RU2492464C1 - Акустико-эмиссионный способ контроля качества материалов на образцах - Google Patents

Акустико-эмиссионный способ контроля качества материалов на образцах Download PDF

Info

Publication number
RU2492464C1
RU2492464C1 RU2012109246/28A RU2012109246A RU2492464C1 RU 2492464 C1 RU2492464 C1 RU 2492464C1 RU 2012109246/28 A RU2012109246/28 A RU 2012109246/28A RU 2012109246 A RU2012109246 A RU 2012109246A RU 2492464 C1 RU2492464 C1 RU 2492464C1
Authority
RU
Russia
Prior art keywords
acoustic emission
defects
samples
sample
crack
Prior art date
Application number
RU2012109246/28A
Other languages
English (en)
Inventor
Владимир Лазаревич Шкуратник
Евгений Александрович Новиков
Алексей Алексеевич Кормнов
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный горный университет" (МГГУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный горный университет" (МГГУ) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный горный университет" (МГГУ)
Priority to RU2012109246/28A priority Critical patent/RU2492464C1/ru
Application granted granted Critical
Publication of RU2492464C1 publication Critical patent/RU2492464C1/ru

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

Использование: для выявления трещиновидных дефектов в образцах скальных геоматериалов посредством акустической эмиссии. Сущность заключается в том, что механические напряжения создают путем нагревания до 90°C локальной области образца, расположенной на равном расстоянии от его верхней и нижней торцевых поверхностей и параллельно с ними, осуществляют прием на каждой из этих поверхностей сигналов акустической эмиссии, распространяющихся от локальной нагреваемой области, регистрируют зависимости суммарного счета этих сигналов от времени, на которых выделяют значения, соответствующие моменту прекращения роста указанных зависимостей, а по отношению меньшего к большему из этих значений судят о наличии трещиновидных дефектов и их местоположении относительно локальной нагреваемой области. Технический результат: повышение достоверности и снижение трудоемкости выявления трещиновидных дефектов в образцах скальных геоматериалов, а также возможность оценки местоположения этих дефектов относительно центра образца. 3 ил.

Description

Изобретение относится к области неразрушающего контроля и предназначено для выявления трещиновидных дефектов в образцах скальных геоматериалов.
Известен способ контроля качества материалов методом акустической эмиссии, заключающийся в том, что принимают акустическим преобразователем деформационные шумы, сопровождающие трещинообразование в материале, регистрируют импульсные электрические сигналы на выходе преобразователя путем их разделения на группы с близкими по величине амплитудами, и производят считывание количества импульсов в каждой из групп [1].
Недостатком данного способа являются низкая достоверность выявления с его помощью дефектов, связанная с тем, что сигналы акустической эмиссии, приходящие из точек объекта контроля, расположенных на различных расстояниях от приемного преобразователя, испытывают разные затухания, из-за чего искажается картина распределения амплитуд принятых сигналов.
Наиболее близким по технической сущности к предлагаемому изобретению является акустико-эмиссионный способ контроля качества материалов на образцах, заключающийся в создании в них путем внешнего воздействия механических напряжений, приеме возникающих под влиянием этих напряжений сигналов акустической эмиссии, по которым определяют наличие в образцах трещиновидных дефектов [2].
В указанном способе - прототипе, нагружение осуществляют циклически посредством механического воздействия.
Недостатком известного способа является низкая достоверность и высокая трудоемкость выявления трещиновидных дефектов в образцах скальных геоматериалов, а также невозможность хотя бы примерного определения их местоположения. Это обусловлено сложностью изготовления из указанных материалов образцов правильной формы для проведения акустико-эмиссионных испытаний. Даже незначительная непараллельность поверхностей образца, на которые осуществляется механическое воздействие при нагружении, приводит к возникновению микроразрушений в приповерхностной области и, как следствие, значительной помеховой составляющей акустической эмиссии. Это ведет к значительному искажению характера акустограммы, что и снижает достоверность контроля, который к тому же не несет информации о местоположении искомых дефектов.
В данной заявке решается задача разработки способа контроля обеспечивающего повышение достоверности и снижение трудоемкости выявления трещиновидных дефектов в образцах скальных геоматериалов, а также возможность оценки местоположения этих дефектов относительно центра образца.
Для решения поставленной задачи в акустико-эмиссионном способе контроля качества материалов на образцах, заключающемся в создании в них путем внешнего воздействия механических напряжений, приеме возникающей под влиянием этих напряжений сигналов акустической эмиссии, по которым определяют наличие в образцах трещиновидных дефектов, механические напряжения создают путем нагрева до 90°C локальной области образца, расположенной на равном расстоянии от его верхней и нижней торцевых поверхностей и параллельно с ними, осуществляют прием на каждой из этих поверхностей сигналов акустической эмиссии, распространяющихся от локальной нагреваемой области, регистрируют зависимости суммарного счета этих сигналов от времени, на которых выделяют значения, соответствующие моменту прекращения роста указанных зависимостей, а по отношению меньшего к большему из этих значений судят о наличии трещиновидных дефектов и их местоположении относительно локальной нагреваемой области.
Предлагаемый способ базируется на следующих физических предпосылках и установленных авторами экспериментально закономерностях акустической эмиссии в образцах скальных геоматериалов, содержащих и не содержащих трещиновидные дефекты, при их нагревании.
Известно, что причиной акустической эмиссии в скальных геоматериалах при их нагревании является возникновение новых и рост уже имеющихся дефектов структуры в результате: термонапряжений, возникающих из-за различия тепловых свойств отдельных структурных элементов геоматериала и их анизотропии; фазовых переходов, а также возможных химических преобразований в определенных температурных диапазонах и некоторых других факторов.
Механические напряжения достаточные для формирования акустической эмиссии в скальных геоматериалах в зависимости от их типа возникают при прогреве в диапазоне температур 60-90°C. При этом, если осуществляется нагрев локальной области образца до 90°C, то источником акустической эмиссии является преимущественно эта область. Получаемые в результате сигналы акустической эмиссии проходят через области образца, находящиеся между его торцевыми поверхностями и нагреваемой локальной областью. При этом если структура образца по обе стороны от нагреваемой области не имеет значимых структурных отличий, в частности трещиновидных дефектов, и область нагрева расположена по центру образца, то приемные преобразователи на торцевых поверхностях регистрируют примерно одинаковые значения суммарного счета акустической эмиссии. В случае наличия по одну из сторон от плоскости нагрева структурных неоднородностей в виде трещиновидных дефектов, последние приводят к повышенному затуханию сигналов акустической эмиссии. Как следствие, на приемном преобразователе, расположенном со стороны наличия дефектов фиксируется меньшее значение суммарного счета акустической эмиссии, что позволяет определить факт наличия и местоположение дефекта относительно нагреваемой области. В случае отсутствия дефектов сигналы регистрируемые на обеих торцевых поверхностях примерно одинаковы, т.е. их отношение близко к единице.
Отмеченные закономерности были подтверждены при проведении авторами экспериментальных исследований на образцах таких геоматериалов как мрамор, гранит, диабаз и других, содержащих и не содержащих различные типы трещиновидных дефектов.
Акустико-эмиссионный способ контроля качества материалов на образцах иллюстрируется фиг.1, где приведена принципиальная схема реализации предлагаемого способа, а также фиг.2 и фиг.3, где в качестве примера приведены зависимости суммарного счета акустической эмиссии, возникающей при нагревании локальной области, находящейся в центре образцов гранита Янцевского месторождения, соответственно не содержащих и содержащих нарушения структуры в виде трещиновидных дефектов.
Акустико-эмиссионный способ контроля качества материалов на образцах реализуют следующим образом.
На верхней торцевой поверхности 1 образца 2 геоматериала (см. фиг.1) закрепляют приемный преобразователь 3, а на нижней торцевой поверхности 4 закрепляют приемный преобразователь 5. При этом преобразователи 3 и 5 находятся на одной прямой ортогональной к поверхности 1 и поверхности 4. На поверхности образца 2 равноудаленной от его торцевых поверхностей 1 и 4 крепят незамкнутый обод 6, выполняемый из материала с высоким коэффициентом теплопроводности, например из меди. При этом высота обода 6 не должна превышать 10% от расстояния между торцевыми поверхностями образца 1 и 4. Посредством управляемого источника 7 питания пропускают электрический ток по ободу 6, что приводит к его нагреву, и далее к нагреву локальной области 8, образца 2. Значение температуры нагрева обода 6 контролируют с помощью контактирующей с ним термопары 9 показания который считываются контроллером 10, который регулирует источник 7 питания, таким образом, чтобы на поверхности обода 6 поддерживалась постоянная температура ≈90°C. Термонапряжения, возникающие в локальной области 8, приводят к генерации импульсов акустической эмиссии, которые распространяются к верхней торцевой поверхности 1 и нижней торцевой поверхности 2, где синхронно принимаются преобразователем 3 и преобразователем 5, соответственно. Сигналы акустической эмиссии с преобразователей 3 и 5 поступают на вход акустико-эмиссионной измерительной системы 11 (например, A-Line 32D). С помощью системы 11 регистрируют зависимости 12 и 13 суммарного счета сигналов акустической эмиссии от времени (см. фиг.2) - для случая практически бездефектного образца, или зависимости 14 и 15 суммарного счета сигналов акустической эмиссии от времени (см. фиг.3) - для случая образца, содержащего трещиновидный дефект или несколько таких дефектов. На зависимостях 12, 13, 14, 15 выделяют значения 16, 17, 18, 19, соответственно, при которых прекращается рост зависимостей 12, 13, 14, 15 суммарного счета акустической эмиссии. Далее, для каждой из пар значений 16 и 17, а также 18 и 19 выделяют наименьшее значение суммарного счета акустической эмиссии и наибольшее значение суммарного счета акустической эмиссии. Затем определяют отношение наименьшего значения к большему и по степени отличия этой величины от единицы судят о наличии трещиновидных дефектов. При этом трещиновидный дефект находится в области образца между локальной нагреваемой областью и той торцевой поверхностью на которой фиксируется меньшее значение суммарного счета акустической эмиссии.
На фиг.2 приведены в качестве примера экспериментально полученные зависимости 12 и 13 суммарного счета акустической эмиссии, зарегистрированной на верхней торцевой поверхности 1 и нижней торцевой поверхности 4 бездефектного образца. Из фиг.2 следует, что точка 16 начала выполаживания зависимости 12 соответствует значению суммарного счета акустической эмиссии равному 818 импульсов, а точка 17 начала выполаживания зависимости 13 соответствует значению суммарного счета акустической эмиссии равному 741 импульсов, отношение меньшего из этих значений к большему составляет ≈0,91. Незначительное отличие полученного отношения от единицы свидетельствует об отсутствии трещиновидных дефектов в образце, а только незначительной по объему структурной неоднородности. Этот вывод был подтвержден данными проведенной оптической микроскопии шлифов полученных из исследуемого образца. На фиг.3 приведены в качестве примера экспериментально полученные зависимости 14 и 15 суммарного счета акустической эмиссии, зарегистрированной на верхней торцевой поверхности 1 и нижней торцевой поверхности 4 образца с трещиновидным дефектом. Из фиг.3 следует, что точка 18 начала выполаживания зависимости 14 соответствует значению суммарного счета акустической эмиссии равному 612 импульсов, а точка 19 начала выполаживания зависимости 15 соответствует значению суммарного счета акустической эмиссии равному 217 импульсов, отношение меньшего из этих значений к большему составляет ≈0,35. Столь значимое отличие полученного отношения от единицы свидетельствует о наличии в рассматриваемом образце трещиновидного дефекта расположенного между торцевой поверхностью с которой была получена зависимость 15 и нагреваемой локально областью 8. Этот вывод был подтвержден данными проведенной оптической микроскопии шлифов, полученных из исследуемого образца.
Таким образом, предложенный акустико-эмиссионный способ контроля качества материалов на образцах в отличие от способа-прототипа за счет возбуждения механических напряжений в локальной области термическим способом и их одновременной регистрации двумя равноудаленными от этой области приемными преобразователями позволяет реализовать схему аналогичную мостовой, что повышает достоверность и снижает трудоемкость выявления трещиновидных дефектов в образцах скальных геоматериалов, а также дает возможность оценить местоположение этих дефектов относительно центра образца.
Источники информации
1. Авторское свидетельство СССР №464813, кл. G01N 29/14, 1975.
2. Авторское свидетельство СССР №968742, кл. G01N 29/14, 1982.

Claims (1)

  1. Акустико-эмиссионный способ контроля качества материалов на образцах, заключающийся в создании в них путем внешнего воздействия механических напряжений, приеме возникающих под влиянием этих напряжений сигналов акустической эмиссии, по которым определяют наличие в образцах трещиновидных дефектов, отличающийся тем, что механические напряжения создают путем нагревания до 90°C локальной области образца, расположенной на равном расстоянии от его верхней и нижней торцевых поверхностей и параллельно с ними, осуществляют прием на каждой из этих поверхностей сигналов акустической эмиссии, распространяющихся от локальной нагреваемой области, регистрируют зависимости суммарного счета этих сигналов от времени, на которых выделяют значения, соответствующие моменту прекращения роста указанных зависимостей, а по отношению меньшего к большему из этих значений судят о наличии трещиновидных дефектов и их местоположении относительно локальной нагреваемой области.
RU2012109246/28A 2012-03-13 2012-03-13 Акустико-эмиссионный способ контроля качества материалов на образцах RU2492464C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012109246/28A RU2492464C1 (ru) 2012-03-13 2012-03-13 Акустико-эмиссионный способ контроля качества материалов на образцах

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012109246/28A RU2492464C1 (ru) 2012-03-13 2012-03-13 Акустико-эмиссионный способ контроля качества материалов на образцах

Publications (1)

Publication Number Publication Date
RU2492464C1 true RU2492464C1 (ru) 2013-09-10

Family

ID=49164986

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012109246/28A RU2492464C1 (ru) 2012-03-13 2012-03-13 Акустико-эмиссионный способ контроля качества материалов на образцах

Country Status (1)

Country Link
RU (1) RU2492464C1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104614251A (zh) * 2015-02-10 2015-05-13 太原理工大学 声发射对岩石破坏表征的试验装置及试验方法
CN109991315A (zh) * 2018-07-31 2019-07-09 安徽理工大学 一种判别工程现场不同层位岩性的声发射方法及***
CN110045026A (zh) * 2019-05-13 2019-07-23 中国石油大学(华东) 利用声发射技术识别岩石裂缝起裂应力的方法
CN113514337A (zh) * 2020-04-09 2021-10-19 新奥科技发展有限公司 干热岩破裂压力测试试验装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4004456A (en) * 1975-08-18 1977-01-25 Western Electric Company, Inc. Method and apparatus for the real-time, non-destructive evaluation of adhesion bonds using stress-wave emission techniques
US4107981A (en) * 1976-09-22 1978-08-22 Central Research Institute Of Electric Power Industry Method of estimating ground pressure
SU968742A1 (ru) * 1981-01-05 1982-10-23 Кишиневский Сельскохозяйственный Институт Им.М.В.Фрунзе Акустико-эмиссионный способ контрол материалов
SU1425536A1 (ru) * 1987-02-04 1988-09-23 Кишиневский Сельскохозяйственный Институт Им.М.В.Фрунзе Способ неразрушающего контрол покрытий
RU2226272C2 (ru) * 1999-08-09 2004-03-27 Региональное открытое акционерное общество "Владимироблгаз" Способ акустико-эмиссионного контроля и диагностирования резервуаров для хранения сжиженных газов

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4004456A (en) * 1975-08-18 1977-01-25 Western Electric Company, Inc. Method and apparatus for the real-time, non-destructive evaluation of adhesion bonds using stress-wave emission techniques
US4107981A (en) * 1976-09-22 1978-08-22 Central Research Institute Of Electric Power Industry Method of estimating ground pressure
SU968742A1 (ru) * 1981-01-05 1982-10-23 Кишиневский Сельскохозяйственный Институт Им.М.В.Фрунзе Акустико-эмиссионный способ контрол материалов
SU1425536A1 (ru) * 1987-02-04 1988-09-23 Кишиневский Сельскохозяйственный Институт Им.М.В.Фрунзе Способ неразрушающего контрол покрытий
RU2226272C2 (ru) * 1999-08-09 2004-03-27 Региональное открытое акционерное общество "Владимироблгаз" Способ акустико-эмиссионного контроля и диагностирования резервуаров для хранения сжиженных газов

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104614251A (zh) * 2015-02-10 2015-05-13 太原理工大学 声发射对岩石破坏表征的试验装置及试验方法
CN104614251B (zh) * 2015-02-10 2017-02-22 太原理工大学 声发射对岩石破坏表征的试验装置及试验方法
CN109991315A (zh) * 2018-07-31 2019-07-09 安徽理工大学 一种判别工程现场不同层位岩性的声发射方法及***
CN110045026A (zh) * 2019-05-13 2019-07-23 中国石油大学(华东) 利用声发射技术识别岩石裂缝起裂应力的方法
CN110045026B (zh) * 2019-05-13 2020-04-10 青岛理工大学 利用声发射技术识别岩石裂缝起裂应力的方法
CN113514337A (zh) * 2020-04-09 2021-10-19 新奥科技发展有限公司 干热岩破裂压力测试试验装置及方法
CN113514337B (zh) * 2020-04-09 2022-07-29 新奥科技发展有限公司 干热岩破裂压力测试试验装置及方法

Similar Documents

Publication Publication Date Title
RU2703496C1 (ru) Интегрированная система и способ для трехосевого сканирования на месте и обнаружения дефектов в объекте при статическом и циклическом испытании
Aggelis et al. NDT approach for characterization of subsurface cracks in concrete
RU2492464C1 (ru) Акустико-эмиссионный способ контроля качества материалов на образцах
CA2539086C (en) Method and apparatus for eddy current detection of material discontinuities
JP2009002945A5 (ru)
Mizukami et al. Enhancement of sensitivity to delamination in eddy current testing of carbon fiber composites by varying probe geometry
Underhill et al. Eddy current analysis of mid-bore and corner cracks in bolt holes
JP2007040865A (ja) 硬化層深さ・未焼入れ・異材判定の非破壊測定法
Janovec et al. Eddy current array inspection of riveted joints
RU2478947C1 (ru) Способ контроля качества материалов методом акустической эмиссии
Uchimoto et al. Evaluation of an EMAT–EC dual probe in sizing extent of wall thinning
JP2008175638A (ja) 構造材の欠陥検出装置及び方法
Machado et al. Inspection of composite parts produced by additive manufacturing: air-coupled ultrasound and thermography
JP2011505572A (ja) 標識粒子を用いた流体内分子測定方法
CN106680375B (zh) 用于确定材料的弹性模量的空气耦合超声检测方法
Spiessberger et al. Active Thermography for quantitative NDT of CFRP components
Faraj et al. Investigate the effect of lift-off on eddy current signal for carbon steel plate
Zhang et al. Defect depth effects in Pulsed Eddy Current thermography
CN104569155A (zh) 一种表面缺陷电磁超声检测方法
RU2494389C1 (ru) Способ контроля качества материала образца методом акустической эмиссии
JP6058436B2 (ja) 渦電流探傷装置および渦電流探傷方法
Chudacik et al. Tilt-shift eddy current probe impact on information value of response signal
Chichigin et al. Study and quantitative assessment of the structural inhomogeneities parameters of composite materials
RU2189583C2 (ru) Пироэлектромагнитный способ неразрушающего контроля
Büyüköztürk et al. Thermography and ultrasound for characterizing subsurface defects in concrete

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180314