RU2505341C1 - Способ очистки газов - Google Patents

Способ очистки газов Download PDF

Info

Publication number
RU2505341C1
RU2505341C1 RU2012124943/05A RU2012124943A RU2505341C1 RU 2505341 C1 RU2505341 C1 RU 2505341C1 RU 2012124943/05 A RU2012124943/05 A RU 2012124943/05A RU 2012124943 A RU2012124943 A RU 2012124943A RU 2505341 C1 RU2505341 C1 RU 2505341C1
Authority
RU
Russia
Prior art keywords
gas
condensate
cooling
cooled
gas stream
Prior art date
Application number
RU2012124943/05A
Other languages
English (en)
Other versions
RU2012124943A (ru
Inventor
Рафик Наилович Хамидуллин
Original Assignee
Общество с ограниченной ответственностью "НПО Пылеочистка"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "НПО Пылеочистка" filed Critical Общество с ограниченной ответственностью "НПО Пылеочистка"
Priority to RU2012124943/05A priority Critical patent/RU2505341C1/ru
Priority to EA201590003A priority patent/EA201590003A1/ru
Priority to PCT/RU2013/000459 priority patent/WO2013187802A2/ru
Priority to CN201380042701.5A priority patent/CN104540574A/zh
Priority to US14/406,986 priority patent/US20150231554A1/en
Priority to EP13803846.8A priority patent/EP2870989A4/en
Publication of RU2012124943A publication Critical patent/RU2012124943A/ru
Application granted granted Critical
Publication of RU2505341C1 publication Critical patent/RU2505341C1/ru
Priority to IN352DEN2015 priority patent/IN2015DN00352A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D47/00Separating dispersed particles from gases, air or vapours by liquid as separating agent
    • B01D47/05Separating dispersed particles from gases, air or vapours by liquid as separating agent by condensation of the separating agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/002Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by condensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1406Multiple stage absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/265Drying gases or vapours by refrigeration (condensation)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • F24F2013/228Treatment of condensate, e.g. sterilising
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1405Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification in which the humidity of the air is exclusively affected by contact with the evaporator of a closed-circuit cooling system or heat pump circuit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Gas Separation By Absorption (AREA)
  • Treating Waste Gases (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Drying Of Gases (AREA)

Abstract

Изобретение относится к способам для проведения тепло-массобменных процессов для системы газ-жидкость, в том числе для кондиционирования воздуха и его осушки, очистки газов от примесей других газов, паров жидкости и дисперсных твердых частиц, и может быть использовано в системах кондиционирования воздуха, санитарной очистки газовых выбросов, для подготовки природных или попутных нефтяных газов перед их использованием или транспортом. Способ очистки газов включает охлаждение газового потока, образование конденсата, выделение его с абсорбированными газовыми и механическими примесями. В качестве холодного теплоносителя, непосредственно контактирующего с газовым потоком, используется ранее образованный конденсат из очищаемого газового потока, охлажденный до температуры ниже точки росы газового потока. Перед взаимодействием разделяемого газа и охлажденного конденсата вводят часть ранее полученного конденсата без его охлаждения с целью насыщения паром газовой фазы и последующего увеличения количества конденсата на жидких или твердых частицах для повышения эффективности их сепарации. Очистку газа проводят в несколько этапов с целью выделения на каждом этапе отдельного компонента или групп компонентов газовой фазы. Технический результат: разработка простого, эффективного и надежного способа очистки газов от газовых, жидких и твердых примесей, снижение материалоемкости оборудования и эксплуатационных затрат. 2 з.п. ф-лы, 1 табл., 2 ил.

Description

Изобретение предназначено для проведения тепло-массобменных процессов для системы газ-жидкость, в том числе для кондиционирования воздуха и его осушки, очистки газов от примесей других газов, паров жидкости и дисперсных твердых частиц. Изобретение может быть использовано в системах кондиционирования воздуха, санитарной очистки газовых выбросов, для подготовки природных или попутных нефтяных газов перед их использованием или транспортом (осушка, извлечение высших углеводородов, сероводорода, двуокиси углерода и т.д.). Областью применения данного изобретения является нефтегазопереработка, теплоэнергетика, металлургия, химическая, строительная и другие отрасли промышленности.
Известен метод осушки нефтяного газа, заключающийся в том, что в охлаждаемый газовый поток подается 70-80%-ный водный раствор этиленгликоля (в качестве ингибитора гидратообразования) (Анализ работы установок осушки нефтяного газа на западносибирских ГПЗ. Плужников Г.С.Очистка и осушка нефтяных газов и защита оборудования от коррозии. (Сборник научных трудов). М., ВНИИОЭНГ, 1984.). При охлаждении газа большая часть водяных паров конденсируется, в результате их содержание в газе многократно уменьшается (в 30-200 раз в зависимости от температуры охлаждения). Водный раствор подают в мелкодисперсном состоянии непосредственно на трубные решетки теплообменников и пропановых холодильников в область межтрубного пространства.
Недостатком данного способа является сложность аппаратурного оформления процесса, слабая степень осушки и охлаждения газа за счет низкой эффективности теплообмена вследствие наличия термического сопротивления пленки раствора этиленгликоля вместе с образовавшимся конденсатом и разделяющей твердой стенки теплообменного аппарата.
Известен способ очистки газов от газового конденсата, включающий асборбцию жидким абсорбентом в виде собственного газового конденсата, завихрение газового потока в вихревой трубе с одновременной конденсацией абсорбента в ней, отвод очищенного газа и конденсата. Абсорбцию ведут при пониженном давлении, обогащенный собственным газовым конденсатом, поток газа делят на два потока, один из которых завихряют в вихревой трубе с одновременным его переохлаждением, очисткой и отводом очищенного газа. При этом другой газовый поток охлаждают и сепарируют, а отсепарированный газ подают в общий поток очищенного газа (Описание к патенту на изобретение РФ №2179880 «Способ очистки газов и устройство для его осуществления. Малышев А.И.; Мокшин В.И.; Малышева Е.А. и т.д., ЗАО «ЛУКОЙЛ-ПЕРМЬ», 27.02.2002).
Недостатком данного способа является необходимость больших энергозатрат на создания большого перепада давления, скоростей для реализации данного процесса. Для конденсации разделяемых компонентов из газового потока необходимы определенные условия (пересыщение, наличие центров конденсации и т.д.), которые снижают эффективность очистки газов и увеличивают время проведения процесса.
Наиболее близким к предлагаемому способу очистки газов (прототипом) является способ обработки газа (Описание изобретения к авторскому свидетельству №352094, 21.09.1972, Бюл. №28. Н.В.Царенко, В.М.Минаковский, В.А.Антоненко. Способ обработки газов.). Способ заключается в обработке газа посредством охлаждения и осушки его при пропуске через псевдоожжиженный слой твердых частиц вещества, смачиваемого жидкостью, пары которой удаляют из газа, где температуру твердых частиц поддерживают ниже температуры замерзания жидкости.
Недостатком прототипа является сложность процесса его автоматизации и регулирования, наличие промежуточного теплоносителя в виде твердой фазы, создающие определенные сложности с его охлаждением, дозированием и отведением.
Задачей данного изобретения является разработка простого, эффективного и надежного способа очистки газов от газовых, жидких и твердых примесей, снижение материалоемкости оборудования и эксплуатационных затрат.
Поставленная задача достигается тем, что при очистке газов, включающей охлаждение газового потока, образование конденсата, выделение его с абсорбированными газовыми и механическими примесями в качестве холодного теплоносителя, используется ранее образованный конденсат из очищаемого газового потока, охлажденный до температуры ниже точки росы газового потока. Перед взаимодействием разделяемого газа и охлажденного конденсата вводят часть ранее полученного конденсата без его охлаждения с целью насыщения паром газовой фазы и последующего увеличения количества конденсата на жидких или твердых частицах для повышения эффективности их сепарации. В конденсат, используемый в качестве теплоносителя, добавляются различные компоненты для придания ему определенных физико-химических свойств. Очистку газа проводят в несколько этапов с целью выделения на каждом этапе отдельного компонента или групп компонентов газовой фазы.
Способ реализуется следующим образом.
Очищаемый газ и холодный конденсат подаются в смеситель 1 (см. фиг.1), где происходит тепло- и массообмен между потоками. В результате данного взаимодействия очищаемый газ охлаждается до условий пересыщения по извлекаемым газовым компонентам, а газовые примеси конденсируются на поверхности холодного конденсата. Далее газовый поток сепарируется от капельной жидкости в сепараторе 2, в случае необходимости подогревается в подогревателе 3 (например, до первоначальной температуры), и в очищенном виде направляется далее по своему назначению. Жидкость, представляющая собой смесь исходного холодного конденсата, сконденсированных парообразных и абсорбированных газовых примесей, отделяется от газового потока в сепараторе 2, поступает в емкость 4, охлаждается в холодильнике 5 (за счет внешнего источника холода) и, далее, вновь поступает в начало процесса на взаимодействие с газовым потоком. Излишки конденсата удаляются из емкости 4 и направляются далее по своему назначению или на переработку и утилизацию. Процесс очистки газа и выделения конденсата ведут непрерывно, замкнутым циклом.
Конденсат в процессе своего взаимодействия с газовым потоком выступает в роли центра конденсации для улавливаемых парообразных примесей, что способствует ускорению процесса за счет уменьшения времени образования центров конденсации.
Конденсат является абсорбентом для физической абсорбции других газовых примесей, что позволяет извлекать из очищаемого газового потока компоненты, точка росы (или температура конденсации) которых значительно ниже температуры проведения процесса. Данный процесс ускоряется еще тем, что при низких температурах коэффицент распределения по закону Генри, характеризующий содержание поглощенного компонента в жидкости с равновесной его концентрацией в газе, снижается, что способствует увеличению количества поглощенного компонента в жидкости, и, в итоге, степени извлечения его из газовой фазы.
Данный процесс позволяет также осуществлять процесс улавливания твердых примесей газового потока. При взаимодействии жидкого конденсата с очищаемым газовым потоком твердые примеси осаждаются на поверхности жидкости за счет сил инерции частиц и турбулентной диффузии. Ускорению процесса очистки от твердых примесей способствует процесс конденсации, при котором частицы пыли также являются центрами конденсации для улавливаемых паров. К тому же в процессе взаимодействия поверхность исходной жидкости после захвата твердых частиц за счет конденсирующихся паров хорошо обновляется, что способствует интенсификации процесса очистки газов от твердых частиц. При очистке газов от твердых частиц, жидкость, с уловленными твердыми примесями при отделении от газового потока, также сепарируется и от них.
Для увеличения количества паров (если возможно при данных условиях), которые конденсируются в процессе взаимодействия очищаемого газа и холодного конденсата, часть ранее выделенного конденсата направляют на смешение с газовым потоком перед его охлаждением. Увеличение количества паров в газе способствует увеличению количества конденсата на поверхности твердых и жидких примесей в процессе охлаждения (при неизменном количестве отводимого тепла), что позволяет за счет большей инерции улавливаемых частиц эффективней их сепарировать.
Если физико-химические свойства жидкой фазы в условиях проведения процесса не позволяют эффективно взаимодействовать с газовой фазой (высокие значения вязкости, коррозионной активности, изменения фазового состояния примесей, выделения твердой фазы и т.д.), то в конденсат добавляют различные компоненты, обеспечивающие ему необходимые свойства.
С целью разделения получаемого конденсата на составляющие компоненты процесс очистки газа проводят в несколько этапов. Условия проведения процесса по этапам могут отличаться температурой и давлением, в зависимости от условий образования конденсата того или иного компонента очищаемого газового потока. На каждом этапе конденсат, выделяемый и используемый заново для взаимодействия с газовым потоком, имеет определенный состав, соответствующий условиям проведения процесса.
Реализация заявленного способа очистки газов поясняется схемой, изображенной на фиг.1.
Пример реализации способа представлен на процессе выделения паров воды из воздуха (охлаждение и осушка влажного воздуха).
Начальные условия: температура воздуха на входе 35°С, влажность 40%, влагосодержание 13,89 г/кг, температура точки росы 19,35°С. Температура воздуха на выходе 17°С, влажность 80%, влагосодержание 9,52 г/кг. Расход воздуха 500 кг/ч (435 м3/ч), температура подаваемого конденсата 8,52°С. Потерей тепла пренебрегаем, эффективность взаимодействия газа и жидкости принимается 100%.
Графическая иллюстрация примера представлена на I-d диаграмме Рамзина, фиг.2, параметры начальных, промежуточных и конечных состояний влажного воздуха рассматриваемого процесса представлены в таблице.
Таблица
параметров процесса осушки и охлаждения влажного воздуха.
№п/п Наименование параметра Номер и наименование точки
I.Исход-ное состояние Iа. Охлаждение воздуха холодным конденсатом до температуры точки росы Iб. Охлаждение воздуха водой до температуры мокрого термометра II. Охлаждение и осушка воздуха на линии насыще-ния III. Нагрев воздуха
1 Температура сухого термометра, °С 35 19,35 23,85 13,52 17
2 Относитель-ная влажность, % 40 100 100 100 80
3 Энтальпия, кДж/кг 70,82 54,68 70,83 37,63 41,19
4 Влагосодер-жание, г/кг 13,89 13,89 18,41 9,52 9,52
5 Температура мокрого термометра, °С 23,89 23,85 23,85 13,52 14,89
6 Температура точки росы, °С 19,35 19,35 23,85 13,52 13,52
7 Парциальное давление паров воды, мм рт.ст. 16,6 16,6 21,85 11,45 11,45
Взаимодействие воздуха с холодным конденсатом (водой) осуществляется по схеме I-Ia-II-III. Исходные условия соответствуют точке I. Воздух при начальных условиях поступает в смеситель 1 (фиг.1), где взаимодействует с холодным конденсатом. Условия после данного взаимодействия соответствуют точке II. Промежуточному состоянию взаимодействия в смесителе воздуха и холодного конденсата, при котором воздух охлаждается до температуры точки росы, соответствует точка Iа (на схеме не показана). Поскольку температура конденсата меньше точки росы, то переход конденсата в газовую фазу в общем виде исключен, поэтому при данном взаимодействии происходит только охлаждение газового потока до точки росы, а после этого идет охлаждение воздуха одновременно с конденсацией паров воды. Далее, при достижения необходимых параметров по влагосодержанию (точка II), поток отделяется от жидкой фазы, при необходимости подогревается (точка III) и далее транспортируется по своему назначению.
В случае если перед взаимодействием разделяемого газа и охлажденного конденсата вводят на испарение ранее полученный конденсат без его охлаждения, то процесс идет по схеме I-Iб-II-III, фиг.2. Точка Iб соответствует температуре мокрого термометра для условий точки I. При данном варианте взаимодействия воздух охлаждается до температуры мокрого термометра за счет испарения воды, при этом увеличивается доля парообразной воды в воздухе (см. Таблицу, точка Iб) и, в дальнейшем, количество сконденсировавшихся паров воды на жидких и твердых примесях, что упрощает дальнейшую их сепарацию. Количество отведенной теплоты от газовой фазы по данному варианту аналогично количеству теплоты по варианту взаимодействия воздуха с холодным конденсатом, схема I-Ia-II-III.
В рассматриваемом примере, как и в предлагаемом способе, в зависимости от теплового и материального баланса отдельных участков взаимодействия газа и жидкости, а также доли направляемого неохлажденного конденсата на испарение, в независимости от схемы взаимодействия, положение промежуточных точек Iа и Iб (фиг.2) может находиться на любом другом месте, ограниченном вершинами треугольника с точками I-Ia-Iб. Однако при увеличении отвода энергии от газового потока, свыше разницы значений энтальпий точек I и Iа, процесс будет идти по лини Ia-II и далее во всех случаях одинаково вдоль линии насыщения.
В рассматриваемом примере при расходе воздуха 500 кг/ч расход тепла, отводимого от воздуха, составит 4,61 кВт, в том числе 0,49 кВт возвращается обратно на нагрев воздуха (от точки II до точки III). Расход воды составит 0,794 м3/ч (включая 2,185 л/ч извлеченного конденсата), изменение ее температуры в ходе взаимодействия с воздухом 5°С (с 8,52 до 13,52 -температура точки росы воздуха на выходе). При необходимости в конце процесса очистки температуру воздуха (точка III) можно поднять до первоначального значения (точка I).
Преимуществами данного изобретения являются упрощение процесса очистки газов, снижение энергозатрат и материалоемкости аппаратурного оформления процесса.
При данном способе очистки возможно дополнительно эффективно очищать газ от твердых примесей, что позволяет комплексно осуществлять очистку газов от различных примесей.
Предлагаемый способ позволяет точно поддерживать и автоматизировать параметры процесса очистки (количество извлекаемых парообразных, дисперсных и абсорбированных газовых примесей) за счет регулирования температуры и количества подаваемого конденсата.
Данный способ позволяет избежать значительных потерь давления газового потока на осуществление процесса очистки за счет снижения температуры газа внешним источником охлаждения, в отличие от охлаждения газа за счет его дросселирования.
Предложенное техническое решение названо заявителем процессом «Очистка газов холодным конденсатом».

Claims (3)

1. Способ очистки газов, включающий охлаждение газового потока, образование конденсата, выделение его с абсорбированными газовыми и механическими примесями, отличающийся тем, что в качестве холодного теплоносителя, непосредственно контактирующего с газовым потоком, используется ранее образованный конденсат из очищаемого газового потока, охлажденный до температуры ниже точки росы газового потока.
2. Способ по п.1, отличающийся тем, что перед взаимодействием разделяемого газа и охлажденного конденсата вводят часть ранее полученного конденсата без его охлаждения с целью насыщения паром газовой фазы и последующего увеличения количества конденсата на жидких или твердых частицах для повышения эффективности их сепарации.
3. Способ по п.1, отличающийся тем, что очистку газа проводят в несколько этапов с целью выделения на каждом этапе отдельного компонента или групп компонентов газовой фазы.
RU2012124943/05A 2012-06-15 2012-06-15 Способ очистки газов RU2505341C1 (ru)

Priority Applications (7)

Application Number Priority Date Filing Date Title
RU2012124943/05A RU2505341C1 (ru) 2012-06-15 2012-06-15 Способ очистки газов
EA201590003A EA201590003A1 (ru) 2012-06-15 2013-06-05 Способ очистки газов
PCT/RU2013/000459 WO2013187802A2 (ru) 2012-06-15 2013-06-05 Способ очистки газов
CN201380042701.5A CN104540574A (zh) 2012-06-15 2013-06-05 气体净化方法
US14/406,986 US20150231554A1 (en) 2012-06-15 2013-06-05 Gas purification method
EP13803846.8A EP2870989A4 (en) 2012-06-15 2013-06-05 PROCESS FOR PURIFYING GAS
IN352DEN2015 IN2015DN00352A (ru) 2012-06-15 2015-01-14

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012124943/05A RU2505341C1 (ru) 2012-06-15 2012-06-15 Способ очистки газов

Publications (2)

Publication Number Publication Date
RU2012124943A RU2012124943A (ru) 2013-12-27
RU2505341C1 true RU2505341C1 (ru) 2014-01-27

Family

ID=49758827

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012124943/05A RU2505341C1 (ru) 2012-06-15 2012-06-15 Способ очистки газов

Country Status (7)

Country Link
US (1) US20150231554A1 (ru)
EP (1) EP2870989A4 (ru)
CN (1) CN104540574A (ru)
EA (1) EA201590003A1 (ru)
IN (1) IN2015DN00352A (ru)
RU (1) RU2505341C1 (ru)
WO (1) WO2013187802A2 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU352094A1 (ru) * Н. В. Царенко, В. М. Минаковский , В. А. Антоненко Способ обработки газа
RU1790983C (ru) * 1990-09-04 1993-01-30 Казахский Химико-Технологический Институт Способ очистки газов от паров органических растворителей
RU2139751C1 (ru) * 1997-11-26 1999-10-20 Открытое акционерное общество "Лукойл-Пермнефть" Способ очистки газов от газового конденсата и устройство для его осуществления
US20080112869A1 (en) * 2003-06-30 2008-05-15 Honeywell International Inc. Direct contact liquid air contaminant control system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3132292C2 (de) * 1981-08-14 1986-05-07 Lohmann Gmbh & Co Kg, 5450 Neuwied Verfahren und Anlage zur Entfernung von Verunreinigungen aus einem Lösungsmitteldämpfe enthaltenden Gasstrom
US4696679A (en) * 1985-10-23 1987-09-29 Foster Wheeler Usa Corporation Method for cleaning gas produced from solid carbonaceous material in a two-stage gas producer
DE4233685C2 (de) * 1992-10-02 1998-02-12 Ver Energiewerke Ag Verfahren und Anordnung zur Energienutzung von Rauchgasen in kohlegefeuerten Kraftwerken
FR2717248B1 (fr) * 1994-03-14 1996-05-31 Speic Procédé et installation d'épuration de fumées.
FR2717297B1 (fr) * 1994-03-14 1996-05-31 Speic Procédé et installation d'épuration de fumées issues de l'incinération de déchets faiblement radioactifs.
RU2179880C1 (ru) 2001-01-09 2002-02-27 Закрытое акционерное общество "ЛУКОЙЛ-Пермь" Способ очистки газов от газового конденсата и устройство для его осуществления
RU2217221C2 (ru) * 2001-06-27 2003-11-27 Курский государственный технический университет Способ и устройство для выделения двуокиси углерода из дымовых газов
US20090241814A1 (en) * 2005-09-27 2009-10-01 Dall Energy Holding Aps Method and System for Heating of Water Based on Hot Gases
US8518148B2 (en) * 2010-07-12 2013-08-27 Babcock & Wilcox Power Generation Group, Inc. Integrated flue gas dehumidification and wet cooling tower system
CN103357191B (zh) * 2012-03-31 2015-06-17 承源环境科技企业有限公司 挥发性有机物处理方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU352094A1 (ru) * Н. В. Царенко, В. М. Минаковский , В. А. Антоненко Способ обработки газа
RU1790983C (ru) * 1990-09-04 1993-01-30 Казахский Химико-Технологический Институт Способ очистки газов от паров органических растворителей
RU2139751C1 (ru) * 1997-11-26 1999-10-20 Открытое акционерное общество "Лукойл-Пермнефть" Способ очистки газов от газового конденсата и устройство для его осуществления
US20080112869A1 (en) * 2003-06-30 2008-05-15 Honeywell International Inc. Direct contact liquid air contaminant control system

Also Published As

Publication number Publication date
EA201590003A1 (ru) 2015-04-30
EP2870989A4 (en) 2016-03-30
IN2015DN00352A (ru) 2015-06-12
WO2013187802A2 (ru) 2013-12-19
US20150231554A1 (en) 2015-08-20
CN104540574A (zh) 2015-04-22
EP2870989A2 (en) 2015-05-13
RU2012124943A (ru) 2013-12-27
WO2013187802A3 (ru) 2014-03-27

Similar Documents

Publication Publication Date Title
US10294123B2 (en) Humidification-dehumidification systems and methods at low top brine temperatures
CN108147608B (zh) 一种利用压缩空气和热泵处理电厂含盐废水的多效蒸发结晶***及方法
US9945607B2 (en) Cryogenic CO2 separation using a refrigeration system
US9447996B2 (en) Carbon dioxide removal system using absorption refrigeration
RU2460759C1 (ru) Способ подготовки углеводородного газа
RU2014128347A (ru) Способ удаления кислотных газов из природного газа
US3518812A (en) Process for removing dust from hot dust-laden gases
RU2007147047A (ru) Способ очистки воздуха
CN1408647A (zh) 盐水脱盐产生淡水的方法
RU2505341C1 (ru) Способ очистки газов
CN203754456U (zh) 一种氮气循环的低温蒸发浓缩装置
CN206027114U (zh) 加湿除湿***
RU2272972C2 (ru) Способ низкотемпературного разделения попутных нефтяных газов (варианты)
US20190031531A1 (en) Temperature-Matched Influent Injection in Humidifier Systems and Associated Methods
CN207877298U (zh) 一种氟化氢多相气化分离回收装置
RU2659991C2 (ru) Способ абсорбционного выделения диоксида углерода из газовых смесей абсорбентами, содержащими водные растворы аминов
CN108190838A (zh) 一种氟化氢多相气化分离回收***
WO2014194350A1 (en) Cooling tower system
RU2569555C2 (ru) Способ очистки воздуха
RU2569553C2 (ru) Способ очистки воздуха в разнотемпературной конденсационной камере
TWI734084B (zh) 初級液氨純化為高純度液氨的方法
RU151189U1 (ru) Установка для абсорбционного выделения диоксида углерода из газовых смесей абсорбентами, содержащими амины
CN207445617U (zh) Mvr蒸发器
RU2458723C1 (ru) Тепломассообменный аппарат для подогрева и выпаривания жидких продуктов
RU2052742C1 (ru) Способ очистки парогазовой смеси от паров растворителей

Legal Events

Date Code Title Description
QB4A Licence on use of patent

Free format text: LICENCE

Effective date: 20150420

QB4A Licence on use of patent

Free format text: LICENCE FORMERLY AGREED ON 20180418

Effective date: 20180418