Laboratories, Llc Steerable leaky wave antenna capable of both forward and backward radiation
US6958729B1 (en) * 2004-03-05 2005-10-25 Lucent Technologies Inc. Phased array metamaterial antenna system
US7015865B2 (en) 2004-03-10 2006-03-21 Lucent Technologies Inc. Media with controllable refractive properties
EP1771756B1 (en) * 2004-07-23 2015-05-06 The Regents of The University of California Metamaterials
US7009565B2 (en) * 2004-07-30 2006-03-07 Lucent Technologies Inc. Miniaturized antennas based on negative permittivity materials
EP1782434A1 (en) 2004-08-09 2007-05-09 George V. Eleftheriades Negative-refraction metamaterials using continuous metallic grids over ground for controlling and guiding electromagnetic radiation
JP3928055B2 (ja) 2005-03-02 2007-06-13 国立大学法人山口大学 負透磁率または負誘電率メタマテリアルおよび表面波導波路
US7456787B2 (en) * 2005-08-11 2008-11-25 Sierra Nevada Corporation Beam-forming antenna with amplitude-controlled antenna elements
US7545242B2 (en) * 2005-11-01 2009-06-09 Hewlett-Packard Development Company, L.P. Distributing clock signals using metamaterial-based waveguides
US8054146B2 (en) * 2005-11-14 2011-11-08 Iowa State University Research Foundation, Inc. Structures with negative index of refraction
US8207907B2 (en) * 2006-02-16 2012-06-26 The Invention Science Fund I Llc Variable metamaterial apparatus
JP4545095B2 (ja) * 2006-01-11 2010-09-15 株式会社Adeka 新規重合性化合物
US7580604B2 (en) * 2006-04-03 2009-08-25 The United States Of America As Represented By The Secretary Of The Army Zero index material omnireflectors and waveguides
EP1855348A1 (en) * 2006-05-11 2007-11-14 Seiko Epson Corporation Split ring resonator bandpass filter, electronic device including said bandpass filter, and method of producing said bandpass filter
DE102006024097A1 (de) 2006-05-18 2007-11-22 E.G.O. Elektro-Gerätebau GmbH Verwendung von linkshändigen Metamaterialien als Anzeige, insbesondere an einem Kochfeld, und Anzeige sowie Anzeigeverfahren
JP2007325118A (ja) * 2006-06-02 2007-12-13 Toyota Motor Corp アンテナ装置
JP3978504B1 (ja) 2006-06-22 2007-09-19 国立大学法人山口大学 ストリップ線路型右手/左手系複合線路とそれを用いたアンテナ
US8026854B2 (en) 2006-07-14 2011-09-27 Yamaguchi University Stripline-type composite right/left-handed transmission line or left-handed transmission line, and antenna that uses same
US9677856B2 (en) * 2006-07-25 2017-06-13 Imperial Innovations Limited Electromagnetic cloaking method
US7593170B2 (en) * 2006-10-20 2009-09-22 Hewlett-Packard Development Company, L.P. Random negative index material structures in a three-dimensional volume
US7928900B2 (en) * 2006-12-15 2011-04-19 Alliant Techsystems Inc. Resolution antenna array using metamaterials
US7474456B2 (en) * 2007-01-30 2009-01-06 Hewlett-Packard Development Company, L.P. Controllable composite material
WO2008115881A1 (en) 2007-03-16 2008-09-25 Rayspan Corporation Metamaterial antenna arrays with radiation pattern shaping and beam switching
US7545841B2 (en) * 2007-04-24 2009-06-09 Hewlett-Packard Development Company, L.P. Composite material with proximal gain medium
US7724197B1 (en) 2007-04-30 2010-05-25 Planet Earth Communications, Llc Waveguide beam forming lens with per-port power dividers
US7821473B2 (en) 2007-05-15 2010-10-26 Toyota Motor Engineering & Manufacturing North America, Inc. Gradient index lens for microwave radiation
US7561320B2 (en) * 2007-10-26 2009-07-14 Hewlett-Packard Development Company, L.P. Modulation of electromagnetic radiation with electrically controllable composite material
US7629941B2 (en) 2007-10-31 2009-12-08 Searete Llc Electromagnetic compression apparatus, methods, and systems
US7733289B2 (en) 2007-10-31 2010-06-08 The Invention Science Fund I, Llc Electromagnetic compression apparatus, methods, and systems
US8674792B2 (en) 2008-02-07 2014-03-18 Toyota Motor Engineering & Manufacturing North America, Inc. Tunable metamaterials
GB0802727D0 (en) * 2008-02-14 2008-03-26 Isis Innovation Resonant sensor and method
US7629937B2 (en) * 2008-02-25 2009-12-08 Lockheed Martin Corporation Horn antenna, waveguide or apparatus including low index dielectric material
US20090218524A1 (en) 2008-02-29 2009-09-03 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Electromagnetic cloaking and translation apparatus, methods, and systems
US8493669B2 (en) 2008-05-30 2013-07-23 The Invention Science Fund I Llc Focusing and sensing apparatus, methods, and systems
WO2009155098A2 (en) 2008-05-30 2009-12-23 The Penn State Research Foundation Flat transformational electromagnetic lenses
US8773776B2 (en) 2008-05-30 2014-07-08 The Invention Science Fund I Llc Emitting and negatively-refractive focusing apparatus, methods, and systems
US10461433B2 (en) 2008-08-22 2019-10-29 Duke University Metamaterials for surfaces and waveguides
US7773033B2 (en) * 2008-09-30 2010-08-10 Raytheon Company Multilayer metamaterial isolator
US8634144B2 (en) 2009-04-17 2014-01-21 The Invention Science Fund I Llc Evanescent electromagnetic wave conversion methods I
ITRM20110596A1 (it) 2010-11-16 2012-05-17 Selex Sistemi Integrati Spa Elemento radiante di antenna in guida di onda in grado di operare in banda wi-fi, e sistema di misura delle prestazioni di una antenna operante in banda c e utilizzante tale elemento radiante.

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6985118B2 (en) * 2003-07-07 2006-01-10 Harris Corporation Multi-band horn antenna using frequency selective surfaces

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZORAN JAKSIE et al, статья "Electromagnetic Structures Containing Negative Refractive Index Metamaterials", опубл. 28-30 сентября 2005, на 11 страницах, [найдено 01.08.2013], найдено в Интернет по адресу: . *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2666965C2 (ru) * 2016-12-19 2018-09-13 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Диэлектрический метаматериал с тороидным откликом

Also Published As

Publication number Publication date
CN104377414A (zh) 2015-02-25
EP3736904A1 (en) 2020-11-11
CN102204008A (zh) 2011-09-28
CA2734962A1 (en) 2010-02-25
WO2010021736A9 (en) 2011-04-28
US20100156573A1 (en) 2010-06-24
MX2011001903A (es) 2011-08-17
KR20110071065A (ko) 2011-06-28
AU2009283141B2 (en) 2015-07-09
WO2010021736A3 (en) 2010-06-03
EP2329561A2 (en) 2011-06-08
AU2009283141C1 (en) 2015-10-01
JP2015043617A (ja) 2015-03-05
KR101735122B1 (ko) 2017-05-24
WO2010021736A2 (en) 2010-02-25
CN102204008B (zh) 2014-10-01
BRPI0912934A2 (pt) 2016-07-05
EP2329561A4 (en) 2013-03-13
CL2011000318A1 (es) 2011-07-22
KR20190006068A (ko) 2019-01-16
US9768516B2 (en) 2017-09-19
JP5642678B2 (ja) 2014-12-17
IL211356B (en) 2018-10-31
CN104377414B (zh) 2018-02-23
RU2011108686A (ru) 2012-09-27
US20180069318A1 (en) 2018-03-08
US10461434B2 (en) 2019-10-29
JP2012501100A (ja) 2012-01-12
US10461433B2 (en) 2019-10-29
IL211356A0 (en) 2011-05-31
AU2009283141A1 (en) 2010-02-25
JP5951728B2 (ja) 2016-07-13
US20150116187A1 (en) 2015-04-30
KR20170056019A (ko) 2017-05-22

Similar Documents

Publication Publication Date Title
RU2524835C2 (ru) Метаматериалы для поверхностей и волноводов
Glybovski et al. Metasurfaces: From microwaves to visible
Turpin et al. Reconfigurable and tunable metamaterials: a review of the theory and applications
US7750869B2 (en) Dielectric and magnetic particles based metamaterials
Li et al. Reconfigurable diffractive antenna based on switchable electrically induced transparency
US20150180133A1 (en) Metamaterial waveguide lens
Kapoor et al. Frequency selective surfaces as spatial filters: Fundamentals, analysis and applications
Buriak et al. Metamaterials: Theory, classification and application strategies
Mavridou et al. Dynamically reconfigurable high impedance and frequency selective metasurfaces using piezoelectric actuators
Sarkhel et al. A compact metamaterial with multi-band negative-index characteristics
Molero et al. Analytical circuit model for 1-D periodic T-shaped corrugated surfaces
Ueda et al. Anisotropic 3-D composite right/left-handed metamaterial structures using dielectric resonators and conductive mesh plates
Farzami et al. Experimental realization of tunable transmission lines based on single-layer SIWs loaded by embedded SRRs
Gangwar et al. Reduction of mutual coupling in metamaterial based microstrip antennas: The progress in last decade
Abdalrazik et al. Frequency-reconfigurable dielectric resonator antenna using metasurface
Hand Design and applications of frequency tunable and reconfigurable metamaterials
Longowal Magnetic resonance in spiral resonators
Maasch et al. Artificial Gradient-Index Lens
Koul et al. Future Scope of RF MEMS in THz Regime
Kubo Negative Refractive Index Materials Composed of Metal Patterns and the Applications
Omar Improved 3-D frequency-selective structures and their applications
Molero Jiménez et al. Analytical circuit model for 1-D periodic T-shaped corrugated surfaces