RU2510463C2 - Металлокерамическая лопатка газовой турбины - Google Patents

Металлокерамическая лопатка газовой турбины Download PDF

Info

Publication number
RU2510463C2
RU2510463C2 RU2012147814/06A RU2012147814A RU2510463C2 RU 2510463 C2 RU2510463 C2 RU 2510463C2 RU 2012147814/06 A RU2012147814/06 A RU 2012147814/06A RU 2012147814 A RU2012147814 A RU 2012147814A RU 2510463 C2 RU2510463 C2 RU 2510463C2
Authority
RU
Russia
Prior art keywords
shell
power rod
shaped ceramic
ceramic shell
drive rod
Prior art date
Application number
RU2012147814/06A
Other languages
English (en)
Other versions
RU2012147814A (ru
Inventor
Евгений Алексеевич Коняев
Виктор Павлович Каюмов
Original Assignee
Евгений Алексеевич Коняев
Виктор Павлович Каюмов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Евгений Алексеевич Коняев, Виктор Павлович Каюмов filed Critical Евгений Алексеевич Коняев
Priority to RU2012147814/06A priority Critical patent/RU2510463C2/ru
Publication of RU2012147814A publication Critical patent/RU2012147814A/ru
Application granted granted Critical
Publication of RU2510463C2 publication Critical patent/RU2510463C2/ru

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Металлокерамическая лопатка газовой турбины содержит профилированную керамическую оболочку и размещенный в ее полости силовой стержень с внутренней и наружной полками. Силовой стержень снабжен упругими штырьками, наклоненными к внутренней полке силового стержня, контактирующими с внутренней поверхностью профилированной керамической оболочки и предназначенными для обеспечения устойчивости профилированной керамической оболочки и демпфирования ее колебаний. Пластинчатая пружина установлена между внутренней полкой силового стержня и нижней опорной полкой профилированной керамической оболочки и предназначена для компенсации температурных расширений профилированной керамической оболочки. С целью повышения надежности наружная полка силового стержня, являющаяся съемной, без зазора сопрягается с верхней опорной полкой профилированной керамической оболочки и крепится на наружном радиусе силового стержня. Техническим результатом является повышение надежности путем снижения динамического дисбаланса рабочего колеса и вибронагруженности двигателя в целом. 3 ил.

Description

Изобретение относится к газотурбостроению и может быть использовано в осевых турбомашинах - газовых и паровых турбинах и компрессорах, лопаточный аппарат которых работает при высоких температурах и напряжениях, а также в условиях коррозионно-эрозионного воздействия рабочего тела на лопатку турбомашины.
Повышение параметров цикла авиационных газотурбинных двигателей (ГТД) и, прежде всего, повышение температуры газов перед турбиной приводит к возрастанию роли термических и термоциклических напряжений в исчерпании несущей способности деталей горячей части турбины.
Существующие конструкции охлаждаемых рабочих лопаток предусматривают выполнение лопаток пустотелыми с подводом охлаждающего воздуха во внутреннюю полость и со съемом тепла с внутренней поверхности лопатки, интенсивность которого повышается за счет установки турбулизаторов, штырьков, дефлекторов и т.п.
На большинстве эксплуатационных режимов авиадвигателя (запуск, прямая приемистость, максимальный, номинальный, крейсерский) термические напряжения на внутренней поверхности охлаждаемых рабочих лопаток совпадают по знаку с напряжениями растяжения от центробежных сил. Учитывая наличие концентраторов напряжений в виде турбулизаторов, штырьков и прочее, приходим к выводу, что слабым местом конструкции лопаток является именно приповерхностная зона внутренней полости лопаток. Здесь происходит образование трещин в процессе эксплуатационного нагружения.
Контроль внутренней полости лопаток практически невозможен как в процессе эксплуатации, так и при ремонте ГТД. Это затрудняет своевременное выявление растущих трещин, которые обнаруживаются лишь после их выхода на наружную поверхность лопатки.
Таким образом, недостатками существующих конструкций охлаждаемых рабочих лопаток являются:
- разрушения (трещины), образующиеся преимущественно на внутренней поверхности полой лопатки в зоне местных концентраторов напряжений;
- практическая невозможность контроля трещин на внутренней поверхности рабочих лопаток;
- термические напряжения в сочетании с напряжением от центробежных сил, резко увеличивающие скорость роста трещин и снижающие живучесть лопатки.
Указанные недостатки могут быть устранены при выполнении следующих принципов конструктивного оформления рабочих лопаток ГТД:
- разделения тела лопатки на две самостоятельные части: силовую (несущую, в виде силового стержня) и рабочую (газодинамическую):
- экранирование силового стержня от воздействия рабочей среды (высокая температура, коррозия, эрозия) с помощью рабочей части в виде некоторой оболочки;
- крепление оболочки к силовому стержню на его наружном радиусе с целью разгрузки оболочки от напряжений растяжения и обеспечения благоприятного с точки зрения эксплуатационной надежности ее напряженного состояния;
- установка в пространстве между силовым стержнем и оболочкой упругих элементов для передачи рабочих нагрузок и демпфирования колебаний оболочки.
Известна конструкция лопатки осевой турбомашины, которая могла бы быть использована для решения поставленной задачи [патент RU №2416029, F01D 5/14, 2010], состоящая из металлического хвостовика, радиального металлического стержня, бандажной полки, дефлектора, тепловой изоляции, профилированной пустотелой оболочки, состоящей из сегментов (частей), свободно установленных на радиальном металлическом стержне снаружи дефлектора между хвостовиком и бандажной полкой.
Существенными недостатками этой конструкции лопатки являются:
1. Отсутствие уплотнительных элементов между сегментами (частями) профилированной керамической оболочки позволяет газовому потоку проникать во внутреннюю полость лопатки, вызывая ее перегрев с последующим отказом.
2. Условие свободной установки сегментов профилированной керамической оболочки между хвостовиком и бандажной полкой предусматривает наличие между бандажной полкой и наружной по радиусу пограничной поверхностью последнего от хвостовика сегмента некоторого зазора, автоматически выбираемого под действием центробежных сил в процессе работы.
3. Этот зазор на различных лопатках при неработающем двигателе изменяется от 0 (на нижних лопатках) до максимального (на верхних лопатках), что в принципе исключает точную статистическую балансировку диска с лопатками.
4. Конструкцией не предусмотрены элементы демпфирования колебаний оболочки, что особенно важно при выполнении ее из керамики, обладающей пониженной усталостной прочностью по сравнению с жаропрочными сплавами.
Наиболее близким аналогом заявляемого изобретения, выбранным в качестве прототипа, является лопатка турбомашины. Лопатка содержит оболочку, силовой стержень с верхней и нижней полками. Силовой стержень снабжен упругими штырьками, наклоненными к его нижней полке и контактирующими с оболочкой. Между опорными полками оболочки и полками силового стержня установлены пластинчатые пружины. Верхняя полка силового стержня является съемной.
Недостаток этой конструкции заключается в пониженной надежности из-за воздействия на пластинчатую пружину между верхней полкой силового стержня и наружной опорной полкой оболочки не только температурных усилий, вызываемых тепловым расширением оболочки, но и наибольших нагрузок от действия ее центробежных сил, приводящих к деформации пластинчатых пружин, а, следовательно, к снижению динамической балансировки рабочего колеса и увеличению вибронагруженности двигателя в целом.
Цель изобретения - повышение надежности путем снижения динамического дисбаланса рабочего колеса и вибронагруженности двигателя в целом.
Поставленная цель достигается тем, что в конструкции лопатки, содержащей профилированную керамическую оболочку и размещенный в ее полости силовой стержень с внутренней и наружной полками, снабженный упругими штырьками, наклоненными к внутренней полке силового стержня, контактирующими с внутренней поверхностью профилированной керамической оболочки и предназначенными для обеспечения устойчивости профилированной керамической оболочки и демпфирования ее колебаний, пластинчатую пружину, установленную между внутренней полкой силового стержня и нижней опорной полкой профилированной керамической оболочки и предназначенную для компенсации температурных расширений профилированной керамической оболочки, наружная полка силового стержня, являющаяся съемной, без зазора сопрягается с верхней опорной полкой профилированной керамической оболочки и крепится на наружном радиусе силового стержня.
Сущность изобретения поясняется чертежами, где на фиг.1 представлена конструкция металлокерамической лопатки газовой турбины, на фиг.2 представлен разрез лопатки по А-А (фиг.1), на фиг.3 представлен разрез упругого штырька лопатки (выносной элемент I на фиг.1).
Конструкция металлокерамической лопатки газовой турбины (фиг.1) содержит силовой стержень 1, профилированную керамическую оболочку 2, узел крепления 3 оболочки к силовому стержню на наружном радиусе, съемную наружную полку 4, пластинчатую пружину 5.
Силовой стержень 1 (фиг.1) содержит несъемную внутреннюю полку 6, замковую часть 7 для соединения с диском турбины, канал 8 подачи охлаждающего воздуха в полость между оболочкой и силовым стержнем, упругие штырьки 9, наклоненные к несъемной внутренней полке 6 и контактирующие с внутренней поверхностью профилированной керамической оболочки 2.
Профилированная керамическая оболочка 2 (фиг.1) содержит нижнюю 9 и верхнюю 10 опорные полки.
Металлокерамическая лопатка в составе газотурбинной установки работает следующим образом.
Профилированная керамическая оболочка 2 может быть выполнена из жаропрочной керамики или композитного (углерод-углеродного) материала, имеет профильную часть корыта и спинки (фиг.2). Профилированная керамическая оболочка 2 устанавливается на силовой стержень 1 таким образом, что нижней опорной полкой 9 она опирается через пластинчатую пружину 5 на несъемную внутреннюю полку 6 силового стержня 1. При этом верхняя опорная полка 10 оболочки 2 без зазора сопрягается со съемной наружной полкой 4, имеющей просечку по форме наружного профиля силового стержня, и фиксируется на наружном радиусе силового стержня с помощью узла крепления 3 в виде некоторого разъемного соединения (на чертеже не показано).
Такая установка оболочки обеспечивает исключение радиальных люфтов в сочленении и свободу температурного расширения оболочки только в направлении внутреннего радиуса силового стержня.
В предложенной конструкции центробежная сила масс лопатки воспринимается холодным силовым стержнем, защищенным от газового потока тонкостенной керамической оболочкой. Оболочка, в свою очередь, опирается на силовой стержень в точке ее крепления по наружному его радиусу. При этом центробежные силы масс силового стержня вызывают в оболочке преимущественно напряжения сжатия, легко воспринимаемые керамическим материалом оболочки.
Для восприятия окружных и осевых газовых сил и моментов этих сил, действующих на оболочку, передачи сил и их моментов от оболочки на силовой стержень и демпфирования колебаний оболочки при ее вибрациях силовой стержень содержит упругие опорные штырьки 9, выполненные либо заодно со стержнем, либо приваренные к нему (на чертеже не показано). Штырьки 9 расположены по всей боковой поверхности силового стержня с некоторым шагом h, обеспечивающим исключение потери устойчивости оболочки 2 от действия сжимающей ее центробежной силы.
Для обеспечения определенной силы прижатия (силы трения) штырьков к внутренней поверхности оболочки 2 оси штырьков наклонены к несъемной внутренней полке 6 силового стержня (фиг.3) для того, чтобы сила их прижатия к внутренней поверхности оболочки возрастала при увеличении частоты вращения ротора турбины.
Для снижения температуры силового стержня в полость между оболочкой и силовым стержнем подается охлаждающий воздух на вход канала 8 в замковой части 7 силового стержня.
Таким образом, сопряжение без зазора съемной наружной полки с верхней опорной полкой профилированной керамической оболочки и крепление ее на наружном радиусе силового стержня позволило существенно повысить надежность металлокерамической лопатки путем снижения динамической разбалансировки рабочего колеса и вибронагруженности двигателя в целом.

Claims (1)

  1. Металлокерамическая лопатка газовой турбины, содержащая профилированную керамическую оболочку и размещенный в ее полости силовой стержень с внутренней и наружной полками, снабженный упругими штырьками, наклоненными к внутренней полке силового стержня, контактирующими с внутренней поверхностью профилированной керамической оболочки и предназначенными для обеспечения устойчивости профилированной керамической оболочки и демпфирования ее колебаний, пластинчатую пружину, установленную между внутренней полкой силового стержня и нижней опорной полкой профилированной керамической оболочки и предназначенную для компенсации температурных расширений профилированной керамической оболочки, отличающаяся тем, что с целью повышения надежности наружная полка силового стержня, являющаяся съемной, без зазора сопрягается с верхней опорной полкой профилированной керамической оболочки и крепится на наружном радиусе силового стержня.
RU2012147814/06A 2012-11-12 2012-11-12 Металлокерамическая лопатка газовой турбины RU2510463C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012147814/06A RU2510463C2 (ru) 2012-11-12 2012-11-12 Металлокерамическая лопатка газовой турбины

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012147814/06A RU2510463C2 (ru) 2012-11-12 2012-11-12 Металлокерамическая лопатка газовой турбины

Publications (2)

Publication Number Publication Date
RU2012147814A RU2012147814A (ru) 2013-03-20
RU2510463C2 true RU2510463C2 (ru) 2014-03-27

Family

ID=49123531

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012147814/06A RU2510463C2 (ru) 2012-11-12 2012-11-12 Металлокерамическая лопатка газовой турбины

Country Status (1)

Country Link
RU (1) RU2510463C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU189517U1 (ru) * 2018-12-24 2019-05-24 Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный архитектурно-строительный университет" Рабочая лопатка газовой турбины

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1487063A (en) * 1974-08-23 1977-09-28 Rolls Royce Aero-foil member for a gas turbine engine
GB2027496A (en) * 1978-08-09 1980-02-20 Mtu Muenchen Gmbh Turbine blade
US4376004A (en) * 1979-01-16 1983-03-08 Westinghouse Electric Corp. Method of manufacturing a transpiration cooled ceramic blade for a gas turbine
DE3512008A1 (de) * 1985-04-02 1986-10-09 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Turbinenlaufschaufel, insbesondere fuer gasturbinentriebwerke
RU2095579C1 (ru) * 1995-10-18 1997-11-10 Товарищество с ограниченной ответственностью Научно-производственное предприятие "ТАРК" Охлаждаемая металлокерамическая рабочая лопатка газовой турбины
RU2433276C2 (ru) * 2009-11-20 2011-11-10 Общество с ограниченной ответственностью "Научный Центр "Керамические Двигатели" им. А.М. Бойко" (ООО "Центр Бойко") Металлокерамическая лопатка газовой турбины

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1487063A (en) * 1974-08-23 1977-09-28 Rolls Royce Aero-foil member for a gas turbine engine
GB2027496A (en) * 1978-08-09 1980-02-20 Mtu Muenchen Gmbh Turbine blade
US4376004A (en) * 1979-01-16 1983-03-08 Westinghouse Electric Corp. Method of manufacturing a transpiration cooled ceramic blade for a gas turbine
DE3512008A1 (de) * 1985-04-02 1986-10-09 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Turbinenlaufschaufel, insbesondere fuer gasturbinentriebwerke
RU2095579C1 (ru) * 1995-10-18 1997-11-10 Товарищество с ограниченной ответственностью Научно-производственное предприятие "ТАРК" Охлаждаемая металлокерамическая рабочая лопатка газовой турбины
RU2433276C2 (ru) * 2009-11-20 2011-11-10 Общество с ограниченной ответственностью "Научный Центр "Керамические Двигатели" им. А.М. Бойко" (ООО "Центр Бойко") Металлокерамическая лопатка газовой турбины

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU189517U1 (ru) * 2018-12-24 2019-05-24 Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный архитектурно-строительный университет" Рабочая лопатка газовой турбины

Also Published As

Publication number Publication date
RU2012147814A (ru) 2013-03-20

Similar Documents

Publication Publication Date Title
CA2944563C (en) Turbine center frame fairing assembly
EP2997234B1 (en) Cmc shroud support system of a gas turbine
CA2901191C (en) Integral segmented cmc shroud hanger and retainer system
US8147192B2 (en) Dual stage turbine shroud
KR101437172B1 (ko) 로터 지지 장치 및 터빈 엔진 시스템
EP2357322A2 (en) Mounting apparatus for low-ductility turbine shroud
US20020009361A1 (en) Shaft bearing for a turbomachine, turbomachine, and method of operating a turbomachine
US20120319362A1 (en) Winged w-seal
US20160222828A1 (en) Blade outer air seal having angled retention hook
JP5507351B2 (ja) プリコーディングされたタービンノズル
RU2508450C2 (ru) Сегментированная в осевом направлении обойма направляющих лопаток для газовой турбины, а также газовая турбина и газопаровая турбинная установка с сегментированной обоймой направляющих лопаток
US8226365B2 (en) Systems, methods, and apparatus for thermally isolating a turbine rotor wheel
RU122447U1 (ru) Газотурбинный двигатель гтд-25ста, компрессор, камера сгорания, турбина газогенератора, свободная турбина
KR20190057969A (ko) 케이싱 지지 조립체 및 이를 포함하는 가스터빈
EP2971615B1 (en) Low leakage duct segment using expansion joint assembly
US7837435B2 (en) Stator damper shim
US10215041B2 (en) Sealing ring segment for a stator of a turbine
RU2510463C2 (ru) Металлокерамическая лопатка газовой турбины
US9074490B2 (en) Gas turbine
RU2656052C1 (ru) Рабочая лопатка газовой турбины
JP2001041003A (ja) プレストレス型ガスタービンノズル
EP2514928B1 (en) Compressor inlet casing with integral bearing housing
RU2416029C2 (ru) Составная лопатка осевой турбомашины
RU2822437C1 (ru) Составная рабочая лопатка турбомашины