RU2509205C2 - Способ и система для переохлаждения добываемого углеводородного флюида для транспортировки - Google Patents

Способ и система для переохлаждения добываемого углеводородного флюида для транспортировки Download PDF

Info

Publication number
RU2509205C2
RU2509205C2 RU2011102323/03A RU2011102323A RU2509205C2 RU 2509205 C2 RU2509205 C2 RU 2509205C2 RU 2011102323/03 A RU2011102323/03 A RU 2011102323/03A RU 2011102323 A RU2011102323 A RU 2011102323A RU 2509205 C2 RU2509205 C2 RU 2509205C2
Authority
RU
Russia
Prior art keywords
suspension
produced fluid
pump
particles
hydrate particles
Prior art date
Application number
RU2011102323/03A
Other languages
English (en)
Other versions
RU2011102323A (ru
Inventor
Джон Дэниел ФРИДЕМАНН
Original Assignee
Ветко Грэй Скандинавиа.АС
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ветко Грэй Скандинавиа.АС filed Critical Ветко Грэй Скандинавиа.АС
Publication of RU2011102323A publication Critical patent/RU2011102323A/ru
Application granted granted Critical
Publication of RU2509205C2 publication Critical patent/RU2509205C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B9/00Cleaning hollow articles by methods or apparatus specially adapted thereto 
    • B08B9/02Cleaning pipes or tubes or systems of pipes or tubes
    • B08B9/027Cleaning the internal surfaces; Removal of blockages
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B36/00Heating, cooling or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones
    • E21B36/001Cooling arrangements
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/01Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells specially adapted for obtaining from underwater installations

Landscapes

  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Mechanical Engineering (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Control Of Temperature (AREA)
  • Drilling And Exploitation, And Mining Machines And Methods (AREA)

Abstract

Группа изобретений относится к области устранения или уменьшения отложений твердых частиц, таких как твердые частицы парафина, в подводном трубопроводе, по которому транспортируют углеводородные флюиды. Обеспечивает повышение эффективности технологии в режиме холодного потока. Сущность изобретений: система для получения суспензии твердых частиц и добываемого флюида из подводной скважины включает: насос с впускным отверстием и выпускным отверстием; обводной трубопровод, который соединяет выпускное отверстие насоса и впускное отверстие насоса, выполненное для отведения части потока из выпускного отверстия насоса; охлаждающее устройство, расположенное в обводном трубопроводе и выполненное с возможностью охлаждения добываемого флюида внутри охлаждающего устройства до температуры, при которой гидраты могут выпасть в осадок из добываемого флюида, для получения суспензии частиц гидратов и добываемого флюида, и контрольно-измерительную аппаратуру, выполненную с возможностью регулирования потока через обводной трубопровод на основе сигнала, соответствующего, по меньшей мере, одной характеристике суспензии. 2 н. и 12 з.п. ф-лы, 5 ил.

Description

Область изобретения
Настоящее изобретение относится к способу и системе для уменьшения или устранения отложения твердых частиц, таких как твердые частицы парафина, в подводном трубопроводе, по которому транспортируют углеводородные флюиды. В частности, настоящее изобретение относится к способу и системе для регулирования получения суспензии твердых частиц в добываемом углеводородном флюиде для уменьшения или устранения отложения твердых частиц вдоль подводного трубопровода, по которому добываемый углеводородный флюид транспортируют из скважины.
Предпосылки создания изобретения
Одной из наиболее сложных проблем при транспортировке углеводородных флюидов на значительные расстояния под водой является образование и кристаллизация твердых веществ внутри насосно-компрессорных труб, применяемых для транспортировки углеводородов. Кроме нефти или газа, углеводородные флюиды, добываемые из скважины, обычно содержат воду, газ и растворенные твердые вещества. Растворенные твердые вещества могут включать воски, органические соли и неорганические соли.
Отложение слоя твердых веществ в насосно-компрессорных трубах, по которым транспортируют углеводородные флюиды, может происходить по различным причинам. Отложение твердых веществ внутри насосно-компрессорных труб может привести к потере или уменьшению потока нефти или газа через насосно-компрессорные трубы. Твердые вещества могут образовываться из нескольких различных веществ. Например, твердые вещества могут представлять собой гидраты, образовавшиеся из смеси газа и воды, воск, асфальтены или органические и неорганические соли. Данные твердые вещества растворимы в добываемом флюиде при температуре добычи, а затем выпадают в осадок из добываемого флюида при температурах ниже температур добычи или при изменении давления. Например, растворенные твердые вещества могут выпадать в осадок из углеводородного флюида в результате снижения температуры флюида, аналогично образованию льда в воде, которую охладили ниже температуры замерзания воды. Кроме того, изменение давления углеводородного флюида может привести к выпадению в осадок растворенных твердых веществ из углеводородного флюида. Химические реакции в углеводородном флюиде также могут привести к выпадению в осадок растворенных твердых веществ из углеводородного флюида.
Уменьшение или потеря потока, вызванные отложением твердых веществ внутри трубопровода, могут потребовать значительных усилий, направленных на исправление ситуации. Например, могут потребоваться продувка, сверление или обработка теплом или химическими реактивами трубопровода с отложениями твердых веществ для растворения твердых веществ и возврата трубопровода в его исходное состояние. Такие усилия, направленные на исправление ситуации, отнимают много времени и являются дорогостоящими.
При попытках решения данной проблемы использовали различные подходы. Например, были разработаны различные технологии, в которых либо нагревают трубопровод для добываемого флюида, либо изолируют трубопроводы, пытаясь сохранить температуру и давление добываемого флюида вне области, где может происходить образование твердых веществ.
Альтернативный подход, который пытались использовать, состоит в признании неизбежности тепловых потерь и снижения давления, связанных с течением добываемого флюида через насосно-компрессорные трубы, проходящие по морскому дну, и в попытке регулирования процесса образования твердых веществ внутри трубопровода. Обычно данное решение называют технологией "холодного потока" или "переохлажденного потока". В системах холодного потока добываемый флюид охлаждают на входе до температуры, при которой твердые вещества выпадают в осадок из добываемого флюида. Таким образом, твердые вещества транспортируют вместе с добываемым флюидом в виде суспензии. Суспензия представляет собой суспензию твердых веществ в жидкости. Вероятно, твердые вещества в суспензии менее склонны к отложению в трубопроводе, чем твердые вещества, которые выпадают в осадок из флюида в различных местах вдоль трубопровода.
Имеются некоторые недостатки и проблемы, связанные с существующими системами холодного потока. В основном, данные системы являются сложными, нестабильными и показывают неудовлетворительные результаты. В частности, доказано, что трудно регулировать образование твердых веществ таким образом, чтобы не происходило отложение данных твердых веществ в системе или в трубопроводе.
Поэтому требуется более эффективная технология для обеспечения холодного потока углеводородных продуктов. В частности, требуется технология холодного потока, которая могла бы предоставить возможность образования углеводородной суспензии в подводном трубопроводе и ее транспортировки в требуемый пункт назначения без прилипания к стенкам трубопровода.
Краткое описание изобретения
Предложена технология получения суспензии твердых частиц и добываемого углеводородного флюида для транспортировки по подводному трубопроводу. В данной технологии применяют систему холодного потока, которая охлаждает добываемый флюид до температуры, которая ниже температуры, при которой гидраты и другие вещества выпадают в осадок из добываемого флюида и образуют твердые частицы. Система пригодна для определения по меньшей мере одной характеристики твердых частиц, образовавшихся в добываемом флюиде, например, размера и/или числа твердых частиц в добываемом флюиде. В системе можно применять разное количество датчиков различных типов, например, расходомеры и счетчики числа частиц, чтобы определить характеристики твердых частиц в добываемом флюиде. Кроме того, система пригодна для регулирования работы системы на основе характеристик твердых частиц и, таким образом, для регулирования свойств суспензии твердых частиц и добываемого углеводородного флюида, получаемой в системе.
Можно применять охлаждающий газ для облегчения переохлаждения добываемого флюида. Сжатый охлаждающий газ при расширении охлаждает добываемый флюид в результате эффекта Джоуля-Томсона. Охлаждающий газ обеспечивает дополнительное переохлаждение добываемого флюида.
Кроме того, можно применять регулятор выходного давления для регулирования размера и/или числа твердых частиц в системе холодного потока. Регулятор выходного давления можно применять для регулирования потока через систему и, следовательно, для регулирования образования твердых частиц в суспензии.
Для получения и обработки данных от датчиков применяют контрольно-измерительную аппаратуру. Затем контрольно-измерительная аппаратура подает управляющие сигналы одному или нескольким компонентам системы холодного потока для получения суспензии, включающей твердые частицы с требуемыми характеристиками. Например, контрольно-измерительная аппаратура может регулировать работу системы холодного потока для уменьшения числа и/или размера твердых частиц на основе данных, полученных от датчиков.
Чертежи
Указанные и другие отличительные признаки, аспекты и преимущества настоящего изобретения станут более понятными при чтении последующего подробного описания со ссылкой на прилагаемые чертежи, на которых одинаковые детали обозначены одинаковыми позициями на всех чертежах, где:
Фиг.1 представляет собой схематическое изображение системы для получения потока добываемого флюида из скважины, который охлаждают ниже температуры образования гидратов, согласно примеру воплощения настоящей технологии;
Фиг.2 представляет собой график зависимости между содержанием воды и вязкостью, согласно примеру воплощения настоящей технологии;
Фиг.3 представляет собой поперечное сечение насоса-измельчителя в системе для получения потока добываемого флюида из скважины, который охлаждают ниже температуры образования гидратов, согласно примеру воплощения настоящей технологии;
Фиг.4 представляет собой вертикальную проекцию охлаждающего контура системы для получения потока добываемого флюида из скважины, который охлаждают ниже температуры образования гидратов, согласно примеру воплощения настоящей технологии, и
Фиг.5 представляет собой схематическое изображение альтернативного воплощения системы для получения потока добываемого флюида из скважины, который охлаждают ниже температуры образования гидратов, согласно примеру воплощения настоящей технологии.
Подробное описание изобретения
Теперь обратимся к Фиг.1; описание настоящего изобретения будет дано в таком виде, как его можно применять в сочетании с примером технологии, в данном случае, системы для получения потока добываемого флюида из подводной скважины, который охлаждают от температуры, которая выше температуры, при которой гидраты могут стать твердыми, до температуры, которая ниже температуры, при которой гидраты в добываемом флюиде могут стать твердыми; данная система в целом обозначена позицией 20. В результате снижения температуры гидраты в добываемом флюиде могут стать твердыми. Однако, как более подробно будет рассмотрено ниже, система 20 переохлаждения регулирует образование твердых гидратов таким образом, что размер твердых частиц гидратов остается достаточно маленьким, и они не образуют отложения в виде твердого слоя внутри системы 20 переохлаждения или в трубопроводах на выходе из системы 20 переохлаждения. В результате, переохлажденный флюид можно транспортировать на расстояния, составляющие много миль, без проблем, связанных с отложением твердого слоя гидратов в трубопроводе.
Добываемый флюид 22 поступает в систему 20 переохлаждения через впускной трубопровод 24. Добываемый флюид 22 выходит в виде суспензии 26 частиц гидратов и флюидов через выпускной трубопровод 38. В изображенном на чертеже воплощении изобретения добываемый флюид 22 поступает в систему при температуре, которая выше температуры, при которой гидраты в системе переохлаждения являются твердыми, т.е. выше температуры образования гидратов при давлении добываемого флюида. Система 20 переохлаждения охлаждает добываемый флюид 22, поступающий в систему, до температуры, которая ниже температуры, при которой гидраты в системе переохлаждения становятся твердыми, т.е. ниже температуры образования гидратов при заданном давлении добываемого флюида из скважины. В результате, частицы гидратов выпадают в осадок из добываемого флюида 22. Частицы гидратов смешивают с оставшейся жидкой частью добываемого флюида 22, получая суспензию 26 твердых частиц гидратов и добываемого флюида.
Для предотвращения отложения гидратов во впускном трубопроводе 22, впускной трубопровод 22 изолируют, чтобы поддержать температуру добываемого флюида 22, поступающего в систему 20, выше температуры образования гидратов. Однако часть впускного трубопровода 22 можно не изолировать или можно изолировать с применением меньшего количества изоляционного материала, чтобы начался процесс охлаждения. Наоборот, выпускной трубопровод 24 не изолируют, чтобы предоставить возможность утечки тепла от добываемого флюида в выпускном трубопроводе 24 и поддержать температуру добываемого флюида ниже температуры, при которой гидраты становятся твердыми. Например, если на выходе из системы 20 переохлаждения температура добываемого флюида поднимется выше температуры плавления гидратов, то частицы гидратов могут расплавиться и вернуться в жидкое состояние. Если затем снова охладить добываемый флюид ниже температуры образования гидратов, то гидраты могут снова стать твердыми, что потенциально может привести к отложению слоя твердых частиц внутри трубопровода, что может мешать потоку добываемого флюида.
В изображенном на чертеже воплощении изобретения система 20 переохлаждения включает насос 30 и охлаждающее устройство 32, расположенное в обводном трубопроводе 34. Насос 30 включает впускное отверстие 36 и выпускное отверстие 38. Часть потока из выпускного отверстия 38 насоса 30 отводят через обводной трубопровод 34. Данную часть добываемого флюида охлаждают ниже температуры образования твердых частиц гидратов с помощью охлаждающего устройства 32. Гидраты выпадают в осадок из добываемого флюида, и как гидраты, так и охлажденный добываемый флюид вводят обратно в поток добываемого флюида перед насосом 30. Насос 30 измельчает частицы гидратов, таким образом, уменьшая размер частиц, плавающих в суспензии 26. Как указано выше, продукт системы 20 представляет собой суспензию 26, которую выпускают через выпускной трубопровод 28.
Регулятор 40 выходного давления применяют в данном воплощении изобретения для регулирования выходного давления в системе 20, чтобы получить требуемый поток флюида через обводной трубопровод 34. Кроме того, применяют рециркуляционный клапан 42 для регулирования повторного введения переохлажденного флюида из обводного трубопровода 34 во впускное отверстие 36 насоса 30. Как более подробно будет рассмотрено ниже, один или оба указанных клапана могут приводиться в действие автоматически для регулирования размера частиц гидратов в суспензии 26, выходящей из системы переохлаждения 20.
В изображенном на чертеже воплощении изобретения система 20 переохлаждения включает контрольно-измерительную аппаратуру 44, которая выполнена с возможностью регулирования работы системы 20, чтобы частицы гидратов, которые выпадают в осадок во время переохлаждения, имели маленький размер и были пригодными для транспортировки. Контрольно-измерительная аппаратура 44 включает датчики 46, которые применяют для определения характеристик суспензии, таких как размер и/или число частиц гидратов в суспензии. Для определения характеристик суспензии можно применять различные технологии. В частности, для определения характеристик частиц гидратов в суспензии можно применять различные технологии. Например, можно применять приспособления, в которых используют датчики электромагнитного излучения, звуковые датчики, оптические датчики и/или датчики радиоактивности. В данных приспособлениях можно применять источники и/или детекторы микроволнового излучения, рентгеновского излучения, гамма-лучей, нейтронов и т.д. Данные от указанных различных приспособлений можно применять для идентификации частиц гидратов и их выделения среди других частиц в суспензии. Кроме того, указанные данные могут включать число, размер и/или другие требуемые характеристики, которые можно применять для определения характеристик твердых частиц в суспензии.
В данном воплощении изобретения контрольно-измерительная аппаратура 44 также получает данные от многофазного расходомера 50. Данные от различных датчиков поступают в контрольно-измерительный блок 48, который обрабатывает указанные данные для определения характеристик частиц гидратов в системе 20. Если частицы гидратов являются слишком большими, то контрольно-измерительная аппаратура 44 регулирует работу системы 20 для уменьшения размера частиц гидратов в системе 20 переохлаждения.
В данном воплощении изобретения клапан 40 для регулирования выходного давления и рециркуляционный клапан 42 представляют собой клапаны с электроприводом, которыми управляет контрольно-измерительная аппаратура 44. Данные клапаны можно приводить в действие для регулирования потока в обводном трубопроводе 34, который будет регулировать поток суспензии 26 из системы 20. Если размер частиц гидратов в суспензии 26 является слишком большим, то данные клапаны можно приводить в действие для снижения или даже блокирования потока из системы. Это может предоставить насосу 30 дополнительную возможность измельчения частиц гидратов и, таким образом, уменьшения размера частиц гидратов. Кроме того, в данном воплощении изобретения скорость работы насоса 30 регулируют с помощью контрольно-измерительной аппаратуры 44. Путем увеличения скорости работы насоса 30 можно усилить измельчение частиц гидратов,
Для определения характеристик частиц гидратов в системе 20 переохлаждения в датчиках 46 можно использовать несколько различных типов технологий. Например, можно применять технологию подсчета числа частиц. В качестве альтернативы, для определения характеристик частиц гидратов в суспензии можно использовать реологические свойства суспензии. Реология изучает деформацию и течение материалов под влиянием приложенного напряжения, например, напряжения сдвига или напряжения расширения. Вязкость представляет собой пример реологического свойства текучей среды или суспензии, также как и число Рейнольдса.
Обратимся к Фиг.2 в целом; на данном чертеже изображен график зависимости между размером частиц и вязкостью суспензии, обозначенный в целом позицией 52. По вертикальной оси 54 отложена вязкость. По горизонтальной оси 56 отложено процентное содержание воды в суспензии. На Фиг.2 представлены три кривые зависимости вязкости от содержания воды в суспензии: первая кривая 58, вторая кривая 60 и третья кривая 62. Данные три кривые относятся к суспензиям с различными размерами частиц. Первая кривая 58 относится к суспензии с частицами самого маленького размера. Вторая кривая 60 относится к суспензии, в которой частицы больше, чем частицы на первой кривой 58. Наконец, третья кривая 62 относится к суспензии, в которой частицы больше, чем частицы на второй кривой 60. Из графика 52 можно видеть, что чем меньше частицы, тем ниже вязкость.
В изображенном на чертеже воплощении изобретения контрольно-измерительная аппаратура 44 выполнена с возможностью обратного расчета размера частиц на основе содержания воды и вязкости. Эффективную вязкость получают из падения давления, определенного с помощью многофазного расходомера 50. Однако вязкость можно определять и с помощью другого приспособления.
Кроме того, для определения характеристик добываемого флюида и/или суспензии можно применять томографию. Томография представляет собой получение изображения, которое осуществляют в сечениях или послойно. Для получения данных для построения изображения суспензии, которые позволяют контрольно-измерительной аппаратуре определить характеристики суспензии, можно применять такие технологии получения изображения, как микроволновое излучение, МРТ (магнитно-резонансная томография), ЯМР (ядерный магнитный резонанс), ультразвук. Это предоставляет возможность системе определить: образовался ли требуемый однородный поток суспензии или образовался неоднородный поток вследствие неудовлетворительной работы устройства для получения потока переохлажденной жидкости.
Снова обратимся к Фиг.1; охлажденный газ 64 вводят в обводной трубопровод 34 перед рециркуляционным клапаном 42 через впускное отверстие 66 для охлажденного газа в изображенном на чертеже воплощении изобретения. Охлажденный газ 64 обеспечивает дополнительное охлаждение суспензии при расширении в результате эффекта Джоуля-Томсона. Дополнительное охлаждение, обеспечиваемое охлажденным газом, повышает способность системы 20 к получению частиц гидратов из добываемого флюида. Кроме того, охлажденный газ 64 увеличивает скорость суспензии. Увеличение скорости повышает способность системы 20 к получению маленьких, пригодных для транспортировки частиц гидратов.
Обратимся к Фиг.3 в целом; насос 30 выполнен с возможностью уменьшения размера частиц гидратов, образовавшихся внутри системы 20. Насос 30 включает двигатель 68 с приводным валом 70, который соединен с лопастным колесом 72, которое выполнено с возможностью измельчения частиц гидратов. В частности, лопастное колесо 72 в изображенном на чертеже воплощении изобретения представляет собой не одинарное лопастное колесо, а ряд лопастных колес, которые последовательно соединены друг с другом вдоль вала 70. Таким образом, частицы гидратов должны проходить через множество лопастных колес при прохождении через насос 30. В результате, лопасти лопастного колеса 72 дробят частицы 74 гидратов, поступающие в насос 30, на более мелкие частицы 76 гидратов. Кроме того, в данном воплощении изобретения двигатель 68 насоса 30 получает управляющий сигнал 78 от контрольно-измерительного блока 48. Управляющий сигнал 78 применяют для регулирования частоты вращения двигателя 68. Чем выше частота вращения двигателя 68, тем выше частота вращения лопастного колеса 72. Чем выше частота вращения лопастного колеса 72, тем большее давление создает насос 30 и тем сильнее он дробит частицы гидратов.
Обратимся к Фиг.4 в целом; в охлаждающем устройстве 32 применяют охлаждающий змеевик 80 для облегчения передачи тепла окружающей морской воде 82. Охлаждающий змеевик 80 состоит из трубы 84, которая свернута в спираль вокруг колонн 86 конструкции 88. Кроме того, в данном воплощении изобретения насос 30 и другие компоненты системы 20 переохлаждения установлены на конструкцию 88. В данном воплощении изобретения конструкция 88 расположена на морском дне 90.
Обратимся к Фиг.5 в целом; на данном чертеже представлено альтернативное воплощение системы переохлаждения, которая в целом обозначена позицией 92. В данном воплощении изобретения охлажденный газ 60 вводят после рециркуляционного клапана 38. В данной конфигурации охлажденный газ 60 приводит к большему переохлаждению добываемого флюида. Поток охлаждающего газа 64 регулируют с помощью регулирующего клапана 94 для охлаждающего газа.
В данном воплощении изобретения рециркуляционный клапан 42 перемещен и установлен перед охлаждающей установкой 32, а клапан для регулирования выходного давления удален. Поток через обводной трубопровод 34 регулируют с помощью рециркуляционного клапана 42.
Хотя в данном документе были проиллюстрированы и описаны только некоторые отличительные признаки изобретения, специалисты в данной области могут предложить множество модификаций и изменений. Поэтому понятно, что прилагаемая формула изобретения подразумевает, что все такие модификации и изменения включены в объем настоящего изобретения.

Claims (14)

1. Система (20) для получения суспензии твердых частиц и добываемого флюида из подводной скважины, включающая:
насос (30), включающий впускное отверстие (36) и выпускное отверстие (38);
обводной трубопровод (34), который соединяет выпускное отверстие (38) насоса и впускное (36) отверстие насоса, выполненное для отведения части потока из выпускного отверстия (38) насоса;
охлаждающее устройство (32), расположенное в обводном трубопроводе (34) и выполненное с возможностью охлаждения добываемого флюида внутри охлаждающего устройства до температуры, при которой гидраты могут выпасть в осадок из добываемого флюида, для получения суспензии частиц гидратов и добываемого флюида, и
контрольно-измерительную аппаратуру (44), выполненную с возможностью регулирования потока через обводной трубопровод (34) на основе сигнала, соответствующего, по меньшей мере, одной характеристике суспензии.
2. Система по п.1, где контрольно-измерительная аппаратура выполнена с возможностью регулирования потока через систему для получения частиц гидратов требуемого размера в суспензии частиц гидратов и добываемого флюида.
3. Система по п.1, где контрольно-измерительная аппаратура выполнена с возможностью регулирования потока через систему для получения требуемого числа частиц гидратов в суспензии частиц гидратов и добываемого флюида.
4. Система по п.1, где контрольно-измерительная аппаратура выполнена с возможностью регулирования потока через систему для получения требуемых реологических свойств суспензии частиц гидратов и добываемого флюида.
5. Система по п.1, включающая дроссельный клапан, расположенный в обводном трубопроводе, причем данный дроссельный клапан выполнен с возможностью использования контрольно-измерительной аппаратуры для приведения в действие данного дроссельного клапана для регулирования потока через обводной трубопровод.
6. Система по п.1, где контрольно-измерительная аппаратура и насос выполнены с возможностью использования контрольно-измерительной аппаратуры для регулирования потока, создаваемого насосом.
7. Система по п.1, включающая регулятор выходного давления, расположенный на выходе из насоса, причем данный регулятор выходного давления выполнен с возможностью регулирования потока через обводной трубопровод.
8. Система по п.1, где по меньшей мере одна характеристика суспензии представляет собой размер частиц гидратов.
9. Система по п.1, где по меньшей мере одна характеристика суспензии представляет собой количество частиц гидратов в заданном объеме пробы.
10. Система по п.1, где по меньшей мере одна характеристика суспензии представляет собой реологические свойства суспензии.
11. Система по п.1, где контрольно-измерительная аппаратура включает контрольно-измерительную аппаратуру, выполненную с возможностью регулирования работы системы для получения суспензии, чтобы получить суспензию частиц гидратов и добываемого флюида с требуемой характеристикой частиц гидратов.
12. Способ получения суспензии твердых частиц и добываемого флюида, обладающей требуемой характеристикой, включающий:
отведение части потока из выпускного отверстия (38) насоса (30) в охлаждающее устройство (32);
охлаждение части добываемого флюида из подводной скважины до температуры, при которой гидраты могут выпасть в осадок из добываемого флюида, для получения суспензии частиц гидратов и добываемого флюида;
перекачивание суспензии частиц гидратов и добываемого флюида в требуемое место;
определение, по меньшей мере, одной характеристики суспензии частиц гидратов и добываемого флюида, и
регулирование части потока, отводимого в охлаждающее устройство (32), на основе, по меньшей мере, одной характеристики суспензии частиц гидратов и добываемого флюида.
13. Способ по п.12, где по меньшей мере одна характеристика суспензии частиц гидратов и добываемого флюида представляет собой вязкость.
14. Способ по п.12, где по меньшей мере одна характеристика суспензии частиц гидратов и добываемого флюида представляет собой размер частиц гидратов.
RU2011102323/03A 2008-07-17 2009-07-14 Способ и система для переохлаждения добываемого углеводородного флюида для транспортировки RU2509205C2 (ru)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US8152508P 2008-07-17 2008-07-17
US61/081,525 2008-07-17
US12/502,256 2009-07-14
US12/502,256 US8256519B2 (en) 2008-07-17 2009-07-14 System and method for sub-cooling hydrocarbon production fluid for transport
PCT/US2009/050519 WO2010009110A2 (en) 2008-07-17 2009-07-14 System and method for sub-cooling hydrocarbon production fluid for transport

Publications (2)

Publication Number Publication Date
RU2011102323A RU2011102323A (ru) 2012-08-27
RU2509205C2 true RU2509205C2 (ru) 2014-03-10

Family

ID=41529266

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011102323/03A RU2509205C2 (ru) 2008-07-17 2009-07-14 Способ и система для переохлаждения добываемого углеводородного флюида для транспортировки

Country Status (5)

Country Link
US (1) US8256519B2 (ru)
EP (1) EP2315909B1 (ru)
BR (1) BRPI0911000B1 (ru)
RU (1) RU2509205C2 (ru)
WO (1) WO2010009110A2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2728094C1 (ru) * 2020-02-05 2020-07-28 Общество с ограниченной ответственностью "Газпром 335" Способ регулирования интенсивности подводного охлаждения и устройство для регулирования интенсивности подводного охлаждения

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8436219B2 (en) * 2006-03-15 2013-05-07 Exxonmobil Upstream Research Company Method of generating a non-plugging hydrate slurry
NO330761B1 (no) * 2007-06-01 2011-07-04 Fmc Kongsberg Subsea As Undersjoisk kjoleenhet og fremgangsmate for undersjoisk kjoling
BRPI0817188A2 (pt) * 2007-09-25 2015-03-17 Exxonmobil Upstream Res Co Método para controlar hidratos em um sistema de produção submarino
US9004177B2 (en) * 2009-01-16 2015-04-14 Shell Oil Company Subsea production systems and methods
WO2011109118A1 (en) 2010-03-05 2011-09-09 Exxonmobil Upstream Research Company System and method for creating flowable hydrate slurries in production fluids
US9127897B2 (en) * 2010-12-30 2015-09-08 Kellogg Brown & Root Llc Submersed heat exchanger
MX352243B (es) 2012-01-03 2017-11-15 Exxonmobil Upstream Res Co Metodo para produccion de hidrocarburos que usa cavernas.
US9896902B2 (en) 2012-05-25 2018-02-20 Exxonmobil Upstream Research Company Injecting a hydrate slurry into a reservoir
GB2503927B (en) 2012-07-13 2019-02-27 Framo Eng As Method and apparatus for removing hydrate plugs in a hydrocarbon production station
GB2509165B (en) 2012-12-21 2018-01-24 Subsea 7 Norway As Subsea processing of well fluids
GB2509167B (en) 2012-12-21 2015-09-02 Subsea 7 Norway As Subsea processing of well fluids
US9953907B2 (en) * 2013-01-29 2018-04-24 Taiwan Semiconductor Manufacturing Company, Ltd. PoP device
US8778738B1 (en) 2013-02-19 2014-07-15 Taiwan Semiconductor Manufacturing Company, Ltd. Packaged semiconductor devices and packaging devices and methods
EP2959249B1 (en) * 2013-02-22 2018-03-28 Exxonmobil Upstream Research Company Subwater heat exchanger
WO2014169932A1 (en) * 2013-04-15 2014-10-23 Statoil Petroleum As Dispersing solid particles carried in a fluid flow
US20160115775A1 (en) * 2014-10-22 2016-04-28 Michael W. Eaton Entraining Hydrate Particles in a Gas Stream
NO20141344A1 (no) 2014-11-10 2016-05-11 Vetco Gray Scandinavia As System for å muliggjøre kald brønnstrøm av voks- og hydratutsatt hydrokarbonfluid
US10046251B2 (en) 2014-11-17 2018-08-14 Exxonmobil Upstream Research Company Liquid collection system
WO2016195842A1 (en) * 2015-06-04 2016-12-08 Exxonmobil Upstream Research Company System and process for managing hydrate and wax deposition in hydrocarbon pipelines
CA3024564A1 (en) * 2016-05-27 2017-11-30 Jl Energy Transportation Inc. Integrated multi-functional pipeline system for delivery of chilled mixtures of natural gas and chilled mixtures of natural gas and ngls
CN112246781B (zh) * 2020-08-19 2022-02-01 厦门理工学院 一种激光清洗机的控温***
CN115341878B (zh) * 2022-07-08 2024-05-28 温州大学 井下高含蜡产液冷输装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA002732B1 (ru) * 1999-12-30 2002-08-29 Маратон Ойл Компани Получение газогидратной взвеси с помощью теплообменника с ожиженным слоем
EA007017B1 (ru) * 2002-11-12 2006-06-30 Синвент Ас Способ и система для транспортировки жидких углеводородов, содержащих парафин, асфальтены и/или другие осаждаемые твердые вещества
US20060175062A1 (en) * 2005-07-29 2006-08-10 Benson Robert A Undersea well product transport
WO2008056250A2 (en) * 2006-11-09 2008-05-15 Vetco Gray Scandinavia As Sub-cooled hydrocarbon production method and system including maceration of precipitates
RU2325208C2 (ru) * 2006-05-10 2008-05-27 Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный технологический институт (технический университет)" Способ обработки мелкозернистых и порошкообразных материалов жидкостями и аппарат для его реализации

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3384169A (en) * 1966-05-17 1968-05-21 Mobil Oil Corp Underwater low temperature separation unit
US3768559A (en) * 1972-06-30 1973-10-30 Texaco Inc Oil recovery process utilizing superheated gaseous mixtures
US3900041A (en) * 1974-05-13 1975-08-19 Marathon Oil Co Modification of particle hardness in waxy crude oil slurries
US3910299A (en) * 1974-11-15 1975-10-07 Marathon Oil Co Transportation of waxy hydrocarbon mixture as a slurry
US4697426A (en) * 1986-05-29 1987-10-06 Shell Western E&P Inc. Choke cooling waxy oil
US5096461A (en) 1989-03-31 1992-03-17 Union Oil Company Of California Separable coal-oil slurries having controlled sedimentation properties suitable for transport by pipeline
US5676848A (en) * 1992-02-18 1997-10-14 Benson; Robert A. Method of separating employing a continuous re-entrant lumen with wall conditioning elements
GB9302096D0 (en) 1993-02-03 1993-03-24 Century Associates Limited Pipeline pig control apparatus
NO304382B1 (no) 1996-09-06 1998-12-07 Norske Stats Oljeselskap FremgangsmÕte for Õ °ke transporterbarheten av en tungolje
US6227039B1 (en) * 1998-01-06 2001-05-08 Moshe Te'eni System and method for controlling concrete production
US6070417A (en) * 1999-03-29 2000-06-06 Benson; Robert A. Method for making slurry
BR0012365A (pt) * 1999-07-12 2003-07-15 Halliburton Energy Serv Inc Processo para o tratamento de correntes quentes/mornas de poço de hidrocarbonetos com pressão relativamente elevada, e, aparelho de tratamento para precipitar um sólido dissolvido em um óleo
US6703534B2 (en) * 1999-12-30 2004-03-09 Marathon Oil Company Transport of a wet gas through a subsea pipeline
GB0112103D0 (en) 2001-05-17 2001-07-11 Alpha Thames Ltd Fluid transportation system
US6789938B2 (en) * 2001-08-29 2004-09-14 Conagra Grocery Products Company Device and method for removing build-up on measurement gauges
US6772840B2 (en) * 2001-09-21 2004-08-10 Halliburton Energy Services, Inc. Methods and apparatus for a subsea tie back
EP1353038A1 (en) * 2002-04-08 2003-10-15 Cooper Cameron Corporation Subsea process assembly
US20040235675A1 (en) * 2003-05-21 2004-11-25 Schlumberger Technology Corp. Oilfield treatment fluid stabilizer
GB0424387D0 (en) * 2004-11-04 2004-12-08 Univ Heriot Watt Novel hydrate based systems
WO2006068929A1 (en) 2004-12-20 2006-06-29 Shell Internationale Research Maatschappij B.V. Method and apparatus for a cold flow subsea hydrocarbon production system
AU2006309322B2 (en) * 2005-01-12 2009-07-09 Shell Internationale Research Maatschappij B.V. Methods for transporting hydrocarbons
US8323003B2 (en) * 2005-03-10 2012-12-04 Hydril Usa Manufacturing Llc Pressure driven pumping system
US20090214302A1 (en) * 2005-04-20 2009-08-27 Csir Control of slurry flow
US7597148B2 (en) * 2005-05-13 2009-10-06 Baker Hughes Incorporated Formation and control of gas hydrates
US20070276169A1 (en) * 2005-11-16 2007-11-29 Heriot-Watt University Methods for monitoring hydrate inhibition including an early warning system for hydrate formation
JP5203213B2 (ja) * 2005-11-28 2013-06-05 ガラ・インダストリーズ・インコーポレイテッド 造粒処理を制御する装置及び方法
US7407915B2 (en) * 2005-11-29 2008-08-05 Baker Hughes Incorporated Polymer hydration method using microemulsions
US8436219B2 (en) * 2006-03-15 2013-05-07 Exxonmobil Upstream Research Company Method of generating a non-plugging hydrate slurry
NZ571509A (en) * 2006-04-21 2012-06-29 Shell Int Research High strength metal alloy composition
NO325582B1 (no) 2006-10-27 2008-06-23 Norsk Hydro As Undersjoisk prosessystem

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA002732B1 (ru) * 1999-12-30 2002-08-29 Маратон Ойл Компани Получение газогидратной взвеси с помощью теплообменника с ожиженным слоем
EA007017B1 (ru) * 2002-11-12 2006-06-30 Синвент Ас Способ и система для транспортировки жидких углеводородов, содержащих парафин, асфальтены и/или другие осаждаемые твердые вещества
US20060175062A1 (en) * 2005-07-29 2006-08-10 Benson Robert A Undersea well product transport
RU2325208C2 (ru) * 2006-05-10 2008-05-27 Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный технологический институт (технический университет)" Способ обработки мелкозернистых и порошкообразных материалов жидкостями и аппарат для его реализации
WO2008056250A2 (en) * 2006-11-09 2008-05-15 Vetco Gray Scandinavia As Sub-cooled hydrocarbon production method and system including maceration of precipitates

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2728094C1 (ru) * 2020-02-05 2020-07-28 Общество с ограниченной ответственностью "Газпром 335" Способ регулирования интенсивности подводного охлаждения и устройство для регулирования интенсивности подводного охлаждения

Also Published As

Publication number Publication date
WO2010009110A3 (en) 2010-03-11
WO2010009110A2 (en) 2010-01-21
US20100012325A1 (en) 2010-01-21
RU2011102323A (ru) 2012-08-27
BRPI0911000A2 (pt) 2016-07-26
EP2315909A2 (en) 2011-05-04
US8256519B2 (en) 2012-09-04
BRPI0911000B1 (pt) 2019-10-22
EP2315909B1 (en) 2019-12-04

Similar Documents

Publication Publication Date Title
RU2509205C2 (ru) Способ и система для переохлаждения добываемого углеводородного флюида для транспортировки
Chen et al. Techniques for measuring wax thickness during single and multiphase flow
CN103675213B (zh) 一种模拟油气管道流体流动安全评价装置
AU2009202054B2 (en) Subsea Compression System and Method
Li et al. A study of hydrate plug formation in a subsea natural gas pipeline using a novel high-pressure flow loop
Oudeman Sand transport and deposition in horizontal multiphase trunklines of subsea satellite developments
EA018505B1 (ru) Способ удаления парафина и измерения толщины парафина
Jordan et al. Deployment, Monitoring and Optimisation of a Combined Scale/Corrosion Inhibitor within a Subsea Facility in the North Sea Basin
Huang et al. Experimental investigation of hydrate formation in water-dominated pipeline and its influential factors
Mahboobah et al. Innovative Upscaling First HT/HS Polymer Injectivity Tests Towards Multi-Well Pilots
Subramani et al. Sand fines erosion and asset integrity management
Nikonov et al. Study of the submersible sand separator in the field of centrifugal forces for increasing the artificial lift efficiency
US20170115143A1 (en) Examination process for the in situ determination of rate of feeding an inhibitor into a gas pipeline for preventing hydrate formation
Venkatesan et al. Wax deposition testing in a large-scale flow loop
US20230243476A1 (en) Apparatus and method for precipitation of solids in hydrocarbon flow systems
Lee et al. Monitoring and detection of paraffin wax deposition process based on ultrasonic analysis
Dzhuraev Investigation of Hydrate Deposition Behavior in a Gas-Dominant System Under Pseudo-One-Pass Conditions
Dholabhal et al. Evaluation of gas hydrate formation and deposition in condensate pipelines: pilot plant studies
Vuppu et al. The effect of temperature in sweet corrosion of horizontal multiphase carbon steel pipelines
Shirazi et al. Sand settling and locations of high erosion in subsea production system
Hall et al. Deepwater Multiphase Liquid Sampling Using Multiple Application Reinjection System (MARS)
Feasey et al. Development and Deployment of Improved Performance" Green" Combined Scale/Corrosion Inhibitor for Subsea and Topside Application, North Sea Basin
US20230204309A1 (en) Method, system and apparatus for hydrocarbon flow system fluid cooling
Jarragh et al. A Case Study on Carbon Dioxide and Microbiological Corrosion Issues in Oil Producing Well Flowlines
US20210230976A1 (en) Systems and methods for thermal management of subsea conduits using an interconnecting conduit having a controllable annular section