RU2523320C1 - Полимерный проппант и способ его получения - Google Patents

Полимерный проппант и способ его получения Download PDF

Info

Publication number
RU2523320C1
RU2523320C1 RU2013125246/03A RU2013125246A RU2523320C1 RU 2523320 C1 RU2523320 C1 RU 2523320C1 RU 2013125246/03 A RU2013125246/03 A RU 2013125246/03A RU 2013125246 A RU2013125246 A RU 2013125246A RU 2523320 C1 RU2523320 C1 RU 2523320C1
Authority
RU
Russia
Prior art keywords
water
mixture
temperature
minutes
polymer
Prior art date
Application number
RU2013125246/03A
Other languages
English (en)
Inventor
Владимир Владимирович Афанасьев
Сергей Анатольевич Алхимов
Наталья Борисовна БЕСПАЛОВА
Татьяна Модестовна Юмашева
Original Assignee
Открытое акционерное общество "Нефтяная компания "Роснефть"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Нефтяная компания "Роснефть" filed Critical Открытое акционерное общество "Нефтяная компания "Роснефть"
Priority to RU2013125246/03A priority Critical patent/RU2523320C1/ru
Priority to PCT/RU2014/000339 priority patent/WO2014193267A1/ru
Priority to CN201480022869.4A priority patent/CN105473682B/zh
Priority to CA2907798A priority patent/CA2907798C/en
Priority to US14/786,623 priority patent/US9765256B2/en
Application granted granted Critical
Publication of RU2523320C1 publication Critical patent/RU2523320C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/80Compositions for reinforcing fractures, e.g. compositions of proppants used to keep the fractures open
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F132/00Homopolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system
    • C08F132/02Homopolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system having no condensed rings
    • C08F132/06Homopolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system having no condensed rings having two or more carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F32/00Homopolymers and copolymers of cyclic compounds having no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system
    • C08F32/02Homopolymers and copolymers of cyclic compounds having no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system having no condensed rings
    • C08F32/06Homopolymers and copolymers of cyclic compounds having no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system having no condensed rings having two or more carbon-to-carbon double bonds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Developing Agents For Electrophotography (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

Изобретение относится к нефте-, газодобычи с применением проппантов. Способ получения проппанта включает получение смеси олигоциклопентадиенов путем нагрева дициклопентадиена до температуры 150-220°С и выдержки при данной температуре в течение 15-360 мин, охлаждение смеси до 20-50°С, последовательное введение в полученную смесь олигоциклопентадиенов следующих компонентов: по крайней мере одного из полимерных стабилизаторов, выбранных из указанной группы, по крайней мере одного из радикальных инициаторов, выбранных из указанных соединений, или их смеси, и катализатора - соединения приведенной формулы, при этом компоненты полимерной матрицы находятся в следующих количествах, масс.%: полимерные стабилизаторы 0,1-3; радикальные инициаторы 0,1-4; катализатор 0,001-0,02; смесь олигоциклопентадиенов - остальное, полученную полимерную матрицу выдерживают при температуре 20-50°С в течение 1-40 минут, после чего вводят в виде ламинарного потока в предварительно нагретую не ниже температуры матрицы воду, содержащую ПАВ из указанной группы, где смесь воды с ПАВ имеет вязкость ниже вязкости полимерной матрицы, в процессе постоянного перемешивания воду нагревают до 50-100°С, продолжая перемешивать в течение 1-60 мин, образовавшиеся микросферы отделяют от воды, нагревают в среде инертного газа до температуры 150-340°С и выдерживают в указанной среде при данной температуре в течение 1-360 мин. Полимерный проппант получен указанным выше способом. Технический результат - повышение термопрочности. 2 н.п. ф-лы, 33 пр.

Description

Изобретение относится к технологии нефте-, газодобычи с использованием материалов из высокомолекулярных соединений, а именно к проппантам из полимерных материалов с повышенными требованиями к физико-механическим свойствам, в качестве расклинивающих гранул, применяемых при добыче нефти и газа методом гидравлического разрыва пласта.
Гидравлический разрыв пласта (ГРП) заключается в закачивании под большим давлением жидкости в нефте- и газоносные пласты, в результате чего в пласте образуются трещины, через которые поступает нефть или газ. Для предотвращения смыкания трещин в закачиваемую жидкость добавляют твердые частицы, как правило, сферические гранулы, называемые проппантами, заполняющие вместе с несущей жидкостью образовавшиеся трещины. Проппанты должны выдерживать высокие пластовые давления, быть устойчивыми к агрессивным средам и сохранять физико-механические свойства при высоких температурах. При этом проппант должен иметь плотность, близкую к плотности к несущей жидкости, с тем, чтобы он находился в жидкости во взвешенном состоянии и был доставлен до самых отдаленных участков трещин. Учитывая, что наиболее широко в качестве жидкости для гидроразрыва применяется вода, то и плотность проппанта должна быть близка к плотности воды.
Для производства проппантов часто используют в качестве исходного материала минеральные материалы природного происхождения - бокситы, каолины, пески (Патенты США №4068718 и №4668645).
Известно использование различных материалов, таких как боросиликатное или кальцинированное стекло, черные и цветные металлы или их сплавы, оксиды металлов, оксиды, нитриды и карбиды кремния, для производства проппантов, имеющих форму полых гранул (Заявка США №2012/0145390).
Недостатком таких материалов является высокая технологическая сложность изготовления из них полых гранул, их недостаточная прочность на сжатие из-за полой структуры и хрупкости материала, высокая степень разрушения проппанта в трещинах и обратный вынос частиц и их осколков.
На устранение подобных недостатков направлены технические решения изготовления проппантов с полимерным покрытием. Оболочка служит компенсатором точечных напряжений, более равномерно распределяя давление по поверхности и объему проппанта и, кроме того, снижает среднюю плотность проппанта. Широко известно использование различных органических полимерных и неорганических покрытий проппантов в виде эпоксидных и фенольных смол (заявки США №№2012/0205101, 2012/247335).
Недостатком таких технических решений выступает сложность изготовления таких проппантов, недостаточная термостойкость покрытий, низкие показатели округлости и сферичности, обусловленные формой минерального ядра проппанта, высокий разброс показателей физико-механических характеристик.
Известно применение широкого спектра термореактивных полимеров с поперечными связями, таких как эпоксидные, виниловые и фенольные соединения, полиуретан, полиэстер, меламин и пр., в качестве материала для изготовления проппантов (Заявка США №2013/0045901).
Известно использование в качестве материала для проппанта полиамида (патент США №7931087).
Недостатком известных материалов является несоответствие физико-механических характеристик данных материалов одновременно всей совокупности требований к материалу для проппантов. В частности, это недостаточная стойкость к агрессивным средам, недостаточная термостойкость и термопрочность, степень набухания в среде жидких углеводородов, прочность на сжатие.
Наиболее близким техническим решением к предлагаемому является применение полидициклопентадиена как материала для проппанта (патент РФ №2386025).
Недостатком применения полидициклопентадиена является недостаточная температурная стойкость и прочность на сжатие.
Задачей данного изобретения является получение проппанта, обладающего комплексом свойств, предъявляемых к проппантам, работающим в тяжелых условиях.
Технический результат, достигаемый при реализации настоящего изобретения, заключается в повышении термопрочности проппанта, материал которого обеспечивает прочность на сжатие не менее 150 Мпа при температуре не ниже 100°С.
Технический результат достигается тем, что полимерный проппант представляет собой микросферы из метатезис-радикально сшитой смеси олигоциклопентадиенов и полученный способом, включающим получение смеси олигоциклопентадиенов путем нагрева дициклопентадиена до температуры 150-220°С и выдержки при данной температуре в течение 15-360 мин, охлаждение смеси до 20-50°С, последовательное введение в полученную смесь олигоциклопентадиенов следующих компонентов: по крайней мере, одного из полимерных стабилизаторов, в качестве которых используют соединения: тетракис[метилен(3,5-ди-трет-бутил-4-гидроксигидроциннамат)]метан (1010), 2,6-ди-трет-бутил-4-(диметиламино)фенол (703), 1,3,5-триметил-2,4,6-трис(3,5-ди-трет-бутил-4-гидроксибензил)бензол (330), трис(4-трет-бутил-3 -гидрокси-2,6-диметилбензил)изоцианурат (14), 3,5-ди-трет-бутил-4-гидроксианизол (354), 4,4′-метиленбис(2,6-ди-трет-бутилфенол) (702), дифениламин (ДФА), пара-ди-трет-бутилфенилендиамин (5057), N,N′-дифенил-1,4-фенилендиамин (ДППД), трис(2,4-ди-трет-бутилфенил)фосфит (168), трис(нонилфенил)фосфит (ТНРР), бис(2,2,6,6-тетраметил-4-пиперидинил)себацинат (770), бис(1-октилокси-2,2,6,6-тетраметил-4-пиперидинил)себацинат (123), бис(1-метил-2,2,6,6-тетраметил-4-пиперидинил)себацинат (292), 2-трет-бутил-6-(5-хлор-2Н-бензотриазол-2-ил)-4-метилфенол (327), 2-(2Н-бензотриазол-2-ил)-4,6-бис(1-метил-1-фенил)фенол (234), по крайней мере одного из радикальных инициаторов, выбранных из группы: ди-трет-бутилпероксид (Б), дикумилпероксид (БЦ-ФФ), 2,3-диметил-2,3-дифенил-бутан (30), трифенилметан (ТФМ) и катализатор, в качестве которого используют соединение общей формулы:
Figure 00000001
где заместитель L выбран из группы:
Figure 00000002
Figure 00000003
Figure 00000004
Figure 00000005
Figure 00000006
полученную полимерную матрицу выдерживают при температуре 20-50°С в течение 1-40 минут, после чего вводят в виде ламинарного потока в предварительно нагретую не ниже температуры матрицы воду, содержащую поверхностно-активное вещество, при постоянном перемешивании воды образовавшиеся микросферы отделяют от воды, нагревают в среде инертного газа до температуры 150-340°С и выдерживают в указанной среде при данной температуре в течение 1-360 мин. В качестве поверхностно-активного вещества используют цетилтриметиламмонийхлорид, или додецилсульфат натрия, или лаурилсульфат аммония, или лаурилсаркозинат натрия, или октенидина гидрохлорид, или бензалкония хлорид. Смесь воды с поверхностно-активными веществами имеет вязкость 0,5-0,8 спуаз, в зависимости от температуры, что ниже вязкости полимерной матрицы при той же температуре, которая может колебаться в широких пределах от 1 до 300 спуаз в зависимости от состава и температуры. Компоненты полимерной матрицы находятся в следующих количествах, масс.%:
- полимерные стабилизаторы 0,1-3;
- радикальные инициаторы 0,1-4;
- катализатор 0,001-0,02;
- смесь олигоциклопентадиенов - остальное.
Указанные отличительные признаки существенны.
Метатезис-радикально сшитая смесь олигоциклопентадиенов образует полимер, который содержит в своей цепи более объемные радикально сшитые полимерные звенья, чем только полидициклопентадиен, который имеет совершенно другую структуру. Это обеспечивает новому полимеру уникальный набор физико-механических свойств, отличающихся от полидициклопентадиена более высокими значениями температуры стеклования и прочности при сжатии, устойчивостью в нефтепродуктах. Внесение высокотемпературных инициаторов радикальной полимеризации в мономерную смесь для получения полиолигоциклопентадиена позволяет существенно повысить термомеханические показатели материалов и повысить химическую стойкость полимера. Метатезис-радикально сшитый полиолигоциклопентадиен, полученный с использованием одновременно катализаторов метатезиса и радикальных инициаторов, имеет существенно большую температуру стеклования, которая находится в интервале 190-320°С, лучшие механические характеристики по сравнению с полимером только из дициклопентадиена. Прочность при растяжении возрастает до 150-220 МПа и уменьшается значение коэффициента линейного термического расширения. Крайне важным свойством является стойкость к органическим растворителям. Процент набухания в толуоле не превышает 5% после выдержки в течение месяца. По сравнению с полидициклопентадиеном, метатезис-радикально сшитый полиолигоциклопентадиен обладает существенно большей прочностью при сжатии при температуре не ниже 100°С, что особенно важно для проппантов.
Полимерный проппант получают следующим образом.
Получают смесь олигоциклопентадиенов путем нагрева дициклопентадиена до температуры 150-220°С и выдержки его при данной температуре в течение 15-360 мин.
Figure 00000007
Смесь олигомеров охлаждают до 20-50°С и последовательно вводят в нее полимерные стабилизаторы, радикальные инициаторы и катализатор. Получают полимерную матрицу следующего состава, масс.%:
- полимерные стабилизаторы 0,1-3;
- радикальные инициаторы 0,1-4;
- катализатор 0,001-0,02;
- смесь олигоциклопентадиенов - остальное.
Полимерную матрицу выдерживают при температуре 0-50°С в течение 1-40 минут, после чего вводят в виде ламинарного потока в предварительно нагретую не ниже температуры матрицы воду, содержащую поверхностно-активное вещество, при постоянном перемешивании воды. Смесь воды с поверхностно-активными веществами имеет вязкость ниже вязкости полимерной матрицы при той же температуре. Воду нагревают до 50-100°С, продолжая перемешивать в течение 1-60 минут. В процессе перемешивания происходит метатезисная полимеризация матрицы с образованием микросфер. Полимеризация олигомеров циклопентадиена проходит по следующей схеме:
Figure 00000008
Образовавшиеся микросферы отделяют от жидкости, нагревают до температуры 150-340°С в среде инертного газа и выдерживают в указанной среде при данной температуре в течение 1-360 мин. В процессе нагрева и выдержки при указанной температуре происходит радикальная сшивка полимера следующим образом:
Figure 00000009
Нагрев микросфер в среде инертного газа предотвращает их окисление и деструкцию. В качестве инертного газа предпочтительнее использовать азот или аргон.
Свойства материала проппанта классифицируются по следующим характеристикам:
Температура стеклования (Tg)
- А более 250°С
- Б от 201 до 250°С
- В от 170 до 200°С
- Г менее 170°С
Прочность при сжатии, МПа
- А более 220
- Б от 170 до 219
- В от 120 до 169
Целевая фракция (0,1-1,5 мм),%
- А более 77
- Б от 74 до 77
- В от 70 до 74
Набухание в нефти (100°С/1 неделя),%
- А менее 1
- Б от 1,1 до 3
- В от 3,1 до 5
Способ иллюстрируют следующие примеры.
Пример 1
Дициклопентадиен нагревают в автоклаве до 170°С, выдерживают при заданной температуре в течение 60 мин и охлаждают до комнатной температуры. В полученную смесь олигициклопентадиенов вносят полимерные стабилизаторы 1010 (0,30% масс.), 168 (0,40% масс.), 770 (0,40% масс.) и радикальные инициаторы Б (2,0% масс.), 30 (2,0% масс.). Катализатор N3a (0,0278% масс.) вносят при 25°С.
Полученная полимерная матрица имеет следующий состав, масс.%:
- полимерные стабилизаторы 1,1;
- радикальные инициаторы 4;
- катализатор 0,0278;
- смесь олигоциклопентадиенов 94,8722.
Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода вещество 0,2) содержащую поверхностно-активное вещество додецилсульфат натрия (0,2% масс.) при 40°С. Смесь воды с поверхностно-активными веществами имеет вязкость 0,657 спуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 100°С и выдерживают 10 минут. Микросферы отделяют от воды и нагревают до 260°С, выдерживают при данной температуре в атмосфере азота в течение 40 мин. Получают микросферы 97%, средний размер (Б) Tg (Б), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (Б).
Пример 2
Дициклопентадиен нагревают в автоклаве до 160°С, выдерживают при заданной температуре в течение 60 мин и охлаждают до комнатной температуры. В полученную смесь олигоциклопентадиенов вносят полимерные стабилизаторы 330 (0,50% масс.), 168 (0,50% масс.) и радикальный инициатор Б (0,1% масс.). Катализатор N (0,0096% масс.) вносят при 35°С.
Полученная полимерная матрица имеет следующий состав, масс.%:
- полимерные стабилизаторы 1,0;
- радикальные инициаторы 0,1;
- катализатор 0,0096;
- смесь олигоциклопентадиенов 98,8904.
Полученную смесь перемешивают 40 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода вещество 0,1), содержащую поверхностно-активное вещество лаурилсаркозинат натрия (0,1% масс.) при 35°С. Смесь воды с поверхностно-активными веществами имеет вязкость 0,728 спуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 100°С и выдерживают 1 минуту. Микросферы отделяют от воды и нагревают до 200°С, выдерживают при данной температуре в атмосфере азота в течение 30 мин. Получают микросферы 94%, средний размер (А) Tg (В), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (В).
Пример 3
Дициклопентадиен нагревают в автоклаве до 155°С, выдерживают при заданной температуре в течение 240 мин и охлаждают до комнатной температуры. В полученную смесь олигоциклопентадиенов вносят полимерные стабилизаторы 1010 (0,40% масс.), 168 (0,40% масс.), 770 (0,50% масс.) и радикальный инициатор БЦ-ФФ (1,5% масс.). Катализатор N7a (0,0072% масс.) вносят при 25°С.
Полученная полимерная матрица имеет следующий состав, масс.%:
- полимерные стабилизаторы 1,3;
- радикальные инициаторы 1,5;
- катализатор 0,0072;
- смесь олигоциклопентадиенов 97,1928.
Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода вещество 0,3), содержащую поверхностно-активное вещество цетилтриметиламмонийхлорид (0,3% масс.) при 40°С. Смесь воды с поверхностно-активными веществами имеет вязкость 0,657 спуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 100°С и выдерживают 15 минут. Микросферы отделяют от воды и нагревают до 150°С, выдерживают при данной температуре в атмосфере азота в течение 20 мин. Получают микросферы 91%, средний размер (В) Tg (В), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (В).
Пример 4
Дициклопентадиен нагревают в автоклаве до 150°С, выдерживают при заданной температуре в течение 60 мин и охлаждают до комнатной температуры. В полученную смесь олигоциклопентадиенов вносят полимерные стабилизаторы 702 (0,30% масс.), 168 (0,50% масс.) и радикальный инициатор Б (1,0% масс.). Катализатор N5a (0,0132% масс.) вносят при 10°С.
Полученная полимерная матрица имеет следующий состав, масс.%:
- полимерные стабилизаторы 0,8;
- радикальные инициаторы 1,0;
- катализатор 0,0132;
- смесь олигоциклопентадиенов 98,1868.
Полученную смесь перемешивают 2 минуты, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода вещество 0,05), содержащую поверхностно-активное вещество додецилсульфат натрия (0,1% масс.) при 55°С. Смесь воды с поверхностно-активными веществами имеет вязкость 0,512 спуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 60°С и выдерживают 45 минут. Микросферы отделяют от воды и нагревают до 200°С, выдерживают при данной температуре в атмосфере азота в течение 30 мин. Получают микросферы 89%, средний размер (A) Tg (А), прочность при сжатии (А), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (А).
Пример 5
Дициклопентадиен нагревают в автоклаве до 150°С, выдерживают при заданной температуре в течение 160 мин и охлаждают до комнатной температуры. В полученную смесь олигоциклопентадиенов вносят полимерные стабилизаторы 1010 (0,20% масс.), ТНРР (0,50% масс.), 292 (0,50% масс.) и радикальный инициатор Б (1,0% масс.). Катализатор N1 (0,0099% масс.) вносят при 50°С.
Полученная полимерная матрица имеет следующий состав, масс.%:
- полимерные стабилизаторы 1,2;
- радикальные инициаторы 1,0;
- катализатор 0,0099;
- смесь олигоциклопентадиенов 97,7901.
Полученную смесь перемешивают 5 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода вещество 0,1), содержащую поверхностно-активное вещество бензалкония хлорид (0,1% масс.) при 30°С. Смесь воды с поверхностно-активными веществами имеет вязкость 0,805 спуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 50°С и выдерживают 10 минут. Микросферы отделяют от воды и нагревают до 200°С, выдерживают при данной температуре в атмосфере азота в течение 360 мин. Получают микросферы 97%, средний размер (Б) Tg (В), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (В).
Пример 6
Дициклопентадиен нагревают в автоклаве до 160°С, выдерживают при заданной температуре в течение 180 мин и охлаждают до комнатной температуры. В полученную смесь вносят полимерные стабилизаторы 330 (0,50% масс.), 168 (1,00% масс.) и радикальные инициаторы БЦ-ФФ (1,5% масс.), 30 (2,5% масс.). Катализатор N14a (0,0087% масс.) вносят при 25°С.
Полученная полимерная матрица имеет следующий состав, масс.%:
- полимерные стабилизаторы 1,5;
- радикальные инициаторы 4,0;
- катализатор 0,0087;
- смесь олигоциклопентадиенов 94,4913.
Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода вещество 0,15), содержащую поверхностно-активное вещество вещество октенидина гидрохлорид (0,1% масс.) при 40°С. Смесь воды с поверхностно-активными веществами имеет вязкость 0,657 спуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 100°С и выдерживают 15 минут. Микросферы отделяют от воды и нагревают до 250°С, выдерживают при данной температуре в атмосфере азота в течение 45 мин. Получают микросферы 97%, средний размер (A) Tg (А), прочность при сжатии (А), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (А).
Пример 7
Дициклопентадиен нагревают в автоклаве до 150°С, выдерживают при заданной температуре в течение 240 мин и охлаждают до комнатной температуры. В полученную смесь вносят полимерные стабилизаторы 1010 (0,40% масс.), 168 (0,80% масс.), 770 (0,40% масс.) и радикальные инициаторы Б (1,0% масс.), 30 (2,0% масс.). Катализатор N17a (0,0088% масс.) вносят при 20°С.
Полученная полимерная матрица имеет следующий состав, масс.%:
- полимерные стабилизаторы 1,6;
- радикальные инициаторы 3,0;
- катализатор 0,0088;
- смесь олигоциклопентадиенов 95,3912.
Полученную смесь перемешивают 5 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода вещество 0,1), содержащую поверхностно-активное вещество вещество цетилтриметиламмонийхлорид (0,1% масс.) при 35°С. Смесь воды с поверхностно-активными веществами имеет вязкость 0,729 спуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 60°С и выдерживают 15 минут. Микросферы отделяют от воды и нагревают до 340°С, выдерживают при данной температуре в атмосфере азота в течение 10 мин. Получают микросферы 97%, средний размер (А) Tg (А), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (А).
Пример 8
Дициклопентадиен нагревают в автоклаве до 150°С, выдерживают при заданной температуре в течение 60 мин и охлаждают до комнатной температуры. В полученную смесь олигоциклопентадиенов вносят полимерные стабилизаторы 702 (0,20% масс.), 168 (0,50% масс.), 123 (0,50% масс.) и радикальный инициатор Б (0,5% масс.). Катализатор N4 (0,0170% масс.) вносят при 25°С.
Полученная полимерная матрица имеет следующий состав, масс.%:
- полимерные стабилизаторы 1,2;
- радикальные инициаторы 0,5;
- катализатор 0,017;
- смесь олигоциклопентадиенов 98,283.
Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода вещество 0,1), содержащую поверхностно-активное вещество лаурилсульфат аммония (0,25% масс.) при 35°С. Смесь воды с поверхностно-активными веществами имеет вязкость 0,729 спуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 75°С и выдерживают 30 минут. Микросферы отделяют от воды и нагревают до 150°С, выдерживают при данной температуре в атмосфере азота в течение 30 мин. Получают микросферы 95%, средний размер (Б) Tg (В), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (В).
Пример 9
Дициклопентадиен нагревают в автоклаве до 160°С, выдерживают при заданной температуре в течение 120 мин и охлаждают до комнатной температуры. В полученную смесь олигоциклопентадиенов вносят полимерные стабилизаторы 1010 (0,20% масс.), 168 (0,75% масс.), 292 (0,45% масс.) и радикальный инициатор БЦ-ФФ (1,0% масс.). Катализатор N5 (0,0126% масс.) вносят при 10°С.
Полученная полимерная матрица имеет следующий состав, масс.%:
- полимерные стабилизаторы 1,4;
- радикальные инициаторы 1,0;
- катализатор 0,0126;
- смесь олигоциклопентадиенов 97,5874.
Полученную смесь перемешивают 5 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода вещество 0,1), содержащую поверхностно-активное вещество додецилсульфат натрия (0,1% масс.) при 30°С. Смесь воды с поверхностно-активными веществами имеет вязкость 0,805 спуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 100°С и выдерживают 15 минут. Микросферы отделяют от воды и нагревают до 200°С, выдерживают при данной температуре в атмосфере азота в течение 30 мин. Получают микросферы 97%, средний размер (A) Tg (В), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (В).
Пример 10
Дициклопентадиен нагревают в автоклаве до 180°С, выдерживают при заданной температуре в течение 60 мин и охлаждают до комнатной температуры. В полученную смесь олигоциклопентадиенов вносят полимерные стабилизаторы ДФА (0,40% масс.), 168 (0,50% масс.), 234 (0,20% масс.) и радикальные инициаторы Б (1,0% масс.), 30 (3,0% масс.). Катализатор N19a (0,0247% масс.) вносят при 0°С.
Полученная полимерная матрица имеет следующий состав, масс.%:
- полимерные стабилизаторы 1,1;
- радикальные инициаторы 4,0;
- катализатор 0,0247;
- смесь олигоциклопентадиенов 94,8753.
Полученную смесь перемешивают 1 минуту, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода вещество 0,1), содержащую поверхностно-активное вещество цетилтриметиламмонийхлорид (0,1% масс.) при 35°С. Смесь воды с поверхностно-активными веществами имеет вязкость 0,728 спуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 80°С и выдерживают 15 минут. Микросферы отделяют от воды и нагревают до 265°С, выдерживают при данной температуре в атмосфере азота в течение 60 мин. Получают микросферы 97%, средний размер (Б) Tg (А), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (А).
Пример 11
Дициклопентадиен нагревают в автоклаве до 150°С, выдерживают при заданной температуре в течение 180 мин и охлаждают до комнатной температуры. В полученную смесь олигоциклопентадиенов вносят полимерные стабилизаторы 702 (0,50% масс.), 168 (0,50% масс.) и радикальный инициатор БЦ-ФФ (2,0% масс.). Катализатор N2a (0,0167% масс.) вносят при 30°С.
Полученная полимерная матрица имеет следующий состав, масс.%:
- полимерные стабилизаторы 1,0;
- радикальные инициаторы 2,0;
- катализатор 0,0167;
- смесь олигоциклопентадиенов 96,9833.
Полученную смесь перемешивают 20 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода вещество 0,1), содержащую поверхностно-активное вещество додецилсульфат натрия (0,1% масс.) при 40°С. Смесь воды с поверхностно-активными веществами имеет вязкость 0,657 спуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 70°С и выдерживают 15 минут. Микросферы отделяют от воды и нагревают до 250°С, выдерживают при данной температуре в атмосфере азота в течение 30 мин. Получают микросферы 98%, средний размер ((A) Tg (Б), прочность при сжатии (А), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (Б).
Пример 12
Дициклопентадиен нагревают в автоклаве до 160°С, выдерживают при заданной температуре в течение 120 мин и охлаждают до комнатной температуры. В полученную смесь олигоциклопентадиенов вносят полимерные стабилизаторы 1010 (0,20% масс.), 168 (0,50% масс.), 292 (0,50% масс.) и радикальные инициаторы БЦ-ФФ (0,1% масс.), 30 (1,5% масс.). Катализатор N1a (0,0033% масс.) вносят при 30°С.
Полученная полимерная матрица имеет следующий состав, масс.%:
- полимерные стабилизаторы 1,2;
- радикальные инициаторы 1,6;
- катализатор 0,0033;
- смесь олигоциклопентадиенов 97,1967.
Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода вещество 0,1), содержащую поверхностно-активное вещество цетилтриметиламмонийхлорид (0,1% масс.) при 40°С. Смесь воды с поверхностно-активными веществами имеет вязкость 0,657 спуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 70°С и выдерживают 15 минут. Микросферы отделяют от воды и нагревают до 280°С, выдерживают при данной температуре в атмосфере азота в течение 1 мин. Получают микросферы 90%, средний размер (В) Tg (Б), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (Б).
Пример 13
Дициклопентадиен нагревают в автоклаве до 155°С, выдерживают при заданной температуре в течение 280 мин и охлаждают до комнатной температуры. В полученную смесь олигоциклопентадиенов вносят полимерный стабилизатор 702 (0,10% масс.) и радикальные инициаторы БЦ-ФФ (1,0% масс.), 30 (1,0% масс.). Катализатор N1c (0,0116% масс.) вносят при 20°С.
Полученная полимерная матрица имеет следующий состав, масс.%:
- полимерные стабилизаторы 0,1;
- радикальные инициаторы 2,0;
- катализатор 0,0116;
- смесь олигоциклопентадиенов 97,8884.
Полученную смесь перемешивают 5 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода вещество 0,1), содержащую поверхностно-активное вещество цетилтриметиламмонийхлорид (0,1% масс.) при 30°С. Смесь воды с поверхностно-активными веществами имеет вязкость 0,805 спуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 50°С и выдерживают 40 минут. Микросферы отделяют от воды и нагревают до 310°С, выдерживают при данной температуре в атмосфере азота в течение 5 мин. Получают микросферы 93%, средний размер (Б) Tg (А), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (А).
Пример 14
Дициклопентадиен нагревают в автоклаве до 150°С, выдерживают при заданной температуре в течение 60 мин и охлаждают до комнатной температуры. В полученную смесь олигоциклопентадиенов вносят полимерные стабилизаторы 1010 (0,37% масс.), 168 (0,10% масс.), 770 (0,47% масс.) и радикальные инициаторы Б (1,0% масс.), 30 (1,0% масс.). Катализатор N6a (0,0061% масс.) вносят при 25°С.
Полученная полимерная матрица имеет следующий состав, масс.%:
- полимерные стабилизаторы 0,94;
- радикальные инициаторы 2,0;
- катализатор 0,0061;
- смесь олигоциклопентадиенов 97,0539.
Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода вещество 0,1), содержащую поверхностно-активное вещество цетилтриметиламмонийхлорид (0,1% масс.) при 40°С. Смесь воды с поверхностно-активными веществами имеет вязкость 0,657 спуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 80°С и выдерживают 15 минут. Микросферы отделяют от воды и нагревают до 300°С, выдерживают при данной температуре в атмосфере азота в течение 30 мин. Получают микросферы 93%, средний размер (В) Tg (А), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (A).
Пример 15
Дициклопентадиен нагревают в автоклаве до 150°С, выдерживают при заданной температуре в течение 240 мин и охлаждают до комнатной температуры. В полученную смесь олигоциклопентадиенов вносят полимерные стабилизаторы 702 (0,50% масс.), 168 (0,50% масс.) и радикальные инициаторы БЦ-ФФ (1,0% масс.), ТФМ 1,0% масс.). Катализатор N9a (0,0023% масс.) вносят при 15°С.
Полученная полимерная матрица имеет следующий состав, масс.%:
- полимерные стабилизаторы 1,0;
- радикальные инициаторы 2,0;
- катализатор 0,0023;
- смесь олигоциклопентадиенов 96,9977.
Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода вещество 0,1), содержащую поверхностно-активное вещество цетилтриметиламмонийхлорид (0,1% масс.) при 35°С. Смесь воды с поверхностно-активными веществами имеет вязкость 0,729 спуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 80°С и выдерживают 15 минут. Микросферы отделяют от воды и нагревают до 270°С, выдерживают при данной температуре в атмосфере азота в течение 30 мин. Получают микросферы 97%, средний размер (Б) Tg (B), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (В).
Пример 16
Дициклопентадиен нагревают в автоклаве до 170°С, выдерживают при заданной температуре в течение 180 мин и охлаждают до комнатной температуры. В полученную смесь олигоциклопентадиенов вносят полимерные стабилизаторы 5057 (0,20% масс.), 168 (0,40% масс.), 770 (0,40% масс.) и радикальный инициатор БЦ-ФФ (1,0% масс.). Катализатор N2 (0,0124% масс.) вносят при 25°С.
Полученная полимерная матрица имеет следующий состав, масс.%:
- полимерные стабилизаторы 1,0;
- радикальные инициаторы 1,0;
- катализатор 0,0124;
- смесь олигоциклопентадиенов 97,9876.
Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода вещество 0,1), содержащую поверхностно-активное вещество цетилтриметиламмонийхлорид (0,2% масс.) при 35°С. Смесь воды с поверхностно-активными веществами имеет вязкость 0,729 спуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 95°С и выдерживают 5 минут. Микросферы отделяют от воды и нагревают до 270°С, выдерживают при данной температуре в атмосфере азота в течение 45 мин. Получают микросферы 98%, средний размер (Б) Tg (В), прочность при сжатии (А), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (В).
Пример 17
Дициклопентадиен нагревают в автоклаве до 160°С, выдерживают при заданной температуре в течение 360 мин. и охлаждают до комнатной температуры. В полученную смесь олигоциклопентадиенов вносят полимерные стабилизаторы 1010 (0,35% масс.), 327 (0,20% масс.), 770 (0,50% масс.) и радикальный инициатор БЦ-ФФ (0,5% масс.). Катализатор N10a (0,0072% масс.) вносят при 5°С.
Полученная полимерная матрица имеет следующий состав, масс.%:
- полимерные стабилизаторы 1,05;
- радикальные инициаторы 0,5;
- катализатор 0,0072;
- смесь олигоциклопентадиенов 98,4428.
Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода вещество 0,1), содержащую поверхностно-активное вещество додецилсульфат натрия (0,1% масс.) при 35°С. Смесь воды с поверхностно-активными веществами имеет вязкость 0,729 спуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 95°С и выдерживают 15 минут. Микросферы отделяют от воды и нагревают до 170°С, выдерживают при данной температуре в атмосфере азота в течение 30 мин. Получают микросферы 98%, средний размер (A) Tg (В), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (В).
Пример 18
Дициклопентадиен нагревают в автоклаве до 160°С, выдерживают при заданной температуре в течение 160 мин и охлаждают до комнатной температуры. В полученную смесь олигоциклопентадиенов вносят полимерные стабилизаторы 330 (0,40% масс.), ТНРР (0,80% масс.) и радикальный инициатор БЦ-ФФ (0,5% масс.). Катализатор N11a (0,0102% масс.) вносят при 25°С.
Полученная полимерная матрица имеет следующий состав, масс.%:
- полимерные стабилизаторы 1,2;
- радикальные инициаторы 0,5;
- катализатор 0,0102;
- смесь олигоциклопентадиенов 98,2898.
Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода вещество 0,1), содержащую поверхностно-активное вещество цетилтриметиламмонийхлорид (0,1% масс.) при 35°С. Смесь воды с поверхностно-активными веществами имеет вязкость 0,729 спуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 95°С и выдерживают 15 минут. Микросферы отделяют от воды и нагревают до 200°С, выдерживают при данной температуре в атмосфере азота в течение 60 мин. Получают микросферы 99%, средний размер (А) Tg (В), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (В).
Пример 19
Дициклопентадиен нагревают в автоклаве до 190°С, выдерживают при заданной температуре в течение 50 мин и охлаждают до комнатной температуры. В полученную смесь олигоциклопентадиенов вносят полимерные стабилизаторы 702 (0,45% масс.), 168 (0,45% масс.), 770 (0,40% масс.) и радикальные инициаторы БЦ-ФФ (0,5% масс.), 30 (2,0% масс.). Катализатор N3b (0,0072% масс.) вносят при 30°С.
Полученная полимерная матрица имеет следующий состав, масс.%:
- полимерные стабилизаторы 1,3;
- радикальные инициаторы 2,5;
- катализатор 0,0072;
- смесь олигоциклопентадиенов 96,1928.
Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода вещество 0,1), содержащую поверхностно-активное вещество цетилтриметиламмонийхлорид (0,1% масс.) при 40°С. Смесь воды с поверхностно-активными веществами имеет вязкость 0,657 спуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 60°С и выдерживают 15 минут. Микросферы отделяют от воды и нагревают до 250°С, выдерживают при данной температуре в атмосфере азота в течение 30 мин. Получают микросферы 97%, средний размер (Б) Tg (А), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (А).
Пример 20
Дициклопентадиен нагревают в автоклаве до 155°С, выдерживают при заданной температуре в течение 280 мин и охлаждают до комнатной температуры. В полученную смесь олигоциклопентадиенов вносят полимерные стабилизаторы 168 (0,45% масс.), 168 (0,45% масс.) и радикальные инициаторы БЦ-ФФ (1,0% масс.), 30 (1,5% масс.). Катализатор N5b (0,0131% масс.) вносят при 30°С.
Полученная полимерная матрица имеет следующий состав, масс.%:
- полимерные стабилизаторы 0,9;
- радикальные инициаторы 2,5;
- катализатор 0,0131;
- смесь олигоциклопентадиенов 96,5869.
Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода вещество 0,1), содержащую поверхностно-активное вещество цетилтриметиламмонийхлорид (0,1% масс.) при 35°С. Смесь воды с поверхностно-активными веществами имеет вязкость 0,729 спуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 95°С и выдерживают 15 минут. Микросферы отделяют от воды и нагревают до 260°С, выдерживают при данной температуре в атмосфере азота в течение 30 мин. Получают микросферы 97%, средний размер (Б) Tg (А), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (А).
Пример 21
Дициклопентадиен нагревают в автоклаве до 160°С, выдерживают при заданной температуре в течение 180 мин и охлаждают до комнатной температуры. В полученную смесь олигоциклопентадиенов вносят полимерные стабилизаторы 1010 (0,36% масс.), 168 (0,72% масс.), 123 (0,45% масс.) и радикальные инициаторы Б (0,1% масс.), 30 (2,0% масс.). Катализатор N12a (0,0085% масс.) вносят при 25°С.
Полученная полимерная матрица имеет следующий состав, масс.%:
- полимерные стабилизаторы 1,53;
- радикальные инициаторы 2,1;
- катализатор 0,0085;
- смесь олигоциклопентадиенов 96,3615.
Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода вещество 0,1), содержащую поверхностно-активное вещество додецилсульфат натрия (0,1% масс.) при 35°С. Смесь воды с поверхностно-активными веществами имеет вязкость 0,729 спуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 70°С и выдерживают 60 минут. Микросферы отделяют от воды и нагревают до 270°С, выдерживают при данной температуре в атмосфере азота в течение 30 мин. Получают микросферы 97%, средний размер (А) Tg (А), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (А).
Пример 22
Дициклопентадиен нагревают в автоклаве до 160°С, выдерживают при заданной температуре в течение 120 мин и охлаждают до комнатной температуры. В полученную смесь олигоциклопентадиенов вносят полимерные стабилизаторы 703 (0,45% масс.), 770 (0,45% масс.) и радикальный инициатор БЦ-ФФ (1,0% масс.). Катализатор N15a (0,0106% масс.) вносят при 25°С.
Полученная полимерная матрица имеет следующий состав, масс.%:
- полимерные стабилизаторы 0,9;
- радикальные инициаторы 1,0;
- катализатор 0,0106;
- смесь олигоциклопентадиенов 98,0894.
Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода вещество 0,1), содержащую поверхностно-активное вещество октенидина гидрохлорид (0,1% масс.) при 40°С. Смесь воды с поверхностно-активными веществами имеет вязкость 0,657 спуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 70°С и выдерживают 15 минут. Микросферы отделяют от воды и нагревают до 170°С, выдерживают при данной температуре в атмосфере азота в течение 30 мин. Получают микросферы 96%, средний размер (Б) Tg (А), прочность при сжатии (А), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (А).
Пример 23
Дициклопентадиен нагревают в автоклаве до 150°С, выдерживают при заданной температуре в течение 60 мин и охлаждают до комнатной температуры. В полученную смесь олигоциклопентадиенов вносят полимерные стабилизаторы 1010 (0,02% масс.), 168 (0,04% масс.), 770 (0,04% масс.) и радикальный инициатор БЦ-ФФ (1,0% масс.). Катализатор N4a (0,0130% масс.) вносят при 25°С.
Полученная полимерная матрица имеет следующий состав, масс.%:
- полимерные стабилизаторы 0,1;
- радикальные инициаторы 1,0;
- катализатор 0,013;
- смесь олигоциклопентадиенов 98,887.
Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода вещество 0,1), содержащую поверхностно-активное вещество цетилтриметиламмонийхлорид (0,1% масс.) при 35°С. Смесь воды с поверхностно-активными веществами имеет вязкость 0,729 спуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 80°С и выдерживают 15 минут. Микросферы отделяют от воды и нагревают до 200°С, выдерживают при данной температуре в атмосфере азота в течение 30 мин. Получают микросферы 92%, средний размер (А) Tg (В), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (В).
Пример 24
Дициклопентадиен нагревают в автоклаве до 155°С, выдерживают при заданной температуре в течение 180 мин и охлаждают до комнатной температуры. В полученную смесь олигоциклопентадиенов вносят полимерные стабилизаторы 14 (0,40% масс.), 168 (0,80% масс.) и радикальный инициатор Б (0,1% масс.). Катализатор N3 (0,0098% масс.) вносят при 25°С.
Полученная полимерная матрица имеет следующий состав, масс.%:
- полимерные стабилизаторы 1,2;
- радикальные инициаторы 0,1;
- катализатор 0,0098;
- смесь олигоциклопентадиенов 98,6902.
Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода вещество 0,1), содержащую поверхностно-активное вещество бензалкония хлорид (0,1% масс.) при 30°С. Смесь воды с поверхностно-активными веществами имеет вязкость 0,805 спуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 80°С и выдерживают 15 минут. Микросферы отделяют от воды и нагревают до 180°С, выдерживают при данной температуре в атмосфере азота в течение 30 мин. Получают микросферы 98%, средний размер (A) Tg (В), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (В).
Пример 25
Дициклопентадиен нагревают в автоклаве до 150°С, выдерживают при заданной температуре в течение 60 мин и охлаждают до комнатной температуры. В полученную смесь олигоциклопентадиенов вносят полимерные стабилизаторы 1010 (0,50% масс.), 168 (0,50% масс.), 770 (0,50% масс.) и радикальные инициаторы БЦ-ФФ (1,0% масс.), 30 (2,0% масс.). Катализатор N16a (0,0086% масс.) вносят при 30°С.
Полученная полимерная матрица имеет следующий состав, масс.%:
- полимерные стабилизаторы 1,5;
- радикальные инициаторы 3,0;
- катализатор 0,0086;
- смесь олигоциклопентадиенов 95,4914.
Полученную смесь перемешивают 1 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода вещество 0,1), содержащую поверхностно-активное вещество додецилсульфат натрия (0,1% масс.) при 35°С. Смесь воды с поверхностно-активными веществами имеет вязкость 0,729 спуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 75°С и выдерживают 20 минут. Микросферы отделяют от воды и нагревают до 260°С, выдерживают при данной температуре в атмосфере азота в течение 30 мин. Получают микросферы 97%, средний размер (A) Tg (А), прочность при сжатии (А), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (А).
Пример 26
Дициклопентадиен нагревают в автоклаве до 155°С, выдерживают при заданной температуре в течение 300 мин и охлаждают до комнатной температуры. В полученную смесь олигоциклопентадиенов вносят полимерные стабилизаторы 330 (0,45% масс.), ТНРР (0,45% масс.), 292 (0,45% масс.) и радикальные инициаторы БЦ-ФФ (1,0% масс.), 30 (1,0% масс.). Катализатор N20a (0,0053% масс.) вносят при 15°С.
Полученная полимерная матрица имеет следующий состав, масс.%:
- полимерные стабилизаторы 1,35;
- радикальные инициаторы 2,0;
- катализатор 0,0053;
- смесь олигоциклопентадиенов 96,6447.
Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода вещество 0,1), содержащую поверхностно-активное вещество цетилтриметиламмонийхлорид (0,1% масс.) при 50°С. Смесь воды с поверхностно-активными веществами имеет вязкость 0,552 спуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 70°С и выдерживают 15 минут. Микросферы отделяют от воды и нагревают до 255°С, выдерживают при данной температуре в атмосфере азота в течение 30 мин. Получают микросферы 92%, средний размер (В) Tg (А), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (А).
Пример 27
Дициклопентадиен нагревают в автоклаве до 155°С, выдерживают при заданной температуре в течение 300 мин и охлаждают до комнатной температуры. В полученную смесь олигоциклопентадиенов вносят полимерные стабилизаторы 702 (0,40% масс.), 327 (0,20% масс.) и радикальный инициатор Б (2,0% масс.). Катализатор N1b (0,0069% масс.) вносят при 30°С.
Полученная полимерная матрица имеет следующий состав, масс.%:
- полимерные стабилизаторы 0,6;
- радикальные инициаторы 2,0;
- катализатор 0,0069;
- смесь олигоциклопентадиенов 97,3931.
Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода вещество 0,1), содержащую поверхностно-активное вещество бензалкония хлорид (0,2% масс.) при 40°С. Смесь воды с поверхностно-активными веществами имеет вязкость 0,657 спуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 75°С и выдерживают 15 минут. Микросферы отделяют от воды и нагревают до 200°С, выдерживают при данной температуре в атмосфере азота в течение 120 мин. Получают микросферы 95%, средний размер (В) Tg (В), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (В).
Пример 28
Дициклопентадиен нагревают в автоклаве до 175°С, выдерживают при заданной температуре в течение 180 мин и охлаждают до комнатной температуры. В полученную смесь олигоциклопентадиенов вносят полимерные стабилизаторы 330 (0,40% масс.), 168 (0,50% масс.), 770 (0,50% масс.) и радикальный инициатор Б (1,0% масс.). Катализатор N13a (0,0105% масс.) вносят при 25°С.
Полученная полимерная матрица имеет следующий состав, масс.%:
- полимерные стабилизаторы 1,4;
- радикальные инициаторы 1,0;
- катализатор 0,0105;
- смесь олигоциклопентадиенов 97,5895.
Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода вещество 0,1), содержащую поверхностно-активное вещество октенидина гидрохлорид (0,1% масс.) при 40°С. Смесь воды с поверхностно-активными веществами имеет вязкость 0,657 спуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 70°С и выдерживают 15 минут. Микросферы отделяют от воды и нагревают до 220°С, выдерживают при данной температуре в атмосфере азота в течение 30 мин. Получают микросферы 97%, средний размер (A) Tg (Б), прочность при сжатии (А), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (Б).
Пример 29
Дициклопентадиен нагревают в автоклаве до 220°С, выдерживают при заданной температуре в течение 15 мин и охлаждают до комнатной температуры. В полученную смесь олигоциклопентадиенов вносят полимерные стабилизаторы 1010 (1,50% масс.), ТНРР (1,00% масс.), 123 (1,50% масс.) и радикальный инициатор БЦ-ФФ (1,0% масс.). Катализатор N18a (0,0134% масс.) вносят при 10°С.
Полученная полимерная матрица имеет следующий состав, масс.%:
- полимерные стабилизаторы 4,0;
- радикальные инициаторы 1,0;
- катализатор 0,0134;
- смесь олигоциклопентадиенов 94,9866.
Полученную смесь перемешивают 5 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода вещество 0,1), содержащую поверхностно-активное вещество цетилтриметиламмонийхлорид (0,2% масс.) при 35°С. Смесь воды с поверхностно-активными веществами имеет вязкость 0,729 спуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 100°С и выдерживают 15 минут. Микросферы отделяют от воды и нагревают до 200°С, выдерживают при данной температуре в атмосфере азота в течение 30 мин. Получают микросферы 96%, средний размер (А) Tg (В), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (В).
Пример 30
Дициклопентадиен нагревают в автоклаве до 155°С, выдерживают при заданной температуре в течение 300 мин и охлаждают до комнатной температуры. В полученную смесь олигоциклопентадиенов вносят полимерные стабилизаторы 354 (1,00% масс.), 770 (0,50% масс.) и радикальные инициаторы БЦ-ФФ (1,0% масс.), 30 (1,0% масс.). Катализатор N2b (0,0070% масс.) вносят при 45°С.
Полученная полимерная матрица имеет следующий состав, масс.%:
- полимерные стабилизаторы 1,5;
- радикальные инициаторы 2,0;
- катализатор 0,007;
- смесь олигоциклопентадиенов 96,493.
Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода вещество 0,1), содержащую поверхностно-активное вещество додецилсульфат натрия (0,1% масс.) при 35°С. Смесь воды с поверхностно-активными веществами имеет вязкость 0,729 спуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 95°С и выдерживают 15 минут. Микросферы отделяют от воды и нагревают до 275°С, выдерживают при данной температуре в атмосфере азота в течение 30 мин. Получают микросферы 97%, средний размер (A) Tg (А), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (А).
Пример 31
Дициклопентадиен нагревают в автоклаве до 200°С, выдерживают при заданной температуре в течение 60 мин и охлаждают до комнатной температуры. В полученную смесь олигоциклопентадиенов вносят полимерные стабилизаторы 1010 (0,40% масс.), ТНРР (0,40% масс.), 770 (0,40% масс.) и радикальный инициатор БЦ-ФФ (1,0% масс.). Катализатор N8a (0,0103% масс.) вносят при 25°С.
Полученная полимерная матрица имеет следующий состав, масс.%:
- полимерные стабилизаторы 1,2;
- радикальные инициаторы 1,0;
- катализатор 0,0103;
- смесь олигоциклопентадиенов 97,7897.
Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода вещество 0,1), содержащую поверхностно-активное вещество цетилтриметиламмонийхлорид (0,2% масс.) при 35°С. Смесь воды с поверхностно-активными веществами имеет вязкость 0,729 спуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 70°С и выдерживают 15 минут. Микросферы отделяют от воды и нагревают до 170°С, выдерживают при данной температуре в атмосфере азота в течение 240 мин. Получают микросферы 98%, средний размер (Б) Tg (В), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (В).
Пример 32
Дициклопентадиен нагревают в автоклаве до 165°С, выдерживают при заданной температуре в течение 240 мин и охлаждают до комнатной температуры. В полученную смесь олигоциклопентадиенов вносят полимерные стабилизаторы 702 (0,37% масс.), 168 (0,73% масс.), 770 (0,37% масс.) и радикальный инициатор БЦ-ФФ (1,0% масс.). Катализатор N4b (0,0094% масс.) вносят при 30°С.
Полученная полимерная матрица имеет следующий состав, масс.%:
- полимерные стабилизаторы 1,47;
- радикальные инициаторы 1,0;
- катализатор 0,0094;
- смесь олигоциклопентадиенов 97,5206.
Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода вещество 0,1), содержащую поверхностно-активное вещество додецилсульфат натрия (0,5% масс.) при 40°С. Смесь воды с поверхностно-активными веществами имеет вязкость 0,657 спуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 80°С и выдерживают 15 минут. Микросферы отделяют от воды и нагревают до 200°С, выдерживают при данной температуре в атмосфере азота в течение 60 мин. Получают микросферы 96%, средний размер (В) Tg (В), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см, набухание (В).
Пример 33
Дициклопентадиен нагревают в автоклаве до 155°С, выдерживают при заданной температуре в течение 300 мин и охлаждают до комнатной температуры. В полученную смесь олигоциклопентадиенов вносят полимерные стабилизаторы ДППД (0,37% масс.), 168 (0,73% масс.), 770 (0,37% масс.) и радикальный инициатор БЦ-ФФ (1,0% масс.). Катализатор N1 (0,0095% масс.) вносят при 30°С.
Полученная полимерная матрица имеет следующий состав, масс.%:
- полимерные стабилизаторы 1,47;
- радикальные инициаторы 1,0;
- катализатор 0,0095;
- смесь олигоциклопентадиенов 97,5205.
Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода вещество 0,1), содержащую поверхностно-активное вещество додецилсульфат натрия (0,4% масс.) при 45°С. Смесь воды с поверхностно-активными веществами имеет вязкость 0,602 спуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 100°С и выдерживают 15 минут. Микросферы отделяют от воды и нагревают до 270°С, выдерживают при данной температуре в атмосфере азота в течение 60 мин. Получают микросферы 96%, средний размер (В) Tg (Б), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (В).

Claims (2)

1. Способ получения проппанта, включающий получение смеси олигоциклопентадиенов путем нагрева дициклопентадиена до температуры 150-220°С и выдержки при данной температуре в течение 15-360 мин, охлаждение смеси до 20-50°С, последовательное введение в полученную смесь олигоциклопентадиенов следующих компонентов: по крайней мере одного из полимерных стабилизаторов, в качестве которых используют соединения: тетракис[метилен(3,5-ди-трет-бутил-4-гидроксигидроциннамат)]метан, 2,6-ди-трет-бутил-4-(диметиламино)фенол, 1,3,5-триметил-2,4,6-трис(3,5-ди-трет-бутил-4-гидроксибензил)бензол, трис(4-трет-бутил-3-гидрокси-2,6-диметилбензил)изоцианурат, 3,5-ди-трет-бутил-4-гидроксианизол, 4,4′-метиленбис(2,6-ди-трет-бутилфенол), дифениламин, пара-ди-трет-бутилфенилендиамин, N,N′-дифенил-1,4-фенилендиамин, трис(2,4-ди-трет-бутилфенил)фосфит, трис(нонилфенил)фосфит, бис(2,2,6,6-тетраметил-4-пиперидинил)себацинат, бис(1-октилокси-2,2,6,6-тетраметил-4-пиперидинил)себацинат, бис(1-метил-2,2,6,6-тетраметил-4-пиперидинил)себацинат, 2-трет-бутил-6-(5-хлор-2Н-бензотриазол-2-ил)-4-метилфенол, 2-(2Н-бензотриазол-2-ил)-4,6-бис(1-метил-1-фенил)фенол, по крайней мере, одного из радикальных инициаторов, в качестве которых используют следующие соединения или их смеси: ди-трет-бутилпероксид, дикумилпероксид, 2,3-диметил-2,3-дифенил-бутан, трифенилметан, и катализатора, в качестве которого используют соединение общей формулы:
Figure 00000001
где заместитель L выбран из группы:
Figure 00000002
Figure 00000003
Figure 00000004
Figure 00000005
Figure 00000006

при этом компоненты полимерной матрицы находятся в следующих количествах, масс.%:
- полимерные стабилизаторы 0,1-3;
- радикальные инициаторы 0,1-4;
- катализатор 0,001-0,02;
- смесь олигоциклопентадиенов - остальное,
полученную полимерную матрицу выдерживают при температуре 20-50°С в течение 1-40 минут, после чего вводят в виде ламинарного потока в предварительно нагретую не ниже температуры матрицы воду, содержащую поверхностно-активное вещество, в качестве которого используют цетилтриметиламмонийхлорид, или додецилсульфат натрия, или лаурилсульфат аммония, или лаурилсаркозинат натрия, или октенидина гидрохлорид, или бензалкония хлорид, причем смесь воды с поверхностно-активными веществами имеет вязкость ниже вязкости полимерной матрицы, при этом в процессе постоянного перемешивания воду нагревают до 50-100°С, продолжая перемешивать в течение 1-60 мин, образовавшиеся микросферы отделяют от воды, нагревают в среде инертного газа до температуры 150-340°С и выдерживают в указанной среде при данной температуре в течение 1-360 мин.
2. Полимерный проппант, характеризующийся тем, что он получен способом по п.1.
RU2013125246/03A 2013-05-31 2013-05-31 Полимерный проппант и способ его получения RU2523320C1 (ru)

Priority Applications (5)

Application Number Priority Date Filing Date Title
RU2013125246/03A RU2523320C1 (ru) 2013-05-31 2013-05-31 Полимерный проппант и способ его получения
PCT/RU2014/000339 WO2014193267A1 (ru) 2013-05-31 2014-05-13 Полимерный проппант и способ его получения
CN201480022869.4A CN105473682B (zh) 2013-05-31 2014-05-13 聚合物支撑剂及其制备方法
CA2907798A CA2907798C (en) 2013-05-31 2014-05-13 Polymer proppant and method for producing the same
US14/786,623 US9765256B2 (en) 2013-05-31 2014-05-13 Polymer proppant and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013125246/03A RU2523320C1 (ru) 2013-05-31 2013-05-31 Полимерный проппант и способ его получения

Publications (1)

Publication Number Publication Date
RU2523320C1 true RU2523320C1 (ru) 2014-07-20

Family

ID=51217670

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013125246/03A RU2523320C1 (ru) 2013-05-31 2013-05-31 Полимерный проппант и способ его получения

Country Status (5)

Country Link
US (1) US9765256B2 (ru)
CN (1) CN105473682B (ru)
CA (1) CA2907798C (ru)
RU (1) RU2523320C1 (ru)
WO (1) WO2014193267A1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2691226C1 (ru) * 2018-06-05 2019-06-11 Публичное акционерное общество "Нефтяная компания "Роснефть" (ПАО "НК "Роснефть") Способ получения микросфер полимерного проппанта
RU2723806C1 (ru) * 2019-06-05 2020-06-17 Публичное акционерное общество "Нефтяная компания "Роснефть" (ПАО "НК "Роснефть") Способ гидроразрыва нефтяного, газового или газоконденсатного пласта

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017052533A1 (en) * 2015-09-23 2017-03-30 Halliburton Energy Services, Inc. Proppant comprising a crosslinked polymer for treatment of subterranean formations
US10450503B2 (en) 2016-06-06 2019-10-22 Baker Hughes, LLC Methods of using lightweight polymers derived from cashew nut shell liquid in hydraulic fracturing and sand control operations
US10479929B2 (en) 2016-06-06 2019-11-19 Baker Hughes, A Ge Company, Llc Spherical high temperature high closure tolerant cashew nut shell liquid based proppant, methods of manufacture, and uses thereof
CN108587029B (zh) 2018-03-28 2020-09-08 中国石油天然气股份有限公司 一种相变材料液及其所形成的固相支撑剂

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2168518C2 (ru) * 1994-12-23 2001-06-10 Циба Спешиалти Чемикалс Холдинг Инк. Состав, способный к полимеризации
RU2386025C1 (ru) * 2008-09-30 2010-04-10 Шлюмберже Текнолоджи Б.В. Способ гидроразрыва нефтяного или газового пласта с использованием расклинивающего наполнителя
US7931087B2 (en) * 2006-03-08 2011-04-26 Baker Hughes Incorporated Method of fracturing using lightweight polyamide particulates

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1045027A (en) 1975-09-26 1978-12-26 Walter A. Hedden Hydraulic fracturing method using sintered bauxite propping agent
US4668645A (en) 1984-07-05 1987-05-26 Arup Khaund Sintered low density gas and oil well proppants from a low cost unblended clay material of selected composition
TW350851B (en) 1995-01-31 1999-01-21 Ciba Sc Holding Ag Polymerizable composition and process for the preparation of network polymer
US8461087B2 (en) 2004-12-30 2013-06-11 Sun Drilling Products Corporation Method for the fracture stimulation of a subterranean formation having a wellbore by using impact-modified thermoset polymer nanocomposite particles as proppants
RU2402572C1 (ru) 2009-07-09 2010-10-27 Общество с ограниченной ответственностью "Объединенный центр исследований и разработок" Способ получения полидициклопентадиена и материалов на его основе
EP2649147B1 (en) 2010-12-08 2016-06-08 Joseph Buford Parse Single component neutrally buoyant proppant
CA2728897A1 (en) 2011-01-19 2012-07-19 Ilem Research And Development Est. Method for making resin-coated proppants and a proppant
RU2465286C2 (ru) 2011-01-27 2012-10-27 Закрытое акционерное общество "СИБУР Холдинг" (ЗАО "СИБУР Холдинг") Материал, содержащий полидициклопентадиен, и способ его получения (варианты)
US20120247335A1 (en) 2011-03-10 2012-10-04 Stutzman Scott S Method of reducing silicosis caused by inhalation of silica-containing proppant, such as silica sand and resin-coated sand, and apparatus therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2168518C2 (ru) * 1994-12-23 2001-06-10 Циба Спешиалти Чемикалс Холдинг Инк. Состав, способный к полимеризации
US7931087B2 (en) * 2006-03-08 2011-04-26 Baker Hughes Incorporated Method of fracturing using lightweight polyamide particulates
RU2386025C1 (ru) * 2008-09-30 2010-04-10 Шлюмберже Текнолоджи Б.В. Способ гидроразрыва нефтяного или газового пласта с использованием расклинивающего наполнителя

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2691226C1 (ru) * 2018-06-05 2019-06-11 Публичное акционерное общество "Нефтяная компания "Роснефть" (ПАО "НК "Роснефть") Способ получения микросфер полимерного проппанта
RU2723806C1 (ru) * 2019-06-05 2020-06-17 Публичное акционерное общество "Нефтяная компания "Роснефть" (ПАО "НК "Роснефть") Способ гидроразрыва нефтяного, газового или газоконденсатного пласта

Also Published As

Publication number Publication date
WO2014193267A1 (ru) 2014-12-04
US20160130498A1 (en) 2016-05-12
CA2907798A1 (en) 2014-12-04
CN105473682B (zh) 2018-05-18
CN105473682A (zh) 2016-04-06
CA2907798C (en) 2017-04-11
US9765256B2 (en) 2017-09-19

Similar Documents

Publication Publication Date Title
RU2523320C1 (ru) Полимерный проппант и способ его получения
CA2708403C (en) Proppants and uses thereof
EP2794699B1 (en) High molecular weight low polydispersity polymers
RU2552750C1 (ru) Способ получения микросфер полимерного проппанта из полимерной матрицы на основе метатезис-радикально сшитой смеси олигоциклопентадиенов
BR0117292B1 (pt) processo para estimular a produção de fluido de uma formação produtora permeável não consolidada ou mal consolidada penetrada por um furo de sonda.
RU2523321C1 (ru) Материал для проппанта и способ его получения
Fonseca et al. Imidazolium ionic liquids as fracture toughening agents in DGEBA-TETA epoxy resin
RU2524722C1 (ru) Полимерный проппант повышенной термопрочности и способ его получения
CA2935185A1 (en) Crosslinked epoxy particles and methods for making and using the same
CA2907862C (en) Polymer material for proppant and method for producing the same
CA3021291A1 (en) Enhanced propped fracture conductivity in subterranean wells
Zhou et al. Preparation and properties of bifunctional associative polymer with twin tail and long chain structure for shale gas fracturing
RU2528834C1 (ru) Микросферы из полидициклопентадиена и способ их получения