RU2497730C1 - Двигательная установка космического летательного аппарата (варианты) и способ ее эксплуатации - Google Patents

Двигательная установка космического летательного аппарата (варианты) и способ ее эксплуатации Download PDF

Info

Publication number
RU2497730C1
RU2497730C1 RU2012113824/11A RU2012113824A RU2497730C1 RU 2497730 C1 RU2497730 C1 RU 2497730C1 RU 2012113824/11 A RU2012113824/11 A RU 2012113824/11A RU 2012113824 A RU2012113824 A RU 2012113824A RU 2497730 C1 RU2497730 C1 RU 2497730C1
Authority
RU
Russia
Prior art keywords
engine
heat exchanger
cryogenic
cryogenic liquid
combustion chamber
Prior art date
Application number
RU2012113824/11A
Other languages
English (en)
Other versions
RU2012113824A (ru
Inventor
Алексей Александрович Белов
Руслан Эдуардович Катков
Николай Николаевич Тупицын
Валентин Иванович Федоров
Михаил Викторович Рожков
Original Assignee
Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" filed Critical Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева"
Priority to RU2012113824/11A priority Critical patent/RU2497730C1/ru
Publication of RU2012113824A publication Critical patent/RU2012113824A/ru
Application granted granted Critical
Publication of RU2497730C1 publication Critical patent/RU2497730C1/ru

Links

Images

Landscapes

  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

Изобретение относится к ракетно-космической технике. Двигательная установка включает криогенный бак с экранно-вакуумной теплоизоляцией, расходный клапан, бустерный насос, трубопровод питания, камеру сгорания двигателя и заборное устройство криогенного бака, содержащее нижнее днище криогенного бака, накопитель капиллярного типа с теплообменником под сеточным разделителем и дроссельное устройство. На входе в камеру сгорания двигателя установлен двухпозиционный пуско-отсечной клапан, обеспечивающий до запуска двигателя выход испаренной криогенной жидкости за пределы космического летательного аппарата, и вводящий в процессе и после запуска двигателя криогенную жидкость в камеру сгорания двигателя. Двигательная установка по первому варианту содержит канал, сообщающий выход из теплообменника с полостью между расходным клапаном и бустерным насосом, обеспечивающий постоянное захолаживание конструкции двигателя до пуска двигателя и между его запусками. Двигательная установка по второму варианту содержит трубопровод с компенсатором перемещений, сообщающий выход из теплообменника с трубопроводом питания за бустерным насосом. Способ эксплуатации двигательной установки включает подачу криогенной жидкости из накопителя в теплообменник через дроссельное устройство и охлаждение криогенной жидкости в накопителе с помощью теплообменника. До очередного запуска двигателя сообщают трубопровод питания двигателя с дренажно-подпорным трубопроводом, далее при очередном запуске и штатной работе двигателя сообщают трубопровод питания двигателя с камерой сгорания двигателя, по окончании работы двигателя сообщают трубопровод питания двигателя с дренажно-подпорным трубопроводом для обеспечения охлаждения конструкции двигателя до следующего его запуска. Достигается улучшение массовых характеристик двигательной установки космического летательного аппарата и повышение надежности ее функционирования. 3 н.п. ф-лы, 2 ил.

Description

Изобретение относится к ракетно-космической технике и может быть применено в качестве жидкостной ракетной двигательной установки космического летательного аппарата в условиях ее многоразового включения.
При хранении в космическом летательном аппарате криогенного топлива в космических условиях между запусками двигателя имеет место прогрев заборного устройства и прилегающей к нему криогенной жидкости с возможным образованием паровой фазы. Средства хранения и подачи криогенной жидкости в двигатель, в состав которых входит заборное устройство, должны при заливке и запуске двигателя обеспечить поступление в него криогенной жидкости без паровых включений, при этом температура криогенной жидкости должна быть ниже температуры насыщения при давлении в баке космического летательного аппарата.
Прототипом является двигательная установка, включающая криогенный бак, бустерный насос, трубопровод питания, камеру сгорания двигателя и заборное устройство криогенного бака, содержащее нижнее днище криогенного бака, накопитель капиллярного типа с теплообменником под сеточным разделителем и дроссельным устройством для подачи криогенной жидкости с заданным расходом из накопителя капиллярного типа в теплообменник, для обеспечения запуска двигателя.
Прототипом способа эксплуатации двигательной установки является способ, включающий подачу криогенной жидкости из накопителя в теплообменник через дроссельное устройство и охлаждение криогенной жидкости в накопителе с помощью теплообменника. (Оба прототипа описаны в книге «Капиллярные системы отбора жидкости из баков космических летательных аппаратов». Авторы: В.В. Багров, А.В. Курпатенков, В.Н. Поляев, А.Л. Синцов, В.Ф. Сухоставец. Москва, УНПЦ «Энергомаш», 1977 г., стр.99-105).
Согласно известной двигательной установке накопитель криогенной жидкости, предназначенный для удержания жидкости, установлен на нижнем днище бака и представляет собой цилиндрическую обечайку с конусной крышкой.
Для предотвращения высыхания фазоразделяющих экранов (сеточный разделитель) на боковой поверхности накопителя и его крышке расположен охлаждающий змеевик. Змеевик установлен также на днище бака, что предотвращает поступление тепла к накопителю от двигателя (кислородного бустерного насоса) и других элементов конструкции.
В накопителе предусмотрена конструкция переохлаждения жидкости, состоящая из заборного устройства и теплообменника. Теплообменник предназначен для охлаждения находящегося в накопителе кислорода между запусками и в период запуска двигателя. В процессе запуска двигателя элементы конструкции двигателя захолаживаются за счет протока кислорода из накопителя через бустерный насос, трубопровод питания и основной турбонасосный агрегат в двигатель. Сброс кислорода осуществляется через камеру сгорания двигателя.
Охладителем в змеевике и теплообменнике является хранимый в накопителе жидкий кислород, который во время полета поступает из накопителя через дроссельное устройство в теплообменник и в змеевик, где из-за уменьшения давления насыщения и соответственно снижения температуры появляется разница между температурой охладителя и конструкцией. Жидкость в змеевике и теплообменнике частично испаряется, и через клапан и дренажный трубопровод удаляется за борт в окружающее пространство (практический вакуум). Это устройство термостатирования испарительного типа.
Такое устройство обеспечения температуры жидкости и конструкции имеет следующие недостатки:
- Из-за неполного испарения кислорода в теплообменнике имеет место неэффективное использование холодозапаса криогенной жидкости, что приводит к непроизводительному выбросу кислорода и ухудшению массовых характеристик двигательной установки.
- Наличие клапанов на выходе из каналов охлаждения и необходимость управления ими усложняет работу системы управления и снижает надежность функционирования двигательной установки.
- Захолаживание прогретой конструкции двигателя проводится непосредственно в процессе его запуска. В условиях кипения и парообразования криогенной жидкости на неохлажденных, элементах конструкции расход кислорода в начале запуска не стабилен. Затягивается время выхода двигателя на номинальный режим, при этом происходит непроизводительный выброс кислорода, что приводит к ухудшению массовых характеристик двигательной установки. Задачей предложенной двигательной установки космического летательного аппарата и способа ее эксплуатации является улучшение массовых характеристик двигательной установки космического летательного аппарата и повышение надежности ее функционирования.
Задача по первому варианту решается за счет того, что в двигательную установку космического летательного аппарата, включающую криогенный бак, с экранно-вакуумной теплоизоляцией, расходный клапан, бустерный насос, трубопровод питания, камеру сгорания двигателя и заборное устройство криогенного бака, содержащее нижнее днище криогенного бака, накопитель капиллярного типа с теплообменником под сеточным разделителем и дроссельным устройством для подачи криогенной жидкости с заданным расходом из накопителя капиллярного типа в теплообменник, введен канал, сообщающий выход из теплообменника с полостью между расходным клапаном и бустерным насосом, обеспечивающий постоянное захолаживание конструкции двигателя до пуска двигателя и между его запусками, причем в канале установлена подпорная шайба, поддерживающая заданное давление и температуру криогенной жидкости в теплообменнике.
На входе в камеру сгорания двигателя установлен двухпозиционный пуско-отсечной клапан, обеспечивающий до запуска двигателя, с помощью подсоединенного к нему дренажно-подпорного трубопровода, выход испаренной криогенной жидкости за пределы космического летательного аппарата. А в процессе и после запуска двигателя двухпозиционный пуско-отсечной клапан вводит криогенную жидкость в камеру сгорания двигателя, при этом проходное сечение дренажно-подпорного трубопровода совместно с подпорной шайбой выбирают обеспечивающим давление в полости двигателя выше давления замерзания криогенной жидкости.
Задача по второму варианту решается за счет того, что в двигательную установку космического летательного аппарата, включающую криогенный бак с экранно-вакуумной теплоизоляцией, расходный клапан, бустерный насос, трубопровод питания, камеру сгорания двигателя и заборное устройство криогенного бака, содержащее нижнее днище криогенного бака, накопитель капиллярного типа с теплообменником под сеточным разделителем и дроссельное устройство для подачи криогенной жидкости с заданным расходом из накопителя капиллярного типа в теплообменник, введен трубопровод с компенсатором перемещений. Трубопровод сообщает выход из теплообменника с трубопроводом питания за бустерным насосом, обеспечивающий постоянное захолаживание конструкции двигателя до пуска двигателя и между его запусками. В трубопроводе установлена подпорная шайба, поддерживающая заданное давление и температуру криогенной жидкости в теплообменнике, а компенсатор перемещений трубопровода обеспечивает компенсацию технологических и относительных перемещений конструкции в процессе монтажа трубопровода и эксплуатации двигательной установки.
На входе в камеру сгорания двигателя установлен двухпозиционный пуско-отсечной клапан, обеспечивающий до запуска двигателя, с помощью подсоединенного к нему дренажно-подпорного трубопровода, выход испаренной криогенной жидкости за пределы космического летательного аппарата. А в процессе и после запуска двигателя двухпозиционный пуско-отсечной клапан вводит криогенную жидкость в камеру сгорания двигателя, при этом проходное сечение дренажно-подпорного трубопровода совместно-с подпорной шайбой выбирают обеспечивающим давление в полости двигателя выше давления замерзания криогенной жидкости.
Задача решается за счет того, что в способе эксплуатации двигательной установки, включающим подачу криогенной жидкости из накопителя в теплообменник через дроссельное устройство и охлаждение криогенной жидкости в накопителе с помощью теплообменника, сначала до очередного запуска двигателя сообщают трубопровод питания двигателя с дренажно-подпорным трубопроводом, при этом обеспечивается прохождение криогенной жидкости через подпорную шайбу и выход испаренной в процессе охлаждения конструкции двигателя криогенной жидкости за пределы космического летательного аппарата. Далее при очередном запуске и штатной работе двигателя сообщают трубопровод питания двигателя с камерой сгорания двигателя, затем по окончании работы двигателя сообщают трубопровод питания двигателя с дренажно-подпорным трубопроводом для обеспечения охлаждения конструкции двигателя до следующего его запуска.
На фиг.1 схематично представлена двигательная установка космического летательного аппарата по первому варианту, на фиг.2 схематично представлена двигательная установка космического летательного аппарата по второму варианту, где:
1. криогенный бак с экранно-вакуумной теплоизоляцией;
2. расходный клапан;
3. бустерный насос;
4. трубопровод питания двигателя;
5. камера сгорания двигателя;
6. нижнее днище криогенного бака;
7. накопитель капиллярного типа;
8. теплообменник;
9. сеточный разделитель;
10. дроссельное устройство;
11. трубопровод;
12. компенсатор перемещений;
13. подпорная шайба;
14. двухпозиционный пуско-отсечной клапан;
15. дренажно-подпорный трубопровод;
16. основной турбонасосный агрегат;
17. канал;
18. выход из теплообменника;
19. полость между расходным клапаном и бустерным насосом.
По первому варианту в двигательную установку космического летательного аппарата, включающую криогенный бак с экранно-вакуумной теплоизоляцией 1, расходный клапан 2, бустерный насос 3, трубопровод питания двигателя 4, камеру сгорания двигателя 5 и заборное устройство криогенного бака, содержащее нижнее днище криогенного бака 6, накопитель капиллярного типа 7 с теплообменником 8 под сеточным разделителем 9 и дроссельное устройство 10 для подачи криогенной жидкости с заданным расходом из накопителя капиллярного типа 7 в теплообменник 8, введен канал 17, сообщающий выход из теплообменника 18 с полостью между расходным клапаном и бустерным насосом 19, обеспечивающий постоянное захолаживание конструкции двигателя до пуска двигателя и между его запусками, причем в канале 17 установлена подпорная шайба 13, поддерживающая заданное давление и температуру криогенной жидкости в теплообменнике 8.
Канал 17, например, может быть выполнен в виде патрубка, сообщающего выход из теплообменника 18 с полостью между расходным клапаном и бустерным насосом 19, или в виде сообщения выхода из теплообменника 18 с полостью между расходным клапаном и бустерным насосом 19 с помощью сверлений в теле фланцевого соединения криогенного бака с экранно-вакуумной теплоизоляцией 1 и расходного клапана 2.
На входе в камеру сгорания двигателя 5 установлен двухпозиционный пуско-отсечной клапан 14, обеспечивающий до запуска двигателя, с помощью подсоединенного к нему дренажно-подпорного трубопровода 15, выход испаренной криогенной жидкости за пределы космического летательного аппарата. А в процессе и после запуска двигателя двухпозиционный пуско-отсечной клапан 14 вводит криогенную жидкость в камеру сгорания двигателя 5, при этом проходное сечение дренажно-подпорного трубопровода 15 совместно с подпорной шайбой 13 выбирают обеспечивающим давление в полости двигателя выше давления замерзания криогенной жидкости.
По второму варианту в двигательную установку космического летательного аппарата, включающую криогенный бак с экранно-вакуумной теплоизоляцией 1, расходный клапан 2, бустерный насос 3, трубопровод, питания двигателя 4, камеру сгорания двигателя 5 и заборное устройство криогенного бака, содержащее нижнее днище криогенного бака 6, накопитель капиллярного типа 7 с теплообменником 8 под сеточным разделителем 9 и дроссельное устройство 10 для подачи криогенной жидкости с заданным расходом из накопителя капиллярного типа 7 в теплообменник 8, введен трубопровод 11 с компенсатором перемещений 12. Трубопровод 11 сообщает выход из теплообменника 8 с трубопроводом питания 4 за бустерным насосом 3, обеспечивающий постоянное захолаживание конструкции двигателя до пуска двигателя и между его запусками. В трубопроводе 11 установлена подпорная шайба 13, поддерживающая заданное давление и температуру криогенной жидкости в теплообменнике 8, а компенсатор перемещений 12 трубопровода 11 обеспечивает компенсацию технологических и относительных перемещений конструкции в процессе монтажа трубопровода 11 и эксплуатации двигательной установки.
На входе в камеру сгорания двигателя 5 установлен двухпозиционный пуско-отсечной клапан 14, обеспечивающий до запуска двигателя, с помощью подсоединенного к нему дренажно-подпорного трубопровода 15, выход испаренной криогенной жидкости за пределы космического летательного аппарата. А в процессе и после запуска двигателя двухпозиционный пуско-отсечной клапан 14 вводит криогенную жидкость в камеру сгорания двигателя 5, при этом проходное сечение дренажно-подпорного трубопровода 15 совместно с подпорной шайбой 13 выбирают обеспечивающим давление в полости двигателя выше давления замерзания криогенной жидкости.
Сообщение выхода из теплообменника 18 с полостью между расходным клапаном и бустерным насосом 19 по первому варианту позволяет за счет охлаждения трубопровода питания двигателя 4, бустерного насоса 3 и основного турбонасосного агрегата 16 двигателя во время полета между запусками двигателя существенно уменьшить теплоприток к заборному устройству криогенного бака 6 теплопроводностью по конструкции и излучением, а также снизить потребный расход криогенной жидкости через теплообменник 8. Позволяет также поднять давление в трубопроводе питания двигателя 4 выше тройной точки криогенной жидкости (например, жидкого кислорода), что исключает образование криогенного льда на расходном клапане 2 и тем самым повышает надежность функционирования космического летательного аппарата. Постоянное до запуска охлаждение конструкции двигателя улучшает условия его запуска, а отсутствие клапана за теплообменником 8 исключает необходимость управления его работой при смене режимов полета космического летательного аппарата.
При сообщении теплообменника 8 с трубопроводом питания двигателя 4 за бустерным насосом 3 по второму варианту сохраняются положительные качества, перечисленные выше по первому варианту.
Однако, из-за отсутствия клапана в теплообменнике 8 во время работы бустерного агрегата 3 криогенная жидкость из трубопровода питания двигателя 4, где давление выше, чем давление в криогенном баке с экранно-вакуумной теплоизоляцией 1, поступит по теплообменнику 8 и через дроссельное устройство 10 в полость накопителя капиллярного типа 7 под сеточным разделителем 9. В виду малого проходного сечения дроссельного устройства 10 расход через него не превысит 10-2% от величины расхода через бустерный агрегат 3, поэтому влиянием этого расхода на работу и характеристики двигательной установки можно пренебречь.
При сообщении выхода из теплообменника 18 с полостью между расходным клапаном и бустерным насосом 19 по первому варианту перетекание криогенной жидкости в криогенный бак с экранно-вакуумной теплоизоляцией 1 из-за незначительной разницы давления между полостью накопителя капиллярного типа 7 под сеточным разделителем 9 и давлением за расходным клапаном 2 при работе двигательной установки практически отсутствует.
Теплообменник 8 охлаждает криогенную жидкость в полости накопителя капиллярного типа 7 под сеточным разделителем 9 до температуры не ниже температуры насыщения криогенной жидкости при давлении в теплообменнике 8, создаваемом за счет введения подпорной шайбы 13 в канал 17 по первому варианту в трубопровод 11 по второму варианту. Таким образом, подпорная шайба 13 заданного проходного сечения обеспечивает требуемую температуру криогенной жидкости на выходе из криогенного бака с экранно-вакуумной теплоизоляцией 1 при запуске двигателя.
Двигательная установка космического летательного аппарата, включающая криогенный бак с экранно-вакуумной теплоизоляцией 1, расходный клапан 2, бустерный насос 3, трубопровод питания двигателя 4, камеру сгорания двигателя 5 и заборное устройство криогенного бака, содержащее нижнее днище криогенного бака 6, накопитель капиллярного типа 7 с теплообменником 8 под сеточным разделителем 9 и дроссельным устройством 10 для подачи криогенной жидкости с заданным расходом из накопителя капиллярного типа 7 в теплообменник 8, работает следующим образом.
Во время заправки и стоянки заправленного криогенного бака с экранно-вакуумной теплоизоляцией 1 из-за наличия в полости двигателя атмосферного давления, которое значительно выше рабочего давления в теплообменнике 8, проходящая через дроссельное устройство 10 в теплообменник 8 криогенная жидкость не газифицируется и не понижает температуру нижнего днища криогенного бака 6 и установленного на нем заборного устройства криогенного бака. Однако, криогенная жидкость, попадая в трубопровод питания двигателя 4 по каналу 17 по первому варианту или по трубопроводу 11 по второму варианту, испаряется, охлаждает элементы конструкции двигателя, подготавливая его к первому запуску, и через дренажи удаляется в атмосферу. При этом температура заборного устройства криогенного бака и нижнего днища криогенного бака 6 соответствует температуре жидкости в криогенном баке с экранно-вакуумной теплоизоляцией 1. После прохождения космическим летательным аппаратом атмосферы и снижения давления в трубопроводе питания двигателя 4, в процессе последующего полета космического летательного аппарата криогенная жидкость за дроссельным устройством 10 газифицируется, ее температура становится ниже температуры жидкости в криогенном баке с экранно-вакуумной теплоизоляцией 1 и соответствует температуре насыщения при давлении, обеспечиваемым подпорной шайбой 13. За счет разницы между температурой криогенной жидкости в нижней части криогенного бака с экранно-вакуумной теплоизоляцией 1, температурой заборного устройства криогенного бака и температурой криогенной жидкости в теплообменнике 8 охлаждается заборное устройство криогенного бака и криогенная жидкость в полости накопителя капиллярного типа 7 под сеточным разделителем 9. В теплообменник 8 за счет передачи тепла теплопроводностью по конструкции также поступает теплоприток от бустерного насоса 3, что приводит к испарению криогенной жидкости в теплообменнике 8. По мере охлаждения криогенной жидкости в накопителе капиллярного типа 7 под сеточным разделителем 9 в теплообменнике 8 уменьшается доля испаряющейся криогенной жидкости. Испаренная и частично испаренная криогенная жидкость поступает в трубопровод питания двигателя 4, где за счет теплообмена с конструкцией доиспаряется, понижая температуру элементов конструкции двигателя и увеличивая надежность его запуска. Криогенная жидкость, поступающая из теплообменника 8, повышает давление в трубопроводе питания двигателя 4 выше его тройной точки (например, для жидкого кислорода ~ 0,146·10-3 МПа), исключая возможность образования криогенного льда на расходном клапане 2 и тем самым повышая надежность запуска двигателя.
Испаренная и нагретая за счет контакта с конструкцией двигателя криогенная жидкость через двухпозиционный пуско-отсечной клапан 14 и дренажно-подпорный трубопровод 15 удаляется за пределы космического летательного аппарата, при этом проходное сечение дренажно-подпорного трубопровода 15 обеспечивает давление в трубопроводе питания двигателя 4 выше тройной точки криогенной жидкости. При запуске двигателя открывается расходный клапан 2, раскручивается вал бустерного насоса 3, двухпозиционный пуско-отсечной клапан 14 перекрывает дренажно-подпорный трубопровод 15 и открывает подачу криогенной жидкости в камеру сгорания двигателя 5.
Предложенная двигательная установка космического летательного аппарата и способ ее эксплуатации обеспечивает повышение массовых характеристик двигательной установки космического летательного аппарата за счет сокращения от 50 до 100% расхода криогенной жидкости (например, жидкого кислорода) на предпусковое захолаживание двигателя, и увеличение надежности функционирования двигательной установки космического летательного аппарата за счет повышение эффективности термостатирования криогенной жидкости в накопителе капиллярного типа 7 под сеточным разделителем 9 в требуемом температурном режиме с помощью подпорной шайбы 13, размещенной на выходе из теплообменника 8, а также за счет постоянного захолаживания конструкции двигателя малым расходом криогенной жидкости через подпорную шайбу 13 до пуска двигателя и между его запусками, при этом обеспечивается снижение теплопритоков к заборному устройству криогенного бака.
Кроме того, повышение давления в трубопроводе питания двигателя 5 выше тройной точки криогенной жидкости исключает образование криогенного льда на расходном клапане 2, повышая надежность запуска двигателя.

Claims (3)

1. Двигательная установка космического летательного аппарата, включающая криогенный бак с экранно-вакуумной теплоизоляцией, расходный клапан, бустерный насос, трубопровод питания, камеру сгорания двигателя и заборное устройство криогенного бака, содержащее нижнее днище криогенного бака, накопитель капиллярного типа с теплообменником под сеточным разделителем и дроссельное устройство для подачи криогенной жидкости с заданным расходом из накопителя капиллярного типа в теплообменник, отличающаяся тем, что введен канал, сообщающий выход из теплообменника с полостью между расходным клапаном и бустерным насосом, обеспечивающий постоянное захолаживание конструкции двигателя до пуска двигателя и между его запусками, причем в канале установлена подпорная шайба, поддерживающая заданные давление и температуру криогенной жидкости в теплообменнике; на входе в камеру сгорания двигателя установлен двухпозиционный пускоотсечной клапан, обеспечивающий до запуска двигателя, с помощью подсоединенного к нему дренажно-подпорного трубопровода, выход испаренной криогенной жидкости за пределы космического летательного аппарата и вводящий в процессе и после запуска двигателя криогенную жидкость в камеру сгорания двигателя, при этом проходное сечение дренажно-подпорного трубопровода совместно с подпорной шайбой выбирают обеспечивающим давление в полости двигателя выше давления замерзания криогенной жидкости.
2. Двигательная установка космического летательного аппарата, включающая криогенный бак с экранно-вакуумной теплоизоляцией, расходный клапан, бустерный насос, трубопровод питания, камеру сгорания двигателя и заборное устройство криогенного бака, содержащее нижнее днище криогенного бака, накопитель капиллярного типа с теплообменником под сеточным разделителем и дроссельное устройство для подачи криогенной жидкости с заданным расходом из накопителя капиллярного типа в теплообменник, отличающаяся тем, что введен трубопровод с компенсатором перемещений, сообщающий выход из теплообменника с трубопроводом питания за бустерным насосом, обеспечивающий постоянное захолаживание конструкции двигателя до пуска двигателя и между его запусками, причем в трубопроводе установлена подпорная шайба, поддерживающая заданные давление и температуру криогенной жидкости в теплообменнике, а компенсатор перемещений трубопровода обеспечивает компенсацию технологических и относительных перемещений конструкции в процессе монтажа трубопровода и эксплуатации двигательной установки; на входе в камеру сгорания двигателя установлен двухпозиционный пускоотсечной клапан, обеспечивающий до запуска двигателя, с помощью подсоединенного к нему дренажно-подпорного трубопровода, выход испаренной криогенной жидкости за пределы космического летательного аппарата и вводящий в процессе и после запуска двигателя криогенную жидкость в камеру сгорания двигателя, при этом проходное сечение дренажно-подпорного трубопровода совместно с подпорной шайбой выбирают обеспечивающим давление в двигателе выше давления замерзания криогенной жидкости.
3. Способ эксплуатации двигательной установки, включающий подачу криогенной жидкости из накопителя в теплообменник через дроссельное устройство и охлаждение криогенной жидкости в накопителе с помощью теплообменника, отличающийся тем, что сначала до очередного запуска двигателя сообщают трубопровод питания двигателя с дренажно-подпорным трубопроводом, при этом обеспечивается прохождение криогенной жидкости через подпорную шайбу и выход испаренной в процессе охлаждения конструкции двигателя криогенной жидкости за пределы космического летательного аппарата, далее при очередном запуске и штатной работе двигателя сообщают трубопровод питания двигателя с камерой сгорания двигателя, затем по окончании работы двигателя сообщают трубопровод питания двигателя с дренажно-подпорным трубопроводом для обеспечения охлаждения конструкции двигателя до следующего его запуска.
RU2012113824/11A 2012-04-09 2012-04-09 Двигательная установка космического летательного аппарата (варианты) и способ ее эксплуатации RU2497730C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012113824/11A RU2497730C1 (ru) 2012-04-09 2012-04-09 Двигательная установка космического летательного аппарата (варианты) и способ ее эксплуатации

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012113824/11A RU2497730C1 (ru) 2012-04-09 2012-04-09 Двигательная установка космического летательного аппарата (варианты) и способ ее эксплуатации

Publications (2)

Publication Number Publication Date
RU2012113824A RU2012113824A (ru) 2013-10-20
RU2497730C1 true RU2497730C1 (ru) 2013-11-10

Family

ID=49356806

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012113824/11A RU2497730C1 (ru) 2012-04-09 2012-04-09 Двигательная установка космического летательного аппарата (варианты) и способ ее эксплуатации

Country Status (1)

Country Link
RU (1) RU2497730C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2584211C2 (ru) * 2014-09-16 2016-05-20 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Капиллярная система хранения и отбора жидкости в ракетный двигатель космического объекта (варианты)
RU2591124C1 (ru) * 2015-01-12 2016-07-10 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Система отбора жидкости в ракетный двигатель космического объекта (2 варианта)
RU2617903C1 (ru) * 2016-05-17 2017-04-28 Акционерное общество "Военно-промышленная корпорация "Научно-производственное объединение машиностроения" Способ выработки топлива из бака летательного аппарата

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111361061B (zh) * 2020-03-26 2022-08-05 上海航天化工应用研究所 一种燃烧室绝热层真空贴片自动控制***及操作方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0625672A1 (en) * 1993-05-19 1994-11-23 Rockwell International Corporation Fluid management system for a zero gravity cryogenic storage system
RU2212361C1 (ru) * 2002-01-25 2003-09-20 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" им. С.П. Королева" Ракетный разгонный блок
RU2282744C2 (ru) * 2001-03-16 2006-08-27 Снекма Моторс Криогенный модуль двигателя с низкой тягой

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0625672A1 (en) * 1993-05-19 1994-11-23 Rockwell International Corporation Fluid management system for a zero gravity cryogenic storage system
RU2282744C2 (ru) * 2001-03-16 2006-08-27 Снекма Моторс Криогенный модуль двигателя с низкой тягой
RU2212361C1 (ru) * 2002-01-25 2003-09-20 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" им. С.П. Королева" Ракетный разгонный блок

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2584211C2 (ru) * 2014-09-16 2016-05-20 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Капиллярная система хранения и отбора жидкости в ракетный двигатель космического объекта (варианты)
RU2591124C1 (ru) * 2015-01-12 2016-07-10 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Система отбора жидкости в ракетный двигатель космического объекта (2 варианта)
RU2617903C1 (ru) * 2016-05-17 2017-04-28 Акционерное общество "Военно-промышленная корпорация "Научно-производственное объединение машиностроения" Способ выработки топлива из бака летательного аппарата

Also Published As

Publication number Publication date
RU2012113824A (ru) 2013-10-20

Similar Documents

Publication Publication Date Title
US9212643B2 (en) Dual fuel system for an internal combustion engine
US9695750B2 (en) Turbine engine assembly and dual fuel aircraft system
RU2497730C1 (ru) Двигательная установка космического летательного аппарата (варианты) и способ ее эксплуатации
US8113006B2 (en) System for the fuel storage and fuel delivery of cryogenic fuel
EP2943676B1 (fr) Système et procédé d'alimentation d'un moteur-fusée
EP2939918A1 (en) Natural gas fuel evaporator, natural gas fuel supply device, and method for supplying natural gas fuel to ships and motors
US9527593B2 (en) Thermal accumulator and method of use
FR3006742A1 (fr) Dispositif et procede de remplissage d'un reservoir
US20160272331A1 (en) Air conditioning method and system for aircraft
EP4158170A1 (fr) Dispositif de régulation de la pression d'un réservoir de carburant cryogénique d'un aéronef
JP2018508695A (ja) ロケットエンジンの液体酸素タンク用加圧装置
JP2016540153A (ja) 推進剤をロケットエンジン推進室に供給するための装置
US11384687B2 (en) Anti-icing system for gas turbine engine
FR3068108B1 (fr) Station et procede de remplissage de reservoirs de gaz sous pression
RU2225813C2 (ru) Способ заправки жидким кислородом бака окислителя ракетной двигательной установки
RU2347934C1 (ru) Система подачи криогенного топлива в энергетическую установку
US2311512A (en) Refrigeration
US20230417230A1 (en) Pump Arrangement for Providing a Saturated Liquid
KR102269975B1 (ko) 가스 공급 어셈블리
EP2393682B1 (fr) Systeme de refroidissement a absorption
RU2539064C2 (ru) Двигательная установка космического летательного аппарата
WO2023156934A1 (en) Systems and methods for vaporization of a liquid
KR20230008293A (ko) 연료공급 시스템 및 이를 포함하는 선박
WO2018096276A1 (fr) Installation de production d'energie electrique, d'energie mecanique et/ou de froid
JPWO2018225683A1 (ja) 液化燃料ガス気化システムおよびそのための液体熱媒温度制御方法