RU2509336C2 - Способ управления инвертором напряжения в составе системы генерирования электрической энергии переменного тока в режимах перегрузки - Google Patents

Способ управления инвертором напряжения в составе системы генерирования электрической энергии переменного тока в режимах перегрузки Download PDF

Info

Publication number
RU2509336C2
RU2509336C2 RU2011147428/08A RU2011147428A RU2509336C2 RU 2509336 C2 RU2509336 C2 RU 2509336C2 RU 2011147428/08 A RU2011147428/08 A RU 2011147428/08A RU 2011147428 A RU2011147428 A RU 2011147428A RU 2509336 C2 RU2509336 C2 RU 2509336C2
Authority
RU
Russia
Prior art keywords
inverter
voltage
voltage inverter
frequency
block
Prior art date
Application number
RU2011147428/08A
Other languages
English (en)
Other versions
RU2011147428A (ru
Inventor
Сергей Александрович Харитонов
Дмитрий Владиславович Коробков
Вадим Викторович Машинский
Сергей Николаевич Завертан
Петр Александрович Бачурин
Андрей Викторович Гейст
Светлана Владимировна Воробьева
Original Assignee
Федеральное государственное унитарное предприятие Производственное объединение "Север"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие Производственное объединение "Север" filed Critical Федеральное государственное унитарное предприятие Производственное объединение "Север"
Priority to RU2011147428/08A priority Critical patent/RU2509336C2/ru
Publication of RU2011147428A publication Critical patent/RU2011147428A/ru
Application granted granted Critical
Publication of RU2509336C2 publication Critical patent/RU2509336C2/ru

Links

Images

Landscapes

  • Inverter Devices (AREA)

Abstract

Изобретение относится к области электротехники и силовой электроники, может быть использовано при построении систем генерирования электрической энергии трехфазного переменного тока или систем гарантированного электропитания переменного тока. Технический результат заключается в снижении массы и габаритов системы генерирования, увеличении ее рабочего ресурса путем снижения частоты ШИМ в режимах перегрузки по току инвертора напряжения, что приводит к уменьшению динамических потерь в силовых ключах. Для этого в предложенном способе формируют три управляющих сигнала, формируют опорный двухполярный сигнал, вырабатывают импульсы управления вентилями инвертора напряжения при превышении нулевого уровня разностями опорного двухполярного сигнала и управляющих сигналов, измеряют мгновенные значения фазных токов инвертора напряжения, вычисляют амплитудное значение результирующего вектора фазных токов инвертора напряжения и при достижении им заданной величины уменьшают частоту генератора опорного двухполярного пилообразного сигнала в функции от амплитудного значения результирующего вектора тока инвертора. 2 ил.

Description

Изобретение относится к области электротехники и силовой электроники, может быть использовано при построении систем генерирования электрической энергии трехфазного переменного тока или систем гарантированного электропитания переменного тока, в которых для снижения массы и габаритов системы генерирования, увеличения рабочего ресурса применяется инвертор напряжения. Первичными источниками с нестабильными параметрами входной энергии в таких системах может служить сеть промышленной частоты, синхронный генератор с переменной скоростью вращения вала или аккумуляторная батарея. Функция обеспечения качественных показателей генерируемой электрической энергии возлагается на инвертор напряжения и выходной силовой низкочастотный фильтр.
Известен способ управления инвертором напряжения [Лабунцов В.А., Ривкин Г.А., Шевченко Г.И. Автономные тиристорные инверторы. - М.; Л.: Энергия, 1967. - 160 с.], основанный на управлении вентилями трехфазного инвертора напряжения импульсами длительностью, равной половине периода выходных напряжений инвертора, а фазы импульсов сдвинуты относительно друг друга на 120 эл. град. по частоте выходных напряжений инвертора.
Частота и фазы основных гармоник выходных напряжений инвертора определяются частотой и фазами соответствующих импульсов, подаваемых на вентили. Амплитуда основных гармоник выходных напряжений инвертора определяется величиной постоянного напряжения на входе инвертора напряжения.
Однако в указанном способе в спектре выходных напряжений инвертора присутствуют гармоники, кратные частоте этого напряжения [Бедфорт Б., Хофт Р. Теория автономных инверторов, перевод с англ. Под ред. И.В.Антина. М., «Энергия», 1969. 280 с.], что приводит к повышению массы и габаритов выходного силового низкочастотного фильтра и, как следствие, увеличивается масса системы. Кроме этого, с целью стабилизации амплитуд основных гармоник выходных напряжений при изменении величины нагрузки, а также в аварийных режимах, появляется необходимость регулирования напряжения на входе инвертора напряжения.
Кроме того, известен способ управления инвертором напряжения [Сандлер А.С., Гусяцкий Ю.М., Тиристорные инверторы с ШИМ. - М.: Энергия, 1968. - 95 с.], являющийся прототипом предлагаемого изобретения, заключающийся в том, что формируют три управляющих сигнала, формируют опорный двухполярный сигнал, вырабатывают импульсы управления вентилями инвертора напряжения при превышении нулевого уровня разностями опорного двухполярного сигнала и управляющих сигналов.
В данном способе, который получил название инвертор напряжения с ШИМ (широтно-импульсной модуляцией), при опорном сигнале, имеющем пилообразную двухполярную форму, изменяющемся с частотой, существенно большей частоты управляющих сигналов, имеющих синусоидальную форму, амплитуда, частота и фазы основных гармоник выходных напряжений инвертора определяются амплитудой, частотой и фазами соответствующих управляющих сигналов.
Недостатком данного способа управления является то, что с целью обеспечения высокого качества генерируемой энергии и уменьшения массы и габаритов выходного силового низкочастотного фильтра (особенно в системах генерирования для транспортных средств) приходится существенно увеличивать частоту ШИМ. При увеличении этой частоты возрастают динамические потери в вентилях инвертора [Моин В.С., Лаптев Н.Н. Стабилизированные транзисторные преобразователи. М.: Энергия, 1972. - 512 с.]. Наиболее существенно увеличиваются динамические потери в вентилях в режимах перегрузки и в режимах короткого замыкания в нагрузке. Причем в режиме короткого замыкания в системах генерирования электрической энергии транспортных средств, с целью обеспечения селективности срабатывания защит в отдельных нагрузках, необходимо обеспечить определенное время, величину тока короткого замыкания не менее 3Iном, где Iном - ток нагрузки в номинальном режиме [ГОСТ 19705-89. Системы электроснабжения самолетов и вертолетов. Общие требования и нормы качества электроэнергии. - М., Издательство стандартов, 1989]. Эти режимы приводят к необходимости увеличения массогабаритных показателей системы, ухудшается температурный режим полупроводниковых приборов, вследствие чего снижается рабочий ресурс системы в целом.
Задача изобретения - снижение массы и габаритов системы генерирования, увеличение ее рабочего ресурса.
Поставленная задача достигается тем, что в известном способе управления инвертором напряжения, заключающемся в том, что формируют три управляющих сигнала, формируют опорный двухполярный сигнал, вырабатывают импульсы управления вентилями инвертора напряжения при превышении нулевого уровня разностями опорного двухполярного сигнала и управляющих сигналов, измеряют мгновенные значения фазных токов инвертора напряжения, вычисляют амплитудное значение результирующего вектора фазных токов инвертора напряжения и при достижении им заданной величины уменьшают частоту генератора опорного двухполярного пилообразного сигнала в функции от амплитудного значения результирующего вектора тока инвертора.
На фиг.1 представлена одна из возможных структурных схем, реализующая предлагаемый способ управления инвертором напряжения. Она условно может быть разделена на силовую схему и систему управления. Силовая схема содержит инвертор напряжения (блок 23), три выхода стоек которого через датчики тока (блоки 24, 25, 26) соединены с входами низкочастотного фильтра (блок 27), а выходы последних соединены со входами нагрузки (блок 28). Информационные сигналы датчиков тока (блоки 24, 25, 26) соединены со входами системы управления (блок 7). Система управления включает в себя генератор управляющих сигналов (блок 1), три выхода которого соединены с инвертирующими входами схем вычитания (блоки 8, 9, 10), к неинвертирующим входам которых подключен выход генератора опорного двухполярного пилообразного напряжения (блок 2). Выходы схем вычитания соединены со входами компараторов (блоки 11, 12, 13), выходы последних соединены со входами первой группы драйверов непосредственно (блоки 18, 20, 22) и через логические элементы «не» (блоки 14, 15, 16) со входами второй группы драйверов (блоки 17, 19, 21). Выходы первой группы драйверов (блоки 18, 20, 22) соединены с затворами верхних транзисторов стоек инвертора напряжения (блок 23), а выходы второй группы драйверов (блоки 17, 19, 21) соединены с затворами нижних транзисторов стоек инвертора напряжения (блок 23). Один вход генератора опорного двухполярного пилообразного напряжения (блок 2) соединен с выходом источника сигнала постоянного напряжения (блок 4), а второй - с выходом схемы вычитания (блок 5). Неинвертирующий вход схемы вычитания (блок 5) соединен с выходом источника постоянного напряжения (блок 3), а инвертирующий вход соединен с выходом усилителя (блок 6), вход которого соединен с выходом вычислителя модуля тока инвертора напряжения.
Блоки схемы выполняют следующие функции. Генератор управляющих сигналов (блок 1), в простейшем случае, представляющий собой генератор трехфазного синусоидального напряжения с постоянной частотой f2. Амплитуда этих сигналов может изменяться в зависимости от величины и характера нагрузки (блок 28), подключенной к выходным зажимам силового низкочастотного фильтра (блок 27), функции которого может выполнять LC Г-образный фильтр низкой частоты. Блоки 3 и 4 - источники постоянного напряжения; блок 5 осуществляет функцию вычитания: из выходного напряжения блока 3 вычитается выходное напряжение блока 6; блок 2 - генератор опорного двухполярного пилообразного напряжения, частота которого задается напряжением с выхода вычитающего устройства 5, а амплитудное значение задается напряжением с выхода блока 4. Блок 6 - усилитель, входное (uвх6) и выходное (uвых6) напряжение которого связаны соотношением
u в ы х 6 = { k  u вх6 , 0,   u вх6 > u пор ; u вх6 u пор , ,                  ( 1 )
Figure 00000001
где k - постоянный коэффициент передачи;
uпор - пороговое напряжение.
Блок 7 вычисляет модуль тока инвертора. Блоки 8, 9, 10 реализуют схему вычитания, вычисляют разницу между опорным сигналом и сигналами управления. Блоки 11, 12, 13 реализуют функцию sign(x), где х - входной сигнал блока, и представляют собой компаратор, т.е. усилитель с большим коэффициентом усиления. Логические элементы «не» (блоки 14, 15, 16) представляют собой обычные импульсные (цифровые) инверторы уровня сигнала. Блоки 17, 18, 19, 20, 21, 22 - драйверы, усиливают сигнал по мощности, осуществляют гальваническую развязку между электрическими цепями системы управления и силовой схемой инвертора напряжения (блок 23). Инвертор напряжения может быть выполнен на любых управляемых вентилях, в качестве примера изображен инвертор напряжения на IGBT транзисторах VT1, VT2, VT3, VT4, VT5 и VT6. Блоки 24, 26 и 27 представляют собой датчики тока, сигналы с их выхода пропорциональны токам инвертора iuA, iuB и iuC подаются на вход блока 7, который вырабатывает напряжение, пропорциональное амплитуде результирующего (описывающего) вектора трех токов инвертора. Схема нагрузки может быть выполнена как с нулевым проводом, так и без него.
Способ осуществляется следующим образом: генератор управляющих сигналов (блок 1) вырабатывает три синусоидальных напряжения с постоянной частотой f2, сдвинутые друг относительно друга на 120 эл. град. Эти напряжения подаются на первые входы схем вычитания (блоки 8, 9, 10). На вторые входы схем вычитания поступает опорное двухполярное пилообразное напряжение с выхода блока 2. Частота этого напряжения пропорциональна выходному напряжению блока 5. В том случае, если амплитудное значение результирующего вектора основных гармоник тока инвертора (Iumax) меньше или равно заданному номинальному значению (Iuном), выходной сигнал блока 6 равен нулю и частота опорного двухполярного пилообразного напряжения постоянна и пропорциональна выходному напряжению блока 3. Если амплитудное значение результирующего вектора основных гармоник тока инвертора превышает номинальное значение Iuном, на выходе усилителя 6 появляется сигнал, пропорциональный амплитудному значению основной гармоники тока инвертора uвых6=kIumax. Это достигается за счет того, что в блоке 6 пороговое напряжение, и задается пропорциональным току Iuном, а входное напряжение uвх6, поступающее с выхода блока 7, пропорционально амплитудному значению результирующего вектора основных гармоник тока инвертора Iuном.
Появление напряжения на выходе блока 6 приводит к уменьшению напряжения на выходе блока 5, при этом происходит уменьшение частоты ШИМ.
Вычисление сигнала, пропорционального амплитудному значению результирующего вектора основных гармоник тока инвертора в блоке 7, может производиться различными способами. Один из них поясняется на фиг.2. Выходные сигналы с датчиков тока инвертора (блоки 24, 25, 26), пропорциональные трем фазным токам инвертора (ki - коэффициент пропорциональности, или коэффициент передачи по току датчиков тока), подаются на вход блока, осуществляющего преобразование Кларка. Это преобразование в отечественной литературе обычно называется преобразованием к ортогональной системе координат «α-β» [Системы подчиненного регулирования электроприводов переменного тока с вентильными преобразователями / О.В.Слежановский, Л.Х.Дацковский, И.С.Кузнецов и др. - М.: Энергоатомиздат, 1983. - 256 с]. В силу того что данный инвертор применяется в системе генерирования электрической энергии, в токе нагрузки, в виду возможной несимметрии нагрузки, может появиться нулевая последовательность, поэтому преобразования Кларка осуществляются с предварительным выделением симметричных составляющих в соответствии с далее приведенными соотношениями [Основы теории цепей: Учебник для вузов / Г.В.Зевеке. П.А.Ионкин, А.В.Нетушил, С.А.Страхов. - 5-е изд., перераб. - М.: Энергоатомиздат. 1989. - 528 с].
Figure 00000002
здесь i0 - нулевая последовательность в токах инвертора;
iuAc, iuBc, iuCc - симметричные составляющие токов инвертора;
iα, iβ - проекции симметричных составляющих токов инвертора на ортогональные оси «α-β».
Сигналы iα, iβ и i0 поступают на вход блока вычисления модуля, где осуществляется следующая операция
Figure 00000003
Постоянная составляющая сигнала im пропорциональна амплитуде результирующего (описывающего) вектора трех токов инвертора [Трещев И.И. Электромеханические процессы в машинах переменного тока. - Л.: Энергия. Ленинградское отд., 1980. - 344 с]. Далее, с помощью фильтра низкой частоты выделяется постоянная составляющая, в результате выходной сигнал блока uвых7 будет пропорционален амплитудному значению результирующего вектора основных гармоник тока инвертора.
Выходные напряжения схем вычитания (блоки 8, 9, 10) поступают на компараторы (блоки 11, 12, 13), которые вырабатывают положительные импульсы при превышении опорного напряжения над управляющими напряжениями. Эти импульсы поступают на логические элементы «не» (блоки 14, 15, 16) и драйверы (блоки 18, 20, 22) верхних транзисторов (VT1, VT3, VT5) инвертора напряжения (блок 23). Напряжения с выходов логических элементов «не» подаются на драйверы (блоки 17, 19, 21) нижних транзисторов (VT2, VT4, VT6) инвертора напряжения (блок 23). Выходные напряжения инвертора снимаются со средних точек стоек А, В, С и подаются на вход силового низкочастотного фильтра (блок 27). Низкочастотный фильтр подавляет высокочастотные гармоники, практически синусоидальное трехфазное напряжение с частотой f2 подается на нагрузку (блок 28). В предлагаемом способе реализуется широтно-импульсная модуляция, при которой транзисторы коммутируются с высокой частотой f1. При этом данная частота постоянна в режимах, когда ток инвертора напряжения не превышает наперед заданной номинальной величины. В противном случае эта частота начинает уменьшаться пропорционально амплитудному значению результирующего вектора основных гармоник тока инвертора. В том случае если нагрузка симметрична, амплитудное значение результирующего вектора основных гармоник тока инвертора равно амплитудному значению тока инвертора.
Уменьшение частоты ШИМ (f1) необходимо для уменьшения динамических потерь на включение и выключение вентилей. Данные потери при высокой частоте ШИМ (f1) являются определяющими. Известно, что динамические потери в полупроводниковых вентилях пропорциональны частоте коммутаций, например, в транзисторах они определяются следующим соотношением [J.W.Kolar, H.Erti, and F.С.Zach, "Influence of the modulation method on the conduction and switching losses of a PWM converter system," IEEE Trans. Ind. Applicat, vol.27, pp.1063-1075, Nov./Dec. 1991]:
Р д и н = f 1 U d c I u max 2 π ( t в к л + t в ы к л ) ,          ( 4 )
Figure 00000004
где tвкл, tвыкл - длительности времени включения и выключения транзисторов;
Udc - постоянная составляющая напряжения на входе инвертора.
Уменьшение частоты ШИМ в режимах перегрузки и, особенно, в режимах короткого замыкания, приводит к существенному снижению активных потерь в вентилях, что позволяет уменьшить массу и габариты системы охлаждения, и, как следствие, уменьшается масса и габариты системы генерирования в целом. За счет снижения динамических потерь улучшается температурный режим работы полупроводниковых вентилей, т.е. снижается их рабочая температура, что приводит к увеличению рабочего ресурса этих элементов.
Таким образом, предложенный способ управления инвертором напряжения
в составе системы генерирования электрической энергии переменного тока приводит к снижению массы и габаритов и увеличению рабочего ресурса системы генерирования.

Claims (1)

  1. Способ управления инвертором напряжения в составе системы генерирования электрической энергии переменного тока в режимах перегрузки, заключающийся в том, что формируют три управляющих сигнала, формируют опорный двухполярный сигнал, вырабатывают импульсы управления вентилями инвертора напряжения при превышении нулевого уровня разностями опорного двухполярного сигнала и управляющих сигналов, отличающийся тем, что измеряют мгновенные значения фазных токов инвертора напряжения, вычисляют амплитудное значение результирующего вектора фазных токов инвертора напряжения и при достижении им заданной величины уменьшают частоту генератора опорного двухполярного пилообразного сигнала в функции от амплитудного значения результирующего вектора тока инвертора.
RU2011147428/08A 2011-11-22 2011-11-22 Способ управления инвертором напряжения в составе системы генерирования электрической энергии переменного тока в режимах перегрузки RU2509336C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011147428/08A RU2509336C2 (ru) 2011-11-22 2011-11-22 Способ управления инвертором напряжения в составе системы генерирования электрической энергии переменного тока в режимах перегрузки

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011147428/08A RU2509336C2 (ru) 2011-11-22 2011-11-22 Способ управления инвертором напряжения в составе системы генерирования электрической энергии переменного тока в режимах перегрузки

Publications (2)

Publication Number Publication Date
RU2011147428A RU2011147428A (ru) 2013-05-27
RU2509336C2 true RU2509336C2 (ru) 2014-03-10

Family

ID=48789127

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011147428/08A RU2509336C2 (ru) 2011-11-22 2011-11-22 Способ управления инвертором напряжения в составе системы генерирования электрической энергии переменного тока в режимах перегрузки

Country Status (1)

Country Link
RU (1) RU2509336C2 (ru)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2209502C2 (ru) * 1997-10-31 2003-07-27 Хитачи, Лтд. Устройство для преобразования электрической мощности
US7450405B2 (en) * 2005-01-25 2008-11-11 Abb Schweiz Ag DC/AC converter with dampened LCL filter distortions
RU2339154C1 (ru) * 2007-05-21 2008-11-20 Государственное образовательное учреждение высшего профессионального образования Уфимский государственный авиационный технический университет Устройство управления преобразователя частоты

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2209502C2 (ru) * 1997-10-31 2003-07-27 Хитачи, Лтд. Устройство для преобразования электрической мощности
US7450405B2 (en) * 2005-01-25 2008-11-11 Abb Schweiz Ag DC/AC converter with dampened LCL filter distortions
RU2339154C1 (ru) * 2007-05-21 2008-11-20 Государственное образовательное учреждение высшего профессионального образования Уфимский государственный авиационный технический университет Устройство управления преобразователя частоты

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
САНДЛЕР А.С. и др. Электроприводы с полупроводниковым управлением, Тиристорные инверторы с широтно-импульсной модуляцией. - М.: Энергия, 1968, см. 72-84, рис.7-1. *

Also Published As

Publication number Publication date
RU2011147428A (ru) 2013-05-27

Similar Documents

Publication Publication Date Title
Xia et al. A simplified finite-control-set model-predictive control for power converters
Nguyen et al. Eliminated common-mode voltage pulsewidth modulation to reduce output current ripple for multilevel inverters
Hu et al. Model predictive control of grid-connected inverters for PV systems with flexible power regulation and switching frequency reduction
EP2528221A2 (en) Multi-phase active rectifier
JP2016082786A (ja) 中性点クランプ形電力変換装置およびその制御方法
Yang et al. An efficient model predictive control using virtual voltage vectors for three-phase three-level converters with constant switching frequency
EP2690775A2 (en) Drive system for alternating current motors and electric motorized vehicles
Kim et al. Direct power control of three-phase boost rectifiers by using a sliding-mode scheme
Paikray et al. A new multicarrier SPWM technique for five level cascaded H-bridge inverter
Singh et al. Simulation and comparison of SPWM and SVPWM control for two level inverter
Wang et al. Analysis, measurement, and compensation of the system time delay in a three-phase voltage source rectifier
EP2963800A1 (en) Controlling parallel converter systems for wind turbines
RU2697262C1 (ru) Способ управления инвертором напряжения в системах бесперебойного питания и системах накопления электрической энергии при резкопеременной нагрузке
Yao et al. A Variable Duty Cycle-Based Predictive Control for PMSM Fed by Cascaded H-Bridge Inverter
Cortes et al. A comparative study of predictive current control for three-phase voltage source inverters based on switching frequency and current error
RU2509336C2 (ru) Способ управления инвертором напряжения в составе системы генерирования электрической энергии переменного тока в режимах перегрузки
RU2522036C2 (ru) Способ управления трехфазным инвертором напряжения со стабилизацией тока при переходе в режим перегрузки
JP6685966B2 (ja) Dc/dcコンバータの制御装置
RU2517298C2 (ru) Способ управления инвертором напряжения с широтно-импульсной модуляцией в составе системы генерирования электрической энергии переменного тока
RU2340071C1 (ru) Способ стабилизации напряжения питания многоуровневого автономного инвертора напряжения
Li et al. A harmonic constrained minimum energy controller for a single-phase grid-tied inverter using model predictive control
Shen et al. Investigation of capacitor voltage regulation in modular multilevel converters with staircase modulation
JPH0779570A (ja) 電力変換装置
Anuchin et al. Simulation of power converter control system with compensation of harmonic distortion in output voltage waveform
Mondal et al. Study of a new single phase multilevel inverter based on switched capacitor units