RU2490785C1 - Метаматериальная резонансная структура - Google Patents

Метаматериальная резонансная структура Download PDF

Info

Publication number
RU2490785C1
RU2490785C1 RU2012100031/08A RU2012100031A RU2490785C1 RU 2490785 C1 RU2490785 C1 RU 2490785C1 RU 2012100031/08 A RU2012100031/08 A RU 2012100031/08A RU 2012100031 A RU2012100031 A RU 2012100031A RU 2490785 C1 RU2490785 C1 RU 2490785C1
Authority
RU
Russia
Prior art keywords
resonant structure
structure according
gap
capacitor
resonant
Prior art date
Application number
RU2012100031/08A
Other languages
English (en)
Other versions
RU2012100031A (ru
Inventor
Орест Генрихович Вендик
Ирина Борисовна Вендик
Дмитрий Викторович Холодняк
Павел Анатольевич Туральчук
Дмитрий Сергеевич Козлов
Евгения Юрьевна Замешаева
Су Сонг Кеум
Михаил Николаевич Макурин
Original Assignee
Корпорация "САМСУНГ ЭЛЕКТРОНИКС Ко., Лтд."
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Корпорация "САМСУНГ ЭЛЕКТРОНИКС Ко., Лтд.", Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина) filed Critical Корпорация "САМСУНГ ЭЛЕКТРОНИКС Ко., Лтд."
Priority to RU2012100031/08A priority Critical patent/RU2490785C1/ru
Priority to KR1020130002903A priority patent/KR101925842B1/ko
Priority to US13/738,058 priority patent/US9330836B2/en
Publication of RU2012100031A publication Critical patent/RU2012100031A/ru
Application granted granted Critical
Publication of RU2490785C1 publication Critical patent/RU2490785C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T23/00Apparatus for generating ions to be introduced into non-enclosed gases, e.g. into the atmosphere
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/22Ionisation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2209/00Aspects relating to disinfection, sterilisation or deodorisation of air
    • A61L2209/10Apparatus features
    • A61L2209/11Apparatus for controlling air treatment
    • A61L2209/111Sensor means, e.g. motion, brightness, scent, contaminant sensors

Landscapes

  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

Изобретение относится к системам беспроводной передачи энергии. Технический результат заключается в повешении индуктивности при уменьшении размеров. Резонансная структура состоит из нескольких кольцевых резонаторов, отличающаяся тем, что представляет собой обладающую свойствами метаматериала комбинацию расположенных друг под другом сильно связанных кольцевых резонаторов с зазором, каждый из которых зашунтирован конденсатором, при этом каждый кольцевой резонатор с зазором выполнен в виде металлической полоски на диэлектрической подложке и соединен с соседним резонатором с зазором посредством последовательно включенного конденсатора. 16 з.п. ф-лы, 9 ил.

Description

Изобретение относится к электрорадиотехнике, а более конкретно - к системам беспроводной передачи энергии.
Из уровня техники известны различные решения, касающиеся передачи энергии при помощи радиоволн, причем основные идеи восходят к работам Николы Тесла на рубеже XIX-XX веков (см. [1], [2]). В последующие годы для беспроводной передачи энергии было предложено использовать устройство, известное как «ректенна». Ректенна - это выпрямляющая антенна, которая применяется для непосредственного преобразования СВЧ-энергии в электрическую энергию постоянного тока. Для приема радиочастотных сигналов могут использоваться различные типы антенн (см. [3]-[6]). Большинство подобных систем беспроводной передачи энергии работают в ГГц - частотном диапазоне. К недостаткам таких решений следует отнести тот факт, что данный диапазон небезопасен для здоровья человека.
Другой подход к беспроводной передаче энергии был предложен в работе [7]. Этот метод основан на хорошо известном принципе: две разнесенные катушки, настроенные на одинаковую резонансную частоту, формируют систему, в которой передача энергии может эффективно осуществляться за счет магнитного взаимодействия между рамками. В то же время взаимодействие с другими нерезонансными объектами крайне мало. Подобные системы работают в МГц - частотном диапазоне, поэтому они могут использоваться в повседневной жизни.
В патенте Н. Тесла №649,621 [8] представлены приемная и передающая катушки, выполненные как составные части системы передачи энергии. Катушки представляют собой многовитковую спираль с магнитным сердечником. Большой диаметр катушек является основным недостатком такой системы.
В патентной заявке США № «Аппарат для беспроводной передачи энергии на основе высокодобротного низкочастотного резонатора в ближнем магнитном поле» [9] показано, как метаматериалы могут применяться в системах беспроводной передачи энергии. Предложенная авторами структура состоит из подложки, пронизанной металлизированными отверстиями и металлизированными щелями. Чтобы рабочая частота такой системы находилась в диапазоне до 100 МГц, система должна обладать высокой индуктивностью. Столь высокие значения индуктивности не могут быть реализованы указанным в заявке способом.
В статье «Анализ, экспериментальные результаты и частотная адаптация резонаторов с магнитной связью для беспроводной передачи энергии» («Analysis, Experimental Results, and Range Adaptation of Magnetically Coupled Resonators for Wireless Power Transfer») [10] описана приемо-передающая часть системы беспроводной передачи энергии, которая состоит из рамки и высокодобротной многовитковой катушки, имеющей форму спирали. Между рамкой и катушкой обеспечена магнитная связь. К недостаткам такой системы можно отнести сравнительно большие габаритные размеры катушки. Описанная в этой статье катушка представляет собой спираль из 6 витков, ее внешний диаметр составляет 59 см, рабочая частота - 10 МГц.
Техническое решение, которое по своим признакам является наиболее близким к заявляемому изобретению, описано в статье «Характеристики плоской лепестковой резонансной катушки, полученные методом схемотехнического моделирования» («Performance of a petal resonator surface (PERES) coil via equivalent circuit simulations») [11]. Предложенная в [11] структура (см. Фиг.1) имеет большую эффективность по сравнению с обычной круглой рамкой. Эквивалентная схема П-образной элементарной ячейки рамки состоит из последовательной индуктивности и двух заземленных конденсаторов. Эквивалентная схема рамки состоит из каскадного соединения восьми идентичных эквивалентных ячеек. Описанный в статье резонатор реализован в виде однослойной структуры, состоящей из отрезков микрополосковых линий, перемычек и навесных конденсаторов. Диаметр кольцевой структуры не превышает 10 см. Резонатор имеет высокую добротность и работает на частоте 64 МГц. Недостаток лепестковой резонансной структуры заключается в отсутствии взаимной индуктивности, из-за чего структуру приходится выполнять крупногабаритной для достижения необходимой индуктивности резонатора.
Задача, на решение которой направлено заявляемое изобретение, заключается в разработке такой резонансной структуры, которая позволяла бы добиться высокой величины индуктивности при уменьшении габаритных размеров. При этом авторы исходили из того, что в случае, когда между индуктивными компонентами структуры возникает взаимная индуктивность, индуктивность всей структуры возрастает при тех же размерах.
Технический результат достигается за счет разработки усовершенствованной резонансной структуры, состоящей из нескольких кольцевых резонаторов, причем заявляемая структура представляет собой обладающую свойствами метаматериала комбинацию расположенных друг под другом сильно связанных кольцевых резонаторов с зазором, каждый из которых зашунтирован конденсатором, при этом каждый кольцевой резонатор с зазором выполнен в виде металлической полоски на диэлектрической подложке и соединен с соседним резонатором с зазором с помощью последовательно включенного навесного конденсатора.
Согласно одному из вариантов реализации конденсаторы в заявляемой резонансной структуре представляют собой навесные конденсаторы.
В заявляемой резонансной структуре кольцевые резонаторы с зазором повернуты относительно друг друга на угол, выбранный так, чтобы обеспечивалась возможность размещения последовательного навесного конденсатора.
В заявляемой резонансной структуре кольцевые резонаторы с зазором имеют круглую форму или многоугольную форму с произвольным количеством сторон.
В заявляемой резонансной структуре толщина диэлектрической подложки лежит в диапазоне от 50 до 1500 мкм.
В заявляемой резонансной структуре диэлектрическая проницаемость диэлектрической подложки лежит в диапазоне от 2 до 20.
В заявляемой резонансной структуре число кольцевых резонаторов с зазором может быть сколь угодно большим.
Заявляемая резонансная структура для беспроводной передачи энергии работает в диапазоне частот 1-100 МГц.
Заявляемая резонансная структура изготавливается с применением гибридной технологии керамики с низкой температурой обжига или технологии печатных плат, позволяющих использование компонентов поверхностного монтажа.
В заявляемой резонансной структуре каждый кольцевой резонатор с зазором с шунтирующей емкостью и одной последовательной емкостью описывается эквивалентной электрической схемой, состоящей из параллельного LC-контура, последовательно соединенного с конденсатором.
В заявляемой резонансной структуре каждый указанный параллельный LC-контур состоит из индуктивного и емкостного элементов с последовательно подключенным к каждому активным сопротивлением.
Эквивалентная схема заявляемой резонансной структуры представляет собой последовательное соединение нескольких секций, каждая из которых представляет параллельный резонансный контур, образованный конденсатором и кольцевым резонатором с зазором, соединенных один с другим посредством навесного конденсатора.
В заявляемой резонансной структуре комбинация параллельных и последовательных элементов резонансной цепи обуславливает характерное для метаматериалов появление двух резонансов на частотной характеристике входного сопротивления.
Добротность заявляемой резонансной структуры составляет от 150 до 200 (Q=150-200).
Согласно одному из вариантов, в заявляемой резонансной структуре по оси кольцевых резонаторов с зазором располагают магнитный стержень.
Согласно одному из вариантов, конденсаторы в заявляемой резонансной системе представлять собой конденсаторы, встроенные в диэлектрическую подложку с высоким значением диэлектрической проницаемости.
В целом, заявляемая метаматериальная резонансная структура может использоваться в системах беспроводной передачи энергии в качестве приемника или передатчика. Характерной особенностью данной структуры являются ее малые размеры.
Для лучшего понимания заявленного изобретения далее приводится его подробное описание с соответствующими чертежами.
Фиг.1. Плоская лепестковая резонансная катушка с восемью лепестками (уровень техники).
Фиг.2. Конструкция одиночного кольцевого резонатора с зазором.
Фиг.3. Эквивалентная схема одиночного кольцевого резонатора с зазором с последовательным и шунтирующим конденсаторами.
Фиг.4. График частотной зависимости модуля входного сопротивления резонансной ячейки от частоты.
Фиг.5. Конструкция метаматериальной резонансной структуры.
Фиг.6. Эквивалентная схема многовиткового резонатора с учетом взаимной индуктивности.
Фиг.7. Послойный чертеж многовитковой резонансной конструкции.
Фиг.8. Схема многовитковой резонансной конструкции с соединительными конденсаторами.
Фиг.9. Метаматериальная резонансная структура с магнитным сердечником.
Разработанная метаматериальная резонансная структура представляет собой многослойную структуру, состоящую из нескольких идентичных секций, каждая из которых образована кольцевым резонатором с зазором (КРЗ) и параллельным конденсатором; секции соединены последовательно с использованием конденсаторов. Все емкостные элементы представляют собой навесные конденсаторы, размещаемые по технологии поверхностного монтажа. Резонансная структура является комбинацией параллельных резонансных контуров и последовательных конденсаторов.
Каждый КРЗ 1 представляет собой разомкнутое кольцо (Фиг.2). КРЗ 1 выполнен в виде тонкой металлической полоски 2, например, из меди, расположенной на диэлектрической подложке 3. Толщина металлической полоски b много меньше ее ширины а. На Фиг.2 ″R0″ - радиус КРЗ, ″а″ - ширина металлизированной полоски, формирующей КРЗ, ″b″ - толщина металлизации. Для электромагнитного возбуждения резонатора используются металлизированные площадки, расположенные по обе стороны от зазора. Толщина диэлектрической подложки лежит в диапазоне от 10 до 1500 мкм. Диэлектрическая проницаемость диэлектрической подложки составляет, как правило, от 2 до 20.
КРЗ 1 может быть реализован также в виде многоугольника с произвольным количеством сторон. Количество сторон может быть выбрано из технологических соображений, например, в зависимости от условий монтажа навесных конденсаторов.
Многовитковая резонансная структура (Фиг.5, Фиг.7) состоит из нескольких слоев, каждый из которых представляет собой топологию КРЗ, с шунтирующими конденсаторами 4 и последовательными конденсаторами 5. К КРЗ 1 параллельно подсоединяется шунтирующий конденсатор 4 с емкостью C1 (Фиг.5, Фиг.7). Каждый КРЗ 1 соединяется с соседними с помощью последовательного конденсатора 5 с емкостью С0. Контакты между компонентами, расположенными в различных слоях, обеспечиваются с помощью металлизированных отверстий и переходных соединений 6 (Фиг.7).
Несколько диэлектрических подложек 3 с нанесенным рисунком КРЗ 1 расположены друг под другом и повернуты относительно друг друга на определенный угол, как показано на Фиг.5. Угол между двумя резонаторами, расположенными в соседних слоях, выбирается таким, чтобы было достаточно места для размещения последовательного навесного конденсатора 5 с емкостью С0.
Каждый КРЗ 1 с шунтирующим конденсатором 4 емкостью C1 и одним последовательным конденсатором 5 емкостью С0 описывается эквивалентной электрической схемой, состоящей из параллельного LC-контура, последовательно соединенного с конденсатором 5 емкостью С0. Каждый параллельный контур состоит из индуктивного и емкостного элементов с последовательно подключенным к каждому активным сопротивлением. Такая схема известна как одномерная метаматериальная резонансная структура (см. [12]).
Эквивалентная схема одной резонансной ячейки изображена на Фиг.3.
Частотная зависимость входного сопротивления структуры, представленной эквивалентной схемой на Фиг.3, имеет два резонанса: последовательный (обычно обозначаемый как «резонанс») на частоте f1 и параллельный (обычно обозначаемый как «антирезонанс») на частоте f2. На резонансной частоте f1 достигается минимум входного сопротивления резонансной структуры, а на частоте f2 - максимум входного сопротивления (Фиг.4). Наличие резонанса и антирезонанса в одной колебательной системе характерно для резонансной метаматериальной структуры, обеспечивающей высокодобротный резонанс в системе (см. [12]). Резонансные частоты определяются величинами емкостей С0 и C1 и импедансом КРЗ 1, которое может быть рассчитано из его эквивалентной схемы (Фиг.3). Передача энергии наиболее эффективна на частоте f1.
Эквивалентная схема всей резонансной структуры изображена на Фиг.6. Она состоит из нескольких идентичных секций. Каждая секция представляет параллельный контур, образованный конденсатором 4 с емкостью C1, соединенным с КРЗ 1 (КРЗ эквивалентен одновитковой индуктивности). Несколько идентичных секций соединены последовательно с помощью конденсаторов 5 с емкостью Со. Эквивалентная схема такой структуры может быть преобразована в последовательное соединение нескольких идентичных элементарных ячеек, соединенных последовательно. Такое соединение кольцевых резонаторов с зазором и параллельной емкостью обеспечивает большую величину индуктивности структуры и предполагает использование больших значений сопротивления нагрузки.
Все индуктивные элементы в схеме попарно связаны между собой взаимной индукцией, что ведет к увеличению добротности структуры. Чертежи однослойных кольцевых резонаторов с зазором (КРЗ) на одиночных слоях с номерами 1, 2, … и N представлены на Фиг.7. Схема сборки многослойной резонансной структуры показана на Фиг.8.
Разработанная метаматериальная резонансная структура имеет миниатюрные размеры (<λ/100, где λ - длина волны) и достаточно высокую добротность (Q≈150÷200). Устройство может работать в частотном диапазоне 1-100 МГц. Применение многосекционной конструкции, реализованной в виде многослойной структуры, обеспечивает более высокое входное сопротивление, что ведет к увеличению значения сопротивления нагрузки.
Для получения более равномерного магнитного потока через КРЗ 1 вдоль общей оси КРЗ 1 располагают магнитный сердечник 7 (феррит). Метаматериальная резонансная структура с магнитным сердечником представлена на Фиг.9. При более равномерном магнитном поле внутри КРЗ 1 образуется более равномерное распределение плотности тока в проводниках КРЗ, что приводит к росту добротности. Введение магнитного сердечника 7 в систему КРЗ приводит к росту эффективной площади КРЗ и, в конечном итоге, к росту эффективного коэффициента связи между передающей и приемной катушками системы передачи энергии.
Предложенная резонансная структура может быть изготовлена с использованием гибридной технологии керамики с низкой температурой обжига или технологии печатных плат. Обе технологии позволяют использовать компоненты поверхностного монтажа.
Предложенная метаматериальная резонансная структура также может быть реализована без использования навесных конденсаторов. При использовании диэлектрика с высоким значением относительной диэлектрической проницаемости εr, необходимое значение емкости будет обеспечено за счет межвитковой емкости, представляющей встроенный интегрированный в подложку конденсатор.
Разработанная резонансная структура может применяться в беспроводных портативных зарядных устройствах для электронных устройств, в том числе и компактных. Бытовое использование устройств такого типа представлено, например, зарядным устройством для мобильных телефонов. В медицине разработанная структура может использоваться в кардиостимуляторах или любых других медицинских электронных устройствах, в том числе и компактных.
Список источников
1. J.J. O'Neill, Prodigal Genius - the Life of Nikola Tesia, New York: Washburn, 1944.
2. M. Cheney, Tesla, Man Out of Time, Englewood Cliffs, NJ: Prentice-Hall, 1981.
3. J. Theeuwes, Simultaneous Wireless Transmission of Power and Data Using a Rectenna, Eindhoven University of Technology, the Netherlands, 2006.
4. J. Heikkinen and M. Kivikoski, ″Low-profile circularly polarized rectifying antenna for wireless power transmission at 5.8 GHz″, IEEE Microwave and Wireless Comp. Lett., Vol.14, 2004.
5. J. Heikkinen, P. Salonen, and M. Kivikoski, ″Planar rectennas for 2.45 GHz wireless power transfer″, IEEE Radio and Wireless Conference RAWCON 2000.
6. M. Ali, G. Yang, and R. Dougal, ″A new circularly polarized rectenna for wireless power transmission and data communication″, IEEE Antennas and Wireless Propag. Lett., Vol.4, 2005.
7. A. Kurs, A. Karalis, R. Moffatt, J.D. Joannopoulus, P. Fisher, and M. Soljacic, ″Wireless Power Transfer via Strongly Coupled Magnetic Resonances”, Science, vol. 317, July 2007, pp.83-86.
8. Patent No. 649621 N. Tesla ″Apparatus for Transmission of Electrical Energy″, 1900.
9. US patent application No. 20100123530 A1 E.-S. Park, S.-W. Kwon, J.-S. Shin, Y.-T. Hong ″Apparatus for wireless power transmission using high-Q low frequency near magnetic field resonator, 2010.
10. A.P. Sample, D.T. Mayer and J.R. Smith ″Analysis, Experimental Results, and Range Adaptation of Magnetically Coupled Resonators for Wireless Power Transfer″, IEEE trans. on Industrial Electronics, vol. 58, iss.2, Feb. 2011, pp.544-554.
11. A.O. Rodriguez, E.S. Solis, M.A. Lopez, M.C. Mantaras, and S.S. Hidalgo, ″Performance of a petal resonator surface (PERES) coil via equivalent circuit simulations″, Revista Mexicana de Fisica, Vol 52, October 2006, pp.398-403.
12. С. Caioz and Т. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, NJ: John Wiley & sons, 2006.

Claims (17)

1. Резонансная структура для беспроводной передачи энергии, состоящая из нескольких кольцевых резонаторов, отличающаяся тем, что представляет собой обладающую свойствами метаматериала комбинацию расположенных друг под другом сильно связанных кольцевых резонаторов с зазором, каждый из которых зашунтирован конденсатором, при этом каждый кольцевой резонатор с зазором выполнен в виде металлической полоски на диэлектрической подложке и соединен с соседним резонатором с зазором посредством последовательно включенного конденсатора.
2. Резонансная структура по п.1, отличающаяся тем, что емкостные элементы выполнены в виде навесных конденсаторов.
3. Резонансная структура по п.1, отличающаяся тем, что кольцевые резонаторы с зазором повернуты относительно друг друга на угол, выбранный так, чтобы обеспечивалась возможность размещения последовательного навесного конденсатора.
4. Резонансная структура по п.1, отличающаяся тем, что кольцевые резонаторы с зазором имеют круглую форму или многоугольную форму с произвольным количеством сторон.
5. Резонансная структура по п.1, отличающаяся тем, что толщина диэлектрической подложки лежит в диапазоне от 50 до 1500 мкм.
6. Резонансная структура по п.1, отличающаяся тем, что диэлектрическая проницаемость диэлектрической подложки лежит в диапазоне от 2 до 20.
7. Резонансная структура по п.1, отличающаяся тем, что число кольцевых резонаторов с зазором выбирается произвольно.
8. Резонансная структура по п.1, отличающаяся тем, что частотный диапазон работы лежит в пределах 1-100 МГц.
9. Резонансная структура по п.1, отличающаяся тем, что структура выполнена с применением гибридной технологии керамики с низкой температурой обжига или технологии печатных плат, позволяющих использование компонентов поверхностного монтажа.
10. Резонансная структура по п.9, отличающаяся тем, что комбинация параллельных и последовательных элементов резонансной цепи выполнена с возможностью формирования двух резонансов на частотной характеристике входного сопротивления.
11. Резонансная структура по п.1, отличающаяся тем, что каждый кольцевой резонатор с зазором с шунтирующей емкостью и одной последовательной емкостью описывается эквивалентной электрической схемой, состоящей из параллельного LC-контура, последовательно соединенного с конденсатором.
12. Резонансная структура по п.11, отличающаяся тем, что каждый указанный параллельный LC-контур состоит из индуктивного и емкостного элементов с последовательно подключенным к каждому активным сопротивлением.
13. Резонансная структура по п.1, отличающаяся тем, что ее эквивалентная схема представляет собой последовательное соединение нескольких секций, каждая из которых представляет собой параллельный резонансный контур, образованный конденсатором и кольцевым резонатором с зазором, соединенных один с другим посредством навесного конденсатора.
14. Резонансная структура по п.1, отличающаяся тем, что ее добротность составляет от 150 до 200 (Q=150-200).
15. Резонансная структура по п.1, отличающаяся тем, что по оси кольцевых резонаторов с зазором расположен магнитный стержень.
16. Резонансная структура по п.15, отличающаяся тем, что магнитный стержень выполнен из феррита.
17. Резонансная структура по п.1, отличающаяся тем, что конденсаторы встроены в диэлектрическую подложку с высоким значением диэлектрической проницаемости.
RU2012100031/08A 2012-01-10 2012-01-10 Метаматериальная резонансная структура RU2490785C1 (ru)

Priority Applications (3)

Application Number Priority Date Filing Date Title
RU2012100031/08A RU2490785C1 (ru) 2012-01-10 2012-01-10 Метаматериальная резонансная структура
KR1020130002903A KR101925842B1 (ko) 2012-01-10 2013-01-10 무선 전력 전송 시스템을 위한 자가 공진 장치
US13/738,058 US9330836B2 (en) 2012-01-10 2013-01-10 Self-resonant apparatus for wireless power transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012100031/08A RU2490785C1 (ru) 2012-01-10 2012-01-10 Метаматериальная резонансная структура

Publications (2)

Publication Number Publication Date
RU2012100031A RU2012100031A (ru) 2013-07-20
RU2490785C1 true RU2490785C1 (ru) 2013-08-20

Family

ID=48791389

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012100031/08A RU2490785C1 (ru) 2012-01-10 2012-01-10 Метаматериальная резонансная структура

Country Status (2)

Country Link
KR (1) KR101925842B1 (ru)
RU (1) RU2490785C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU187264U1 (ru) * 2018-05-23 2019-02-27 федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики" (Университет ИТМО) Устройство беспроводной передачи энергии
RU196766U1 (ru) * 2019-12-05 2020-03-16 федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет ИТМО" (Университет ИТМО) Устройство беспроводной передачи энергии
RU2786634C1 (ru) * 2022-04-08 2022-12-23 Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный университет геосистем и технологий" Ректенна

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112189293B (zh) * 2018-03-22 2024-05-31 Lg电子株式会社 无线充电板以及无线充电装置
KR102546991B1 (ko) * 2018-08-08 2023-06-22 엘지전자 주식회사 무선 충전 패드 및 무선 충전 장치

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2419945C2 (ru) * 2007-09-01 2011-05-27 Маквет Гмбх Унд Ко. Кг Устройство и способ беспроводной передачи энергии и/или данных между устройством-источником и по меньшей мере одним целевым устройством

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006017438B4 (de) 2006-04-13 2008-09-18 Siemens Ag Resonator für Magnetresonanzanwendungen
WO2008083719A1 (en) 2007-01-12 2008-07-17 Aida Centre, S.L. Self-resonant electrically small antenna

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2419945C2 (ru) * 2007-09-01 2011-05-27 Маквет Гмбх Унд Ко. Кг Устройство и способ беспроводной передачи энергии и/или данных между устройством-источником и по меньшей мере одним целевым устройством

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU187264U1 (ru) * 2018-05-23 2019-02-27 федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики" (Университет ИТМО) Устройство беспроводной передачи энергии
RU196766U1 (ru) * 2019-12-05 2020-03-16 федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет ИТМО" (Университет ИТМО) Устройство беспроводной передачи энергии
RU2786634C1 (ru) * 2022-04-08 2022-12-23 Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный университет геосистем и технологий" Ректенна

Also Published As

Publication number Publication date
KR101925842B1 (ko) 2018-12-07
KR20130082119A (ko) 2013-07-18
RU2012100031A (ru) 2013-07-20

Similar Documents

Publication Publication Date Title
US11469598B2 (en) Device having a multimode antenna with variable width of conductive wire
Van Thuan et al. Magnetic resonance wireless power transfer using three-coil system with single planar receiver for laptop applications
US11205849B2 (en) Multi-coil antenna structure with tunable inductance
US10063100B2 (en) Electrical system incorporating a single structure multimode antenna for wireless power transmission using magnetic field coupling
CN103518324B (zh) 阻抗变换电路以及通信终端装置
US20170054213A1 (en) Multi-Mode Wireless Antenna Configurations
US9941743B2 (en) Single structure multi mode antenna having a unitary body construction for wireless power transmission using magnetic field coupling
JP2018533238A (ja) 磁界結合を用いたワイヤレス電力伝送に供されるシングルレイヤマルチモードアンテナ
US9330836B2 (en) Self-resonant apparatus for wireless power transmission system
Lee et al. Distance-insensitive wireless power transfer and near-field communication using a current-controlled loop with a loaded capacitance
US9941590B2 (en) Single structure multi mode antenna for wireless power transmission using magnetic field coupling having magnetic shielding
KR20110004322A (ko) 무선 전력 전송 시스템 및 상기 시스템을 위한 공진기
US9960629B2 (en) Method of operating a single structure multi mode antenna for wireless power transmission using magnetic field coupling
US9960628B2 (en) Single structure multi mode antenna having a single layer structure with coils on opposing sides for wireless power transmission using magnetic field coupling
Hekal et al. Compact wireless power transfer system using defected ground bandstop filters
RU2490785C1 (ru) Метаматериальная резонансная структура
Sharaf et al. A new compact dual-band wireless power transfer system using interlaced resonators
Aboualalaa et al. WPT recent techniques for improving system efficiency
Shaw et al. Efficiency enhancement of wireless power transfer system using MNZ metamaterials
Atallah Design of compact high efficient WPT system utilizing half ring resonators (HRRs) DGS for short range applications
KR101700934B1 (ko) 무선전력전송용 평면형 프랙탈 메타물질 공진기 및 에너지 집속 장치
RU196766U1 (ru) Устройство беспроводной передачи энергии
WO2022096407A1 (en) A coil structure for impedance matching in a wireless power transfer system
KR20140059722A (ko) 무선 전력 송신기 및 무선 전력 수신기
Senior et al. Planar wireless power tranfer system with embedded magnetic metamaterial resonators