RU2523043C1 - Способ обнаружения предвестников чрезвычайных ситуаций на линейной части подземного магистрального продуктопровода - Google Patents

Способ обнаружения предвестников чрезвычайных ситуаций на линейной части подземного магистрального продуктопровода Download PDF

Info

Publication number
RU2523043C1
RU2523043C1 RU2013115545/28A RU2013115545A RU2523043C1 RU 2523043 C1 RU2523043 C1 RU 2523043C1 RU 2013115545/28 A RU2013115545/28 A RU 2013115545/28A RU 2013115545 A RU2013115545 A RU 2013115545A RU 2523043 C1 RU2523043 C1 RU 2523043C1
Authority
RU
Russia
Prior art keywords
pulses
emergency
emergency situation
precursors
section
Prior art date
Application number
RU2013115545/28A
Other languages
English (en)
Inventor
Борис Николаевич Епифанцев
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Сибирская государственная автомобильно-дорожная академия (СибАДИ)"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Сибирская государственная автомобильно-дорожная академия (СибАДИ)" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Сибирская государственная автомобильно-дорожная академия (СибАДИ)"
Priority to RU2013115545/28A priority Critical patent/RU2523043C1/ru
Application granted granted Critical
Publication of RU2523043C1 publication Critical patent/RU2523043C1/ru

Links

Images

Landscapes

  • Examining Or Testing Airtightness (AREA)

Abstract

Использование: для предотвращения чрезвычайных ситуаций на линейной части подземного магистрального продуктопровода. Сущность изобретения заключается в том, что осуществляют возбуждение периодической последовательности виброакустических импульсов в заданном сечении трубы, регистрацию их в двух сечениях продуктопровода, удаленных примерно на одинаковые расстояния по обе стороны от сечения возбуждения, накопление суммы отсчетов интегралов от разностей регистрируемых сигналов, причем число накоплений в цикле определяют расчетным путем по задаваемой вероятности ложных решений для каждого предвестника чрезвычайной ситуации, оценке уровня ожидаемого сигнала в точках регистрации, среднеквадратическому отклонению регистрируемых отсчетов указанных интегралов, а решение о появлении предвестника чрезвычайной ситуации принимают при превышении накопленного за цикл результата одного из установленных эталонных уровней, причем решение о подготовке врезки трансформируется в сигнал тревоги через установленный на контролируемом участке громкоговоритель, а сигналы всех принимаемых решений передаются на мнемосхему в службе безопасности по каналам телемеханики. Технический результат: обеспечение возможности раннего обнаружения формирующейся чрезвычайной ситуации на линейной части подземного магистрального продуктопровода. 2 ил.

Description

Изобретение относится к контролю безопасности эксплуатируемых магистральных продуктопроводов и может быть использовано для предотвращения установки врезок в трубу, боеприпасов для ее подрыва, имитаторов утечек перекачиваемого продукта для дезинформации службы безопасности, обнаружения утечек продукта.
Известен способ обнаружения изменения состояния участка трубопровода по появлению виброакустического сигнала в оболочке трубы, формирующегося при установке в нее врезки [Защита трубопроводов от несанкционированных врезок / А.А. Казаков // Системы безопасности. - 2008. - №5. - С.150-154]. Недостатком этого способа является запоздалое появление предупреждающего сигнала, исключающее возможность предотвратить нарушение целостности трубы злоумышленниками и сопутствующую этому чрезвычайную ситуацию.
Известен способ обнаружения «аварийно-опасного» участка трубопровода, основанный на возбуждении ударных виброакустических импульсов в оболочке трубы с помощью приваренных к ней звукопроводящих стержней с последующим определением отношения резонансной частоты диагностируемого трубопровода к эталонной [Пат. 2350833 РФ, МПК F17D 5/00. Способ контроля и диагностики состояния трубопровода [Текст] / Толстунов С.А., Мозер С.П., Толстунов А.С]. В основу способа положено известное соотношение зависимости резонансной частоты пластины ƒ0 от ее толщины h:ƒ0=c/2h, c - скорость распространения продольных волн в трубопроводе. Использование этой закономерности для выявления земляных работ в охраняемой зоне не представляется возможным.
Известна заявка №2006137406/28 от 23.10.2006 (дата публикации 27.04.2008) на способ и устройство дальнего обнаружения утечек в трубопроводе. Согласно заявке, в перекачиваемом продукте создаются периодические волны давления, которые регистрируются на другом конце контролируемого участка. По искажению регистрируемой волны судят о наличии утечки на этом участке. Способ не позволяет фиксировать изменения, происходящие за пределами оболочки трубопровода.
Известен способ обнаружения утечек на трубопроводном транспорте углеводородов, основанный на регистрации и анализе инфразвуковых сигналов в перекачиваемом продукте [Пат. US 666861982. Pattern matching for real time leak detection and location in pipelines (Распознавание образов для детектирования в реальном времени факта и локализации врезок в трубопроводы) и в различных вариантах исполнения описанный в http://acoustic-solution-intl.com/faq_index.htm; www.grouplb.com; http://torinsk.ru/publication/25-mpp2007.html и др. Недостаток способа - регистрируется факт нарушения целостности трубопровода, а не подготовительные работы по установке врезки или боеприпаса.
Из известных технических решений наиболее близким по совокупности существенных признаков к заявляемому является способ обнаружения изменений параметров среды в окружении заглубленного магистрального трубопровода [Пат. 2463590 РФ МПК G01N 29/04. Способ обнаружения изменений параметров среды в окружении заглубленного магистрального трубопровода/Епифанцев Б.Н., Федотов А.А.].
Согласно способу в выбранном сечении оболочки трубы возбуждают прозванивающие импульсы упругих колебаний, регистрируют их на удалении от сечения возбуждения, проводят накопление определенного числа зарегистрированных импульсов в очередном цикле последовательно принимаемых решений, формируют эталоны предвестников чрезвычайных ситуаций (ЧС) и принимают решение по результатам сравнения результата накопления с эталоном. Недостатком способа является высокая трудоемкость создания ситуаций для построения эталонов предвестников ЧС на действующем продуктопроводе. Для имитации утечки требуется выкопать шурф, частично заполнить его нефтью, засыпать оставшееся пространство грунтом, утрамбовать землю над шурфом. Для имитации ситуации «подготовка к врезке» необходимо не только выкопать шурф, но и удалить изоляцию с трубы. Перечисленные операции не предусмотрены действующими техническими условиями эксплуатации продуктопроводов. Кроме того, построенные эталоны не отражают действительное состояние продуктопровода при изменении погодных условий, режимов перекачки продукта и необходимо их часто корректировать.
Целью изобретения является исключение процесса создания физических эталонов предвестников ЧС на заглубленных продуктопроводах при сохранении надежности обнаружения на необходимом уровне в любое время года.
Указанная цель достигается тем, что регистрацию прозванивающих импульсов упругих колебаний проводят в двух сечениях оболочки продуктопровода, удаленных примерно на одинаковые расстояния по обе стороны от сечения их возбуждения, результат накопления получают в виде отсчетов интегралов разностей этих импульсов, причем число накоплений Nj в цикле определяют в результате решения уравнения
ε j ± N j Δ C j ± P ( N j σ Δ E ) d Δ E
Figure 00000001
по задаваемой вероятности ложных решений εj для j-го предвестника ЧС, расчетной оценке ожидаемого сигнала ΔCj в точках регистрации, среднеквадратичному отклонению регистрируемых отсчетов указанных интегралов ΔE, т.е. σΔE, в качестве эталонов используют уровни ±Nj ΔCj, а решение о появлении j-го предвестника ЧС принимают при превышении накопленного за цикл результата установленных для него эталонных уровней.
Сущность изобретения поясняется нижеследующим описанием и прилагаемыми к нему чертежами. На фиг.1 представлен вариант структурной схемы, реализующей предлагаемый способ. Фиг.2 поясняет алгоритм определения числа накоплений интегралов разностей регистрируемых сигналов.
Обозначения на фигурах: 1 - изображение продуктопровода; 2 - окружающий продуктопровод грунт; 3, 4 - датчики виброакустических колебаний в оболочке трубы; 5 - преобразователь электрических сигналов в упругие колебания в заданной точке трубы; 6 - ключ, обеспечивающий пропускание входного сигнала на выход в течение действия управляющего сигнала по другому входу; 7 - схема вычитания; 8 - линия задержки; 9 - генератор «прозванивающих» импульсов; 10 - интегратор входного сигнала в течение существования «прозванивающего» импульса; 11 - вычислитель среднеквадратичного отклонения проинтегрированных разностей сигналов от датчиков 3, 4; 12 - микроконтроллер; 13, 14 - накопители входных сигналов; 15, 16, 17, 18 - решающие устройства; 19, 20 - перемножители; 21 - громкоговоритель; A, B - смежные участки продуктопровода, C - устройство принятия решений; ΔCy, ΔCвр - приращения регистрируемого сигнала при появлении на участке продуктопровода соответственно утечки или изменений, связанных с подготовкой врезки; εy, εвр - задаваемые (приемлемые) вероятности ложных решений, обеспечиваемые устройством, Nj, - необходимое число накоплений для обеспечения обнаружения соответствующего предвестника ЧС с вероятностью ложных решений εj, «Син» - синхронизация работы (сброс, пуск) устройства принятия решений C, P(…) - плотности вероятностей проинтегрированных разностей сигналов от датчиков ΔE(ti) в моменты ti.
Известно, что амплитуда сигнала на выходе датчиков 3, 4 содержит информацию о параметрах перекачиваемого продукта, характеристиках трубы и окружающей его среды [Буденков С.А. и др. Оценка возможностей метода акустической эмиссии при контроле магистральных трубопроводов // Дефектоскопия, 2000, №2, С.29-36]. Переизлучение упругих колебаний оболочки в жидкость определяется ее плотностью, турбулентная среда, которая представляет собой перекачиваемый продукт, порождает флуктуации амплитуды регистрируемых сигналов. Корни деревьев в ветреную погоду являются источниками упругих колебаний в почве, проникающими из окружающей среды в оболочку продуктопровода. Эти и ряд других источников неинформативных сигналов (шумов) определяют дисперсию амплитуд регистрируемых сигналов, поступающих на схему вычитания 7.
Импульсы от генератора 9 преобразуются в упругие колебания элементом 5, регистрируются датчиками 3, 4, вычитаются один из другого схемой 7, поступают через ключ 6 на интегратор 10, отсчеты получаемых интегралов разностей указанных импульсов поступают на схемы 11, 13, 14. Поскольку при распространении упругих колебаний по продуктопроводу происходит их задержка относительно возбуждаемых импульсов генератора 9, введена линия задержки 8 для управления ключом 6. Интегрирование получаемых разностей увеличивает отношение сигнал/шум, подавляются высокочастотные составляющие шумов.
На схему 11 возложена функция вычисления среднеквадратичного отклонения поступающих отсчетов σN:
σ N = 1 N t = 1 N ( t i t i + τ Δ U ( t ) d t m N * ) 2 , t i t i + τ Δ U ( t ) d t = Δ E ( t i ) ,
Figure 00000002
где N - число поступивших отсчетов в схему 11, ΔU(t) - сигнал на выходе схемы 7 в момент существования импульса на выходе схемы 8, τ - длительность импульса задающего генератора 9, m N *
Figure 00000003
- оценка математического ожидания ΔE(ti), которое при отсутствии предвестников ЧС устанавливается равным 0. Число N определяется по задаваемой точности определения σN схемой 11 с учетом количества импульсов, поступающих на ее вход со схемы 8.
По завершению формирования значения σN включается в работу микроконтроллер 12. Его задача по заданным εy, εвр, ΔCy, ΔCвр и σN определить значения чисел накапливаемых сигналов ΔE(ti) для обнаружения соответствующих предвестников ЧС: «утечки» или «подготовка к установке врезки». В общем случае предвестников может быть больше, устройство на фиг.1 отражает случаи обнаружения обозначенных отклонений от нормы на одном из контролируемых участков A, B.
Алгоритм работы микроконтроллера 12 можно пояснить с помощью изображенных на фиг.2 плотностей вероятностей сигналов ΔE(ti). При отсутствии их накопления (N=1) плотность вероятностей имеет вид Р(ΔЕ(ti), N=1). Шумы, порождаемые турбулентными пульсациями давления в перекачиваемом потоке, по своей природе имеют нормальный закон распределения вероятностей и при m N * 0
Figure 00000004
, характеризуются на выходе схемы 11 только дисперсией σ N 2
Figure 00000005
. Накопление независимых отсчетов i = 1 N Δ E ( t i )
Figure 00000006
увеличивает (согласно положениям теории вероятностей) среднеквадратическое отклонение обозначенной усредненной суммы в N
Figure 00000007
раз (см. фиг.2). В то же время накопление сигнала ΔCy·/(ΔCвр) увеличивает итоговый сигнал в N раз. Поэтому увеличивая N, можно в принципе выявить сколь угодно малый полезный сигнал ΔCj. Это известный вывод теории обнаружения сигналов. Применительно к рассматриваемой задаче не ясно, на каком количестве накоплений следует остановиться для ее решения.
С физической точки зрения формирование шурфа на смежном участке (А или В) и подготовка обнажившейся трубы для установки приспособления для создания врезки ведет к резкому сокращению переизлучения распространяющихся колебаний по продуктопроводу в этой зоне и появлению положительного приращения ΔCвр в сечении регистрации (формулы для расчета этого приращения приводятся в [Меркулов Л.Г. Затухание нормальных волн в пластинах, находящихся в жидкости//Акустический журнал, 1964, т.Х, вып.2, С.206-211; Буденков Г.А. и др. Оценка возможностей метода акустической эмиссии при контроле магистральных трубопроводов//Дефектоскопия, 2000, №2, С.29-36]). При утечке окружающий продуктопровод грунт будет пропитываться вытекающим продуктом. В результате переизлучение распространяющейся энергии упругих колебаний увеличивается, сигнал на выходе системы регистрации уменьшается (-ΔCy). Существующие расчетные методики позволяют оценить значения ΔCвр и ΔCy. Но есть проблема обнаружить эти отклонения в условиях, когда отношение сигнал/шум на входе датчиков оказывается существенно меньше единицы. Единственно видимый путь решить обозначенную задачу - провести накопление малых отклонений ΔCвр, ΔCy. По условиям задачи допускается проведение нескольких тысяч накоплений и, следовательно, можно увеличить исходное отношение сигнал/шум до 50-60 раз. Противоположное требование: чем больше времени будет затрачено на реализацию операции накопления, тем больший объем грунта будет загрязнен вытекающим продуктом, т.е. интервал накопления следует уменьшить.
Компромиссный вариант решения задачи просматривается при анализе фиг.2.
При решении задач обнаружения (распознавания) задаются приемлемыми для потребителя вероятностями ложных решений εврy) и пропуска цели. При накоплении сигнал увеличивается по закону NΔCвр(NΔCy), среднеквадратическое отклонение шумов - по закону N σ N
Figure 00000008
. Вероятность ложной тревоги
Figure 00000009
ε j ± N j Δ C j ± P ( N j σ N ) d Δ E
Figure 00000010
.
При знании оценки энергии шумов σ N 2
Figure 00000011
(определяется экспериментально при каждом цикле принятия решений схемы 11), заданной вероятности ложных решений εj (например, 0,01) и расчетной оценке сигнала ΔCj, от предвестника ЧС при нормальном распределении P ( N σ N )
Figure 00000012
последовательное задание числа Nj позволяет определить его величину при решении приведенного уравнения. Эта функция возложена на микроконтроллер 12.
Найденные значения N1 и N2 поступают на устройство принятия решений с одновременным запуском его в рабочее состояние (сигнал «Син»). Соответствующие накопители 13 и 14 производят суммирование N1 и N2 входных отсчетов, при превышении этими суммами порогов N1ΔCy и N2ΔCвр решающие устройства 15, 16, 17, 18 формируют сигналы «Решение».
Пороги принятия решений определяются числами N1 и N2, которые вычисляются по текущей дисперсии σ N 2
Figure 00000011
. Изменения режима перекачки, усиление ветра меняют показатель σN, а через него N1, N2. В результате поддерживается заданная вероятность ложных решений при обнаружении исходных изменений на продуктопроводе не ниже заданных при любых отклонениях параметров системы перекачки продуктов и погодных условий.

Claims (1)

  1. Способ обнаружения предвестников чрезвычайных ситуаций на линейной части подземных магистральных продуктопроводах, основанный на возбуждении в выбранном сечении оболочки трубы прозванивающих импульсов упругих колебаний, регистрации их на удалении от сечения возбуждения, накоплении определенного числа зарегистрированных импульсов в очередном цикле последовательно принимаемых решений, формировании эталонов предвестников чрезвычайных ситуаций и принятии решений по результатам сравнения результатов накопления с эталонами, отличающийся тем, что регистрацию импульсов проводят в двух сечениях оболочки продуктопровода, удаленных на одинаковые расстояния по обе стороны от сечения их возбуждения, результат накопления получают в виде суммы отсчетов интегралов от разностей этих импульсов, причем число накоплений Nj в цикле определяют в результате решения уравнения
    Figure 00000013
    ,
    где εj - вероятность ложных решений для j-го предвестника чрезвычайной ситуации, Nj - число накоплений для j-го предвестника чрезвычайной ситуаций; ΔCj - расчетная оценка уровня ожидаемого сигнала в точках регистрации,
    Figure 00000014
    - нормальная плотность вероятностей с нулевым математическим ожиданием, σΔE - среднеквадратичное отклонение регистрируемых отсчетов указанных интегралов ΔE, в качестве эталонов используют уровни ±NjΔCj, а решение о появлении j-го предвестника чрезвычайной ситуации принимают при превышении накопленного за цикл результата установленных для него эталонных уровней, причем решение «Врезка» трансформируют в сигнал тревоги через установленный на каждом участке громкоговоритель, а сигналы всех принимаемых решений передаются на мнемосхему в службу безопасности по каналам телемеханики.
RU2013115545/28A 2013-04-05 2013-04-05 Способ обнаружения предвестников чрезвычайных ситуаций на линейной части подземного магистрального продуктопровода RU2523043C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013115545/28A RU2523043C1 (ru) 2013-04-05 2013-04-05 Способ обнаружения предвестников чрезвычайных ситуаций на линейной части подземного магистрального продуктопровода

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013115545/28A RU2523043C1 (ru) 2013-04-05 2013-04-05 Способ обнаружения предвестников чрезвычайных ситуаций на линейной части подземного магистрального продуктопровода

Publications (1)

Publication Number Publication Date
RU2523043C1 true RU2523043C1 (ru) 2014-07-20

Family

ID=51217585

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013115545/28A RU2523043C1 (ru) 2013-04-05 2013-04-05 Способ обнаружения предвестников чрезвычайных ситуаций на линейной части подземного магистрального продуктопровода

Country Status (1)

Country Link
RU (1) RU2523043C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2676386C1 (ru) * 2018-01-23 2018-12-28 Федеральное государственное бюджетное образовательное учреждение высшего образования "Омский государственный университет путей сообщения" Способ обнаружения несанкционированных воздействий на трубопровод

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5416724A (en) * 1992-10-09 1995-05-16 Rensselaer Polytechnic Institute Detection of leaks in pipelines
RU2089896C1 (ru) * 1994-05-24 1997-09-10 Николай Николаевич Горохов Способ исследования дефектов трубопровода и устройство для его осуществления
WO2002070946A2 (en) * 2001-03-02 2002-09-12 Gas Research Institute In-ground pipeline monitoring
RU2193771C2 (ru) * 1999-07-19 2002-11-27 Санкт-Петербургская государственная академия холода и пищевых технологий Способ диагностики и контроля качества материала трубопроводов
RU2271446C1 (ru) * 2004-07-27 2006-03-10 Общество с ограниченной ответственностью "ПетроЛайт" Устройство для мониторинга виброакустической характеристики протяженного объекта
RU2350833C1 (ru) * 2008-01-15 2009-03-27 Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный горный институт имени Г.В. Плеханова (технический университет) Способ контроля и диагностики состояния трубопровода

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5416724A (en) * 1992-10-09 1995-05-16 Rensselaer Polytechnic Institute Detection of leaks in pipelines
RU2089896C1 (ru) * 1994-05-24 1997-09-10 Николай Николаевич Горохов Способ исследования дефектов трубопровода и устройство для его осуществления
RU2193771C2 (ru) * 1999-07-19 2002-11-27 Санкт-Петербургская государственная академия холода и пищевых технологий Способ диагностики и контроля качества материала трубопроводов
WO2002070946A2 (en) * 2001-03-02 2002-09-12 Gas Research Institute In-ground pipeline monitoring
RU2271446C1 (ru) * 2004-07-27 2006-03-10 Общество с ограниченной ответственностью "ПетроЛайт" Устройство для мониторинга виброакустической характеристики протяженного объекта
RU2350833C1 (ru) * 2008-01-15 2009-03-27 Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный горный институт имени Г.В. Плеханова (технический университет) Способ контроля и диагностики состояния трубопровода

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2676386C1 (ru) * 2018-01-23 2018-12-28 Федеральное государственное бюджетное образовательное учреждение высшего образования "Омский государственный университет путей сообщения" Способ обнаружения несанкционированных воздействий на трубопровод

Similar Documents

Publication Publication Date Title
KR102189240B1 (ko) 배송관의 누출 모니터링 장치 및 방법
Misiunas Failure monitoring and asset condition assessment in water supply systems
EP2936106B1 (en) Method and system for continuous remote monitoring of the integrity of pressurized pipelines and properties of the fluids transported
CN101592288B (zh) 一种管道泄漏辨识方法
WO2014050618A1 (ja) 欠陥分析装置、欠陥分析方法及びプログラム
Watanabe et al. Detection and location of a leak in a gas‐transport pipeline by a new acoustic method
JPWO2014050619A1 (ja) 欠陥分析装置、欠陥分析方法及びプログラム
GB2421311A (en) Assessing the size of a leak in a pipeline by detecting leak noise and pressure
CA2909902C (en) Method for evaluating acoustic sensor data in a fluid carrying network and evaluation unit
GB2545441A (en) System for monitoring and/or surveying conduits
JP7052869B2 (ja) 漏えい調査装置、漏えい調査方法、およびプログラム
Zahab et al. An accelerometer-based real-time monitoring and leak detection system for pressurized water pipelines
Jin et al. Approximate entropy-based leak detection using artificial neural network in water distribution pipelines
RU2523043C1 (ru) Способ обнаружения предвестников чрезвычайных ситуаций на линейной части подземного магистрального продуктопровода
EP3710804B1 (en) System and method of remote monitoring of the integrity of pressurised pipes by means of vibroacoustic sources
WO2013190728A1 (ja) 構造物の状態判定装置および構造物の状態判定方法
Yazdekhasti et al. Optimal selection of acoustic leak detection techniques for water pipelines using multi-criteria decision analysis
RU2463590C1 (ru) Способ обнаружения изменений параметров среды в окружении заглубленного магистрального продуктопровода
RU2626583C1 (ru) Способ обнаружения и классификации изменений параметров оболочки трубопровода и окружающей его среды
WO2014157539A1 (ja) 欠陥分析装置、欠陥分析方法及びプログラム
Li et al. Passive detection in water pipelines using ambient noise II: Field experiments
Li et al. Compressive sensing-based correlation sidelobe suppression for passive water pipeline fault detection using ambient noise
KR20060012556A (ko) 주파수 스펙트럼 밀도 분석에 의한 타공사 감시 방법
Epiphantsev An acoustic method for diagnostics of the state of underground pipelines: new possibilities
Bentoumi et al. Welsh DSP estimate and EMD applied to leak detection in a water distribution pipeline

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20150406