RU2502951C1 - Устройство контроля положения объекта нано- и субнанометровой точности - Google Patents

Устройство контроля положения объекта нано- и субнанометровой точности Download PDF

Info

Publication number
RU2502951C1
RU2502951C1 RU2012125012/28A RU2012125012A RU2502951C1 RU 2502951 C1 RU2502951 C1 RU 2502951C1 RU 2012125012/28 A RU2012125012/28 A RU 2012125012/28A RU 2012125012 A RU2012125012 A RU 2012125012A RU 2502951 C1 RU2502951 C1 RU 2502951C1
Authority
RU
Russia
Prior art keywords
plate
inclined surface
sections
monochromatic radiation
plates
Prior art date
Application number
RU2012125012/28A
Other languages
English (en)
Inventor
Илья Емельянович Кожеватов
Елена Хусаиновна Куликова
Евгений Антонович Руденчик
Николай Петрович Черагин
Original Assignee
федеральное государственное бюджетное научное учреждение "Научно-исследовательский радиофизический институт"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное бюджетное научное учреждение "Научно-исследовательский радиофизический институт" filed Critical федеральное государственное бюджетное научное учреждение "Научно-исследовательский радиофизический институт"
Priority to RU2012125012/28A priority Critical patent/RU2502951C1/ru
Application granted granted Critical
Publication of RU2502951C1 publication Critical patent/RU2502951C1/ru

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

Устройство содержит источник монохроматического излучения, выход которого совмещен с входом одномодового световода, формирующего на выходе точечный источник монохроматического излучения, совмещенный с передним фокусом оптической системы, формирующей параллельный пучок света. Две прозрачные пластины установлены перпендикулярно оптической оси и параллельно друг другу. По периметру первой пластины на стороне, обращенной ко второй пластине, под углом ~120° друг к другу расположены три участка с наклонными к плоскости первой пластины поверхностями. За второй пластиной помещены оптически сопряженные с участками наклонной поверхности три линейных матричных фотоприемника, выходы которых подключены к компьютеру. Одна из пластин жестко закреплена на объекте контроля. Участки наклонной поверхности и поверхность второй пластины, обращенные друг к другу, выполнены с высоко отражающим покрытием, участки наклонной поверхности выполнены с перепадом высот от центра первой пластины к ее краю на величину, равную, как минимум, половине длины волны монохроматического излучения. Длины участков наклонной поверхности соответствуют длине рабочих окон линейных матричных фотоприемников. Технический результат - повышение точности определения положения одного объекта относительно другого до 0,01 нм за меньшее время (до 1 мксек) в большем диапазоне расстояний между объектами. 4 ил.

Description

Изобретение относится к прецизионной измерительной технике, преимущественно к области оптических средств (устройств) прецизионного контроля положения (позиционирования) одного объекта относительно другого. Оно может найти применение в научных исследованиях, промышленности, в технологиях изготовления точных элементов и узлов, в системах автоматического управления элементами устройств и инструментов, в технологическом оборудовании.
Известен способ измерения положения объекта, описанный в патенте на изобретение RU 2146039, в котором для измерения положения объекта устанавливают, по крайней мере, одну световую марку на поверхности объекта и определяют пространственные координаты этой световой марки по положению ее изображения на координатно-чувствительном фотоприемном устройстве оптической камеры, при этом в качестве световой марки используют импульсный световой излучатель, фаза и частота которого синхронизированы с запуском фотоприемного устройства оптической камеры.
Однако, точность измерения с применением этого способа, как правило, не превышает длины волны (~ 600 нм).
По сравнению с измерителем, в котором используется вышеуказанный способ, работающий по принципу построения изображения, большей точностью обладает измеритель, работающий на интерференционном принципе, как, например, интерферометр для измерения перемещений, описанный в патенте на изобретение RU 2025655, в котором одночастотный лазер генерирует линейно поляризованное излучение, которое через последовательно расположенные по ходу луча лазера телескопическую систему, светоделитель, два уголковых отражателя, один из которых размещен в измерительном плече, а другой - в опорном плече, четвертволновую пластину, расположенную в измерительном плече, и два поляризатора поступает в фотоэлектрическую систему обработки квадратурных интерференционных сигналов, образующихся в результате того, что поляризаторы установлены так, что их главные оси пропускания взаимно перпендикулярны и составляют угол 45°±1° к направлению поляризации излучения лазера.
Однако в указанном интерферометре для измерения перемещений используются интерферометры типа Майкельсона, в которых разнесенность плеч: опорного и измерительного, зависимость светоделителя от температуры, а также отсутствие разделения сигналов по фазе и амплитуде интерферограммы не дает возможность обеспечения нано и субнанометровой точности измерений.
Кроме этого, использование в устройстве уголкового отражателя не позволяет получать информацию об ориентации в пространстве перемещаемого объекта, а применение поляризационной оптики приводит к сложности и дороговизне устройства.
Известно оптическое устройство для измерения перемещений объектов контроля, основанное на применении интерференционного метода, как, например RU 2169348, содержащее оптически связанные и последовательно размещенные точечный источник когерентного оптического излучения, оптическую систему, светоделитель, отражатель, закрепленный на поверхности объекта контроля, и экран с установленными на нем фотоприемными устройствами. При этом светоделитель и отражатель расположены относительно друг друга под углом. Полученная при совмещении опорного и объектного пучков интерференционная картина, представляющая собой совокупность колец различной интенсивности, проецируется на экран, а фотоприемные устройства (например, фотодиоды) установлены в кольцах интерференционной картины. Перемещения определяются на основе измерения и анализа изменений параметров интерферограммы в плоскости фотоприемного устройства, которые обусловлены перемещениями объекта измерений.
Недостатком данного устройства является низкая точность измерений, обусловленная тем, что при перемещении объекта контроля воспроизводимые описанным выше устройством интерференционные картины имеют в пределах кольца одного порядка неравнозначное изменение интенсивности оптического поля. Поэтому размещение фотоприемников произвольно в кольцах интерференционной картины в плоскости экрана, как это реализуется в устройстве-аналоге RU 2169348, приводит к внесению погрешностей в результаты измерений.
Наиболее близким по совокупности существенных признаков к предлагаемому изобретению является оптическое устройство для измерения перемещений по патенту RU 2373492, содержащее оптически связанные и последовательно размещенные источник когерентного оптического излучения, оптическую систему, светоделитель, отражатель, закрепленный на поверхности объекта контроля и расположенный под углом к светоделителю, экран с установленным на нем фотоприемным устройством, при этом фотоприемное устройство, выполненное в виде прямоугольной матрицы фотоприемников, установлено в плоскости экрана радиально кольцам интерференционной картины в горизонтальном сечении на интервале от края до центра интерференционной картины. На фотоприемной матрице проецируется интерференционная картина в горизонтальном сечении. Величину перемещения объекта определяют как результат измерения по значениям интенсивности оптического поля, полученными прямыми измерениями в заданных областях интерферограммы с использованием выделенных групп фотоприемников.
Недостатком такого устройства являются недостаточная точность и малый динамический диапазон контроля перемещений, а также нелинейное распределение чувствительности по полю, что требует сложной дополнительной обработки данных, поскольку датчики, расположенные в точках максимальных пространственных градиентов интенсивности интерференционной картины (точки с фазами nπ рад.) дают максимальную чувствительность к перемещениям, а датчики, расположенные в точках минимальных пространственных градиентов интенсивности интерференционной картины (точки с фазами nπ/2 рад.) имеют практически нулевую чувствительность к перемещениям. Как следствие, для получения результата необходимая сложная математическая обработка.
Задачей, на решение которой направлено предлагаемое изобретение, является определение положения одного объекта относительно другого с заданной (нано и субнанометровой) точностью, а также увеличение диапазона измеряемых значений
расстояний между объектами, увеличение чувствительности и быстродействия устройства.
Технический результат - определение положения одного объекта относительно другого с большей точностью (до 0,01 нм) за меньшее время (до 1 мксек) в большем диапазоне расстояний между объектами (до 1 м).
Поставленная задача решается тем, что в устройство контроля положения объекта нано и субнанометровой точности, содержащее источник монохроматического излучения, оптическую систему, фотоприемное устройство, дополнительно включены формирующий точечный источник монохроматического излучения одномодовый световод, вход которого совмещен с выходом источника монохроматического излучения, а выход совмещен с передним фокусом оптической системы, формирующей параллельный пучок света. Кроме этого, за оптической системой последовательно по ходу лучей размещены установленные перпендикулярно оси оптической системы и параллельно друг другу две прозрачные пластины. При этом по периметру первой пластины на стороне, обращенной ко второй пластине, под углом ~120° друг к другу расположены три участка с наклонными к плоскости первой пластины поверхностями (участки наклонной поверхности). За второй пластиной в качестве фотоприемного устройства помещены оптически сопряженные с участками наклонной поверхности три линейных матричных фотоприемника, выходы которых подключены к компьютеру. Одна из пластин жестко закреплена на объекте контроля. Участки наклонной поверхности и поверхность второй пластины, обращенные друг к другу, выполнены с высоко отражающим покрытием. Участки наклонной поверхности выполнены с перепадом высот, изменяющимся по направлению от центра первой пластины к ее краю на величину, равную, как минимум, половине длины волны монохроматического излучения, а длины участков наклонной поверхности на первой пластине выполнены в соответствии с длиной рабочих окон линейных матричных фотоприемников. При этом отражающие покрытия участков наклонной поверхности первой пластины с отражающим покрытием второй пластины образуют соответственно три интерферометра Фабри-Перо, формирующих перпендикулярно направлениям наклона участков наклонной поверхности первой пластины интерференционные картины в виде линий равной толщины, соответствующих разностям хода, кратным половине длины волны монохроматического излучения.
Устройство контроля положения объекта нано и субнанометровой точности содержит (фиг.1): источник монохроматического излучения 1, одномодовый световод 2, формирующий на выходе точечный источник монохроматического излучения 3, при этом вход световода 2 совмещен с выходом источника монохроматического излучения 1, а выход 3 световода 2 совмещен с передним фокусом оптической системы 4, формирующей параллельный пучок света. За оптической системой 4 последовательно по ходу лучей установлены перпендикулярно оси оптической системы 4 и параллельно друг другу первая прозрачная пластина 5, по периметру которой на стороне, обращенной ко второй пластине, под углом ~120° друг к другу расположены три участка с наклонными к плоскости первой пластины поверхностями (участки наклонной поверхности) 6, и вторая пластина 7. За второй пластиной 7 установлены оптически сопряженные с участками наклонной поверхности 6 три линейных матричных фотоприемника 8, выходы которых подключены к компьютеру 9. При этом одна из пластин, например, вторая пластина 7 жестко закреплена на объекте контроля 10. Участки наклонной поверхности 6 первой пластины 5 и поверхность второй пластины 7, обращенные друг к другу, выполнены с высоко отражающим покрытием. Участки наклонной поверхности 6 первой пластины 5 выполнены с перепадом высот, изменяющимся по направлению от центра первой пластины 5 к ее краю на величину, равную, как минимум, половине длины волны монохроматического излучения, а длины участков наклонной поверхности 6 выполнены в соответствии с длиной рабочих окон линейных матричных фотоприемников 8. При этом отражающие покрытия участков наклонной поверхности 6 первой пластины 5 с отражающим покрытием поверхности второй пластины 7, обращенной к первой пластине, образуют соответственно три интерферометра Фабри-Перо, формирующих перпендикулярно направлениям наклона каждого участка наклонной поверхности 6 интерференционные картины в виде линий равной толщины, соответствующих разностям хода, кратным половине длины волны монохроматического излучения источника 1.
На фиг.2 изображено устройство контроля положения объекта в сечении А-А (в области участков наклонной поверхности 6 первой пластины 5). На фиг.3 изображено устройство контроля положения объекта в сечении В-В (в области расположения линейных матричных фотоприемников 8). На фиг.4 изображен интерферометр Фабри-Перо с установленным на нем устройством контроля положения объекта.
В качестве источника монохроматического излучения 1 используется лазер со стабилизированным по частоте излучением. При этом длина когерентности излучения лазера должна превышать максимальное значение возможных промежутков между пластинами 5 и 7.
Использование одномодового световода 2 позволяет сформировать на его выходе точечный источник оптического излучения 3 с линейными размерами порядка длины волны. Благодаря этому, телесный угол источника излучения (отношение линейного размера сформированного источника излучения 3 к фокусному расстоянию оптической системы 4) составляет ничтожно малую величину (~10-6). В результате контраст интерференционной картины остается достаточным даже при метровых промежутках между пластинами 5 и 7.
Работа устройства заключается в следующем.
При помощи источника монохроматического излучения 1 и одномодового световода 2 формируется точечный источник 3 монохроматического излучения в переднем фокусе оптической системы 4. Оптической системой 4 излучение преобразуется в параллельный пучок необходимой апертуры (размер апертуры должен быть не менее размера пластин 5, 7) и подается на две пластины 5 и 7, установленные перпендикулярно оси O-O оптической системы 4 и параллельно друг другу. При этом одна из пластин, например пластина 7, жестко закреплена на объекте контроля 10.
По периметру первой пластины 5 на стороне, обращенной ко второй пластине 7, под углом ~ 120 друг к другу расположены три участка 6 с наклонными к плоскости первой пластины 5 поверхностями (участки наклонной поверхности) 6 с высоко отражающим покрытием на их поверхностях, обращенных к пластине 7. Участки наклонной поверхности 6 выполнены с перепадом высот, изменяющимся по направлению от центра первой пластины 5 к ее краю на величину, равную, как минимум, половине длины волны монохроматического излучения. На поверхность второй пластины 7, обращенной к участкам наклонной поверхности 6 пластины 5, также нанесено высоко отражающее покрытие. При этом отражающие покрытия участков наклонной поверхности 6 первой пластины 5 и отражающая поверхность второй пластины 7 образуют соответственно три интерферометра Фабри-Перо, разнесенные под углом ~120° друг к другу.
При отсутствии участков наклонной поверхности 6 и строго плоскопараллельных друг другу отражающих поверхностях пластин 5 и 7 в выходной плоскости второй пластины 7 сформировались бы интерферограммы со строго одинаковой по всей апертуре интенсивностью. Однако участки наклонной поверхности 6 пластины 5 создают дополнительные разности хода лучей, в результате чего на выходе каждого из трех интерферометров Фабри-Перо перпендикулярно направлениям наклона участков наклонной поверхности 6 формируется интерференционная картина в виде линий равной толщины, соответствующих разностям хода, кратным половине длины волны монохроматического излучения источника 1.
Изменение положения объекта контроля 10 вдоль оптической оси 0-0 приводит к изменению расстояния между пластинами 5 и 7. При этом изменение расстояния между пластинами 5 и 7 на половину длины волны монохроматического излучения источника 1 вызовет перемещение интерференционных полос на один период по направлению от центра пластин к краю или от края к центру пластин в зависимости от увеличения или уменьшения расстояния между пластинами 5 и 7, Симметричное положение интерференционных полос интерферометров Фабри-Перо относительно оптической оси 0-0 при изменении положения объекта контроля 10 соответствует параллельному положению пластин 5 и 7 относительно друг друга и, следовательно, параллельному перемещению объекта контроля 10 вдоль оптической оси.
Интерференционные полосы на выходе каждого из трех интерферометров Фабри-Перо регистрируются соответствующими тремя линейными матричными фотоприемниками 8, расположенными за второй платиной 7 в местах, оптически сопряженных с участками наклонной поверхности 6 первой пластины 5. Число полос, прошедших через каждую освещаемую точку соответствующего линейного матричного фотоприемника 8, соответствует числу целых значений полуволн, укладываемых на промежутке между пластинами 5 и 7. Положение полос относительно оптической оси O-O характеризует дробную часть числа полуволн, укладывающихся в промежутке между пластинами 5 и 7.
Применение компьютера 9 решает несколько задач: счет числа интерференционных полос (порядков интерференции), прошедших через каждый линейный матричный фотоприемник 8, определение величины дробной части интерференционных полос, суммирование целого числа интерференционных полос с дробной частью интерференционных полос, вычисление в каждый момент точного положения пластин 5 и 7 относительно друг друга, включая взаимный наклон пластин относительно друг друга, по разности показаний в каждом из трех матричных фотоприемников и, следовательно, определение точного положения объекта контроля 10, жестко скрепленного с одной из пластин.
Увеличение чувствительности устройства достигается благодаря эффекту линейной фазово-пространственной трансформации волнового фронта, позволяющей преобразовать квантовую меру длины (длину волны зондирующего излучения, определяемую провалом Лэмба) в макроскопическую длину, соответствующую максимальному диапазону положений интерференционных полос в рабочих окнах линейных матричных фотоприемников. Эффект линейной фазово-пространственной трансформации волнового фронта достигается благодаря специальной конструкции одной из пластин, содержащей участки наклонной поверхности с отражающим покрытием.
Типичные значения чувствительности определялись следующими оценками. При изменении положения пластин 5 и 7 относительно друг друга на половину длины волны (-0,3 мкм) перемещение интерференционных полос осуществляется на полный период, определяемый перепадом высот участков наклонной поверхности 6, что соответствует ~10 мм. Коэффициент трансформации равен ~3,3×10. Чувствительность к перемещениям интерференционных полос, достигаемая при помощи линейного матричного фотоприемника 8, обычно составляет 10-4-10-5 от величины периода интерференционных полос (~10 мм). Таким образом, чувствительность устройства составляет:
3·10-1·(10-4÷10-5) мкм = 3·(10-2÷10-3) нм.
Увеличение динамического диапазона с сохранением абсолютной точности достигается двумя факторами: во-первых, возможностью регистрации целого числа полуволн и дробного числа полуволн, укладывающихся в контролируемом промежутке; во-вторых, использованием в качестве монохроматического источника излучения стабилизированного по частоте лазера. Например, стабильность частоты серийно выпускаемого стабилизированного по частоте лазера ЛГН-302 составляет Δν/ν=10-9. При использовании такого лазера ошибка в определении положений объекта, вызванная неточностью квантового эталона, не будет превышать одного нанометра при значениях промежутков между пластинами 5 и 7 до 1 метра, включительно.
Устройство контроля положения объекта нано и субнанометровой точности было применено авторами в интерферометре Фабри-Перо. Интерферометр Фабри-Перо содержал установленные параллельно друг к другу на некотором расстоянии d две плоскопараллельные кварцевые пластины с нанесенными на рабочие (обращенные друг к другу) поверхности интерференционными покрытиями с коэффициентом отражения 90% на длине волны ~800 нм, соответствующей средней длине волны диапазона, на котором работал интерферометр Фабри-Перо. Интерферометр Фабри-Перо является интерферометром высокого разрешения. Чтобы контролировать положение пластин интерферометра Фабри-Перо строго параллельно друг к другу и сохранять заданную величину полосы пропускания с нанометровой точностью, необходимо измерять значения оптического промежутка (расстояния между пластинами интерферометра) в каждый момент времени.
Для этого одна из пластин интерферометра Фабри-Перо (фиг.4, пластина 10) жестко соединялась с пластиной 7 устройства контроля положения объекта и выполняла роль объекта контроля. Вторая пластина 11 интерферометра Фабри-Перо соединялась с пластиной 5 устройства контроля положения объекта и выполняла роль реперной пластины, относительно которой контролировалось положение пластины 10.
Три участка наклонной поверхности 6 устройства контроля положения объекта были выполнены также из кварца с размерами: длиной - 20 мм и шириной - 24 мм. На поверхности участков наклонной поверхности 6 и на поверхность второй пластины 7, обращенной к первой пластине 5, были нанесены интерференционные покрытия с коэффициентом отражения 90% на длине волны 650 нм, соответствующей длине волны когерентного источника излучения 1. Углы наклона участков наклонной поверхности 6 составляли 9,2 угловых секунды, что позволяло формировать на выходах трех интерферометров Фабри-Перо устройства контроля положения объекта интерференционные картины в виде линий равной толщины, соответствующих разностям хода, кратным половине длины волны когерентного монохроматического излучения. При этом на длине каждого участка наклонной поверхности 6 одновременно укладывалось не менее одной интерференционной полосы.
В качестве когерентного источника излучения 1 использовался серийно выпускаемый лазер ЛГН-302, стабилизированный по частоте с точностью Δν/ν=10-9. Одномодовый световод 2 позволил сформировать точечный источник оптического излучения 3 с линейными размерами порядка длины волны, в результате чего контраст интерференционной картины трех интерферометров Фабри-Перо оставался достаточным даже при метровых промежутках между пластинами 10 и 11.
Интерференционные полосы на выходе трех интерферометров Фабри-Перо устройства контроля положения объекта регистрировались линейными матричными фотоприемниками 8, в качестве которых использовались линейные цифровые камеры на линейных датчиках VS-Ld-751 фирмы «Видеоскан», имеющих П.з.с.-линейку, содержащую 1×2048 элементов с зарядовой связью, длиной 22 мм. Быстродействие цифровой камеры на линейном датчике составляло 0,2 миллисекунды.
Компьютер 9 выполнял счет числа интерференционных полос (порядков интерференции), прошедших через линейные цифровые камеры 8, определение величины дробной части интерференционных полос, суммирование целого числа интерференционных полос с дробной частью интерференционных полос и определение в каждый момент времени точного положения пластины 10 относительно пластины 11 интерферометра Фабри-Перо.

Claims (1)

  1. Устройство контроля положения объекта нано- и субнанометровой точности, содержащее источник монохроматического излучения, оптическую систему, фотоприемное устройство, отличающееся тем, что в устройство дополнительно включены формирующий точечный источник монохроматического излучения одномодовый световод, вход которого совмещен с выходом источника монохроматического излучения, а выход совмещен с передним фокусом оптической системы, формирующей параллельный пучок света, далее за оптической системой последовательно по ходу лучей размещены установленные перпендикулярно оси оптической системы и параллельно друг другу две прозрачные пластины, при этом по периметру первой пластины на стороне, обращенной ко второй пластине, под углом ~120° друг к другу расположены три участка с наклонными к плоскости первой пластины поверхностями (участки наклонной поверхности), а за второй пластиной в качестве фотоприемного устройства помещены оптически сопряженные с участками наклонной поверхности три линейных матричных фотоприемника, выходы которых подключены к компьютеру, при этом одна из пластин жестко закреплена на объекте контроля, участки наклонной поверхности и поверхность второй пластины, обращенные друг к другу, выполнены с высокоотражающим покрытием, участки наклонной поверхности выполнены с перепадом высот, изменяющимся по направлению от центра первой пластины к ее краю на величину, равную, как минимум, половине длины волны монохроматического излучения, а длины участков наклонной поверхности на первой пластине выполнены в соответствии с длиной рабочих окон линейных матричных фотоприемников.
RU2012125012/28A 2012-06-15 2012-06-15 Устройство контроля положения объекта нано- и субнанометровой точности RU2502951C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012125012/28A RU2502951C1 (ru) 2012-06-15 2012-06-15 Устройство контроля положения объекта нано- и субнанометровой точности

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012125012/28A RU2502951C1 (ru) 2012-06-15 2012-06-15 Устройство контроля положения объекта нано- и субнанометровой точности

Publications (1)

Publication Number Publication Date
RU2502951C1 true RU2502951C1 (ru) 2013-12-27

Family

ID=49817771

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012125012/28A RU2502951C1 (ru) 2012-06-15 2012-06-15 Устройство контроля положения объекта нано- и субнанометровой точности

Country Status (1)

Country Link
RU (1) RU2502951C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2694121C2 (ru) * 2017-12-27 2019-07-09 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации Способ определения пространственной ориентации луча излучения лазерного локационного средства

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1083070A2 (ru) * 1981-06-18 1984-03-30 Центральная Ордена Трудового Красного Знамени Генетическая Лаборатория Им.И.В.Мичурина Интерференционное устройство дл измерени перемещений
US6327520B1 (en) * 1999-08-31 2001-12-04 Intelligent Machine Concepts, L.L.C. Planar normality sensor
US20080043245A1 (en) * 2006-08-16 2008-02-21 Needham David B Methods and apparatus for measuring multiple fabry-perot gaps
US20090051931A1 (en) * 2004-10-13 2009-02-26 Dirk Adrian Zwemer Systems and methods for measuring sample surface flatness of continuously moving samples
RU2373492C2 (ru) * 2007-11-28 2009-11-20 Федеральное Государственное Образовательное Учреждение Высшего Профессионального Образования "Южный Федеральный Университет" Оптическое устройство для измерения перемещений

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1083070A2 (ru) * 1981-06-18 1984-03-30 Центральная Ордена Трудового Красного Знамени Генетическая Лаборатория Им.И.В.Мичурина Интерференционное устройство дл измерени перемещений
US6327520B1 (en) * 1999-08-31 2001-12-04 Intelligent Machine Concepts, L.L.C. Planar normality sensor
US20090051931A1 (en) * 2004-10-13 2009-02-26 Dirk Adrian Zwemer Systems and methods for measuring sample surface flatness of continuously moving samples
US20080043245A1 (en) * 2006-08-16 2008-02-21 Needham David B Methods and apparatus for measuring multiple fabry-perot gaps
RU2373492C2 (ru) * 2007-11-28 2009-11-20 Федеральное Государственное Образовательное Учреждение Высшего Профессионального Образования "Южный Федеральный Университет" Оптическое устройство для измерения перемещений

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2694121C2 (ru) * 2017-12-27 2019-07-09 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации Способ определения пространственной ориентации луча излучения лазерного локационного средства

Similar Documents

Publication Publication Date Title
US7599071B2 (en) Determining positional error of an optical component using structured light patterns
CN107806821B (zh) 用集成四光电探测器的差分单频干涉信号处理装置及方法
US4969744A (en) Optical angle-measuring device
De Nicola et al. Reflective grating interferometer for measuring the refractive index of transparent materials
US9518816B2 (en) Dual beam splitter interferometer measuring 3 degrees of freedom, system and method of use
Guan et al. A differential interferometric heterodyne encoder with 30 picometer periodic nonlinearity and sub-nanometer stability
RU155509U1 (ru) Лазерно-интерференционный гидрофон с системой термостабилизации
CN110082071B (zh) 一种直角棱镜光学平行差的测量装置及方法
CN105698702B (zh) 一种基于声光低频差移相的双孔外差干涉仪
Šiaudinytė et al. Multi-dimensional grating interferometer based on fibre-fed measurement heads arranged in Littrow configuration
RU2502951C1 (ru) Устройство контроля положения объекта нано- и субнанометровой точности
CN108627084B (zh) 一种基于静止的迈克尔逊干涉仪的激光器波长校准***
JP5412959B2 (ja) 光応用計測装置
CA1114193A (en) Apparatus for spectrometer alignment
Yu et al. Thickness measurement of transparent plates by wavelength stepping and a phase unwrapping algorithm
Disawal et al. Measurement of displacement using phase shifted wedge plate lateral shearing interferometry
RU2606805C1 (ru) Устройство для линейного перемещения объекта с нанометровой точностью в большом диапазоне возможных перемещений
CN204807041U (zh) 一种新型多光源多波长激光干涉绝对测距仪
JP3714853B2 (ja) 位相シフト干渉縞同時撮像装置における平面形状計測方法
JP4613310B2 (ja) 表面形状測定装置
CN115900535B (zh) 干涉解调装置和干涉测量***
Zherdev et al. Special structuring of diffraction gratings for optical position encoder
RU2502952C1 (ru) Устройство для линейных перемещений с нанометровой точностью в большом диапазоне возможных перемещений
RU117020U1 (ru) Измеритель линейных размеров (варианты)
JP2009186254A (ja) 光線角度検出器

Legal Events

Date Code Title Description
PC43 Official registration of the transfer of the exclusive right without contract for inventions

Effective date: 20170718