RU2489513C2 - Способ алюминирования из паровой фазы полых металлических деталей газотурбинного двигателя - Google Patents

Способ алюминирования из паровой фазы полых металлических деталей газотурбинного двигателя Download PDF

Info

Publication number
RU2489513C2
RU2489513C2 RU2008139344/02A RU2008139344A RU2489513C2 RU 2489513 C2 RU2489513 C2 RU 2489513C2 RU 2008139344/02 A RU2008139344/02 A RU 2008139344/02A RU 2008139344 A RU2008139344 A RU 2008139344A RU 2489513 C2 RU2489513 C2 RU 2489513C2
Authority
RU
Russia
Prior art keywords
blade
cavity
metal
cooling fluid
donor
Prior art date
Application number
RU2008139344/02A
Other languages
English (en)
Other versions
RU2008139344A (ru
Inventor
Максим КАРЛЕН
Люси ЛАНСЬО
ЭНАНФФ Филипп ЛЕ
Original Assignee
Снекма
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Снекма filed Critical Снекма
Publication of RU2008139344A publication Critical patent/RU2008139344A/ru
Application granted granted Critical
Publication of RU2489513C2 publication Critical patent/RU2489513C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4488Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by in situ generation of reactive gas by chemical or electrochemical reaction
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/06Solid state diffusion of only metal elements or silicon into metallic material surfaces using gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/06Solid state diffusion of only metal elements or silicon into metallic material surfaces using gases
    • C23C10/08Solid state diffusion of only metal elements or silicon into metallic material surfaces using gases only one element being diffused
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/045Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/08Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal halides
    • C23C16/12Deposition of aluminium only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • F01D9/041Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector using blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/06Fluid supply conduits to nozzles or the like
    • F01D9/065Fluid supply or removal conduits traversing the working fluid flow, e.g. for lubrication-, cooling-, or sealing fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/90Coating; Surface treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/12Light metals
    • F05D2300/121Aluminium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Fluid Mechanics (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Chemical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Powder Metallurgy (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

Изобретение относится к нанесению алюминиевого покрытия на металлическую деталь и может быть использовано для нанесения такого покрытия на внутренние стенки полостей лопатки газотурбинного двигателя путем осаждения из паровой фазы. Получают галогенид путем реакции между галогеном и металлическим донором, содержащим алюминий, затем галогенид переносят газом-носителем для вхождения в контакт с внутренней стенкой лопатки упомянутого соплового направляющего аппарата. Упомянутый металлический донор размещают, по меньшей мере, частично в упомянутой полости. Упомянутая лопатка содержит полость с отверстием для подачи охлаждающей текучей среды. Упомянутый металлический донор используют в виде прутка, который вводят через отверстие для подачи охлаждающей текучей среды и который получают путем высокотемпературного спекания под давлением металлического порошка, содержащего алюминий в количестве от 30 до 80 ат.%. Получают покрытие стенок внутренних полостей металлических деталей по всей поверхности и достаточной толщины. 5 з.п. ф-лы, 3 ил.

Description

Настоящее изобретение касается нанесения алюминиевого покрытия на металлическую деталь, в частности, на полую металлическую деталь, содержащую полость с отверстием, обеспечивающим доступ в эту полость. В частности, изобретение касается нанесения такого покрытия на полые лопатки газотурбинного двигателя, содержащие рубашку для циркуляции охлаждающей текучей среды.
Газотурбинный двигатель, используемый в области авиации, содержит воздухозаборник для впуска атмосферного воздуха, сообщающийся с одним или несколькими компрессорами, один из которых является нагнетательным вентилятором, и которые приводятся во вращение вокруг одной оси. После сжатия первичный поток воздуха поступает в камеру сгорания, расположенную в виде кольца вокруг этой оси, и смешивается с топливом для получения горячих газов на выходе для одной или нескольких турбин, где газы расширяются, при этом роторы турбины вращают роторы компрессоров. Двигатели работают при температуре рабочих газов на входе турбины, которая должна быть максимально высокой, поскольку с ней связана мощность двигателя. В этой связи материалы выбирают таким образом, чтобы они могли выдерживать эти рабочие условия, и стенки деталей, обдуваемых горячими газами, таких как направляющие сопловые аппараты или подвижные лопатки турбины, оборудуют средствами охлаждения. Кроме того, в силу выполнения деталей из жаропрочного металлического сплава на основе никеля или кобальта, необходимо также предохранять эти детали от эрозии или коррозии, вызываемых компонентами рабочих газов при этих температурах.
Известным средством для обеспечения защиты этих деталей является нанесение покрытия на основе алюминия на поверхности, подвергающиеся воздействию газов. Алюминий сцепляется с подложкой за счет взаимной металлической диффузии и образует защитный поверхностный слой. Толщина этого защитного слоя составляет примерно несколько десятков микрон.
Настоящее изобретение касается известной технологии нанесения алюминия из паровой фазы, называемой также алюминированием путем осаждения из паровой фазы. Согласно этому способу, обрабатываемые детали помещают в камеру, атмосфера которой содержит смесь инертного или восстанавливающего газа, например, аргона или водорода, и активного газа, содержащего галогенид алюминия. При температуре реакции от 900°C до 1150°C галогенид алюминия разлагается на поверхности детали на газообразный галоген и алюминий, который диффундирует в металл.
Галогенид получают, помещая в камеру вместе с обрабатываемыми деталями металлические блоки алюминия или алюминиевого сплава, которые образуют донор, в присутствии гранул соединения галогена, хлора или фтора, которые образуют активатор. Инертный газ пропускают через активатор при температуре, обеспечивающей сублимацию галогена, который увлекается в сторону донора и с которым он реагирует для получения металлического галогенида, который при этой температуре находится в виде пара. После этого галогенид разлагается при контакте с металлической подложкой, предназначенной для нанесения покрытия, обеспечивая осаждение алюминия, и происходит образование газообразного галогена.
Когда неподвижные и подвижные детали содержат внутренние полости, в которых циркулирует охлаждающая текучая среда, то есть воздух, отбираемый из компрессора, то отмечается, что стенки этих полостей тоже подвержены коррозии. При возврате деталей, использованных на двигателях, работавших в определенной окружающей среде, были обнаружены следы воздействия на их поверхности. Например, была обнаружена внутренняя коррозия направляющих сопловых аппаратов, выпадение коррозионных слоев в полости сопловых аппаратов, закупоривание вентиляционных отверстий задних кромок и т.д. Поэтому эти части деталей тоже нуждаются в защите.
Способ алюминирования путем осаждения из паровой фазы сам по себе представляет изначальный интерес для нанесения защитного покрытия, так как газ-носитель и активные компоненты могут проникать в узкие каналы циркуляции охлаждающей текучей среды, если только эти каналы являются открытыми. Однако в реальности дело обстоит иначе. Толщина защитного слоя не является однородной; она существенно уменьшается, начиная от отверстий доступа в полости. Кроме того, на уровне вентиляционных отверстий полостей образуются скопления, уменьшающие проходное сечение и ухудшающие охлаждение детали.
В патентной заявке FR 2830874, поданной на имя заявителя, описан способ алюминирования путем осаждения из паровой фазы металлических деталей газотурбинных двигателей, содержащих отверстия и полости, сообщающиеся с наружным пространством, согласно которому газообразное исходное вещество наносимого покрытия, содержащее соединение алюминия, поступает при помощи газа-носителя и входит в контакт с поверхностями детали, помещенной в камеру, при этом газом-носителем является либо гелий, либо аргон, и давление в камере выбирают таким образом, чтобы средний свободный пробег молекул газа-носителя в два раза превышал средний свободный пробег молекул аргона при атмосферном давлении. Средний свободный пробег молекул обычно определяют как соотношение 1/P*D2, где P обозначает давление в камере, a D - диаметр молекул.
За счет удлинения среднего свободного пробега молекул газа-носителя диффузия галогенида во внутренних каналах увеличивается, и толщина покрытия в зонах, менее доступных при применении классических методов, увеличивается, при этом их общая защита улучшается. Увеличение среднего свободного пробега связано либо с выбором газа-носителя, в данном случае гелия, либо с уменьшением давления, что отражено в вышеуказанной формуле.
Задачей настоящего изобретения является создание способа, позволяющего получить покрытие стенок внутренних полостей металлических деталей по всей поверхности и достаточной толщины.
Изобретение касается полых деталей с полостью и, по меньшей мере, одним отверстием, через которое полость сообщается с наружным пространством и доступна снаружи. В частности, оно касается таких деталей, снабженных внутренней рубашкой внутри полости, вводимой через отверстие и соединяемой с деталью.
Такая деталь показана на фиг.1. В описываемом варианте в разрезе показан направляющий сопловой аппарат ступени низкого давления в двухконтурном газотурбинном двигателе. Лопатка 1 направляющего аппарата содержит часть, выполненную путем литья металла в оболочковую литейную форму. Эта часть (на чертеже заштрихована) выполнена в виде полой лопасти 2 между двумя сплошными плитами 3 и 4. Полость лопатки 2 сообщается на своих двух концах, с одной стороны - с отверстием 5 для подачи охлаждающей текучей среды и с другой стороны - с выходом 6 текучей среды, соответственно. Внутри полости лопатки 2 находится рубашка 9 по существу цилиндрической формы. Рубашка закреплена сваркой или пайкой со стороны отверстия 5 подачи охлаждающего воздуха путем выполнения периферического сварного/паяного шва вдоль края отверстия полости. Другой конец рубашки заходит в цилиндрическое гнездо, сообщающееся с выходом 6, но не приваривается к нему, чтобы обеспечивать относительное расширение рубашки по отношению к лопатке во время переходных этапов работы. Рубашка имеет перфорацию по своей длине и образует пространство со стенкой лопатки таким образом, чтобы охлаждающий воздух, поступающий через отверстие 5 подачи воздуха, частично проходил через отверстия перфорации рубашки и образовывал множество воздушных струй, охлаждающих стенку лопатки путем обдувания и за счет конвекции. Затем этот воздух удаляется через вентиляционные отверстия, выполненные вблизи задней кромки лопатки. Воздух, который не прошел через стенку рубашки, направляется к отверстию 6 и затем проходит к другим частям машины.
Во время изготовления рубашку 9, выполненную отдельно от лопатки, соединяют с лопаткой, вводя ее скольжением через отверстие 5, затем закрепляют пайкой вблизи устья отверстия, как было указано выше. Часть, которая на чертеже является нижней, остается свободной и может расширяться и перемещаться скольжением в гнезде, образованном отверстием 6.
Согласно изобретению, алюминирование внутри полости существенно улучшается благодаря использованию следующего способа, который может быть применен для любой детали, содержащей полость, доступную снаружи.
Способ алюминирования внутренних стенок полостей лопатки соплового направляющего аппарата газотурбинного двигателя, путем осаждения из паровой фазы, причем упомянутая лопатка содержит полость с отверстием для подачи охлаждающей текучей среды, заключается в том, что получают галогенид путем реакции между галогеном и металлическим донором, содержащим алюминий, затем галогенид переносится газом-носителем и входит в контакт с внутренней стенкой лопатки распределительного устройства, при этом металлический донор размещают, по меньшей мере, частично в упомянутой полости,
Способ характеризуется тем, что металлический донор имеет вид прутка, который вводят через отверстие для подачи охлаждающей текучей среды и который получают путем высокотемпературного спекания под давлением металлического порошка.
Металл прутка содержит алюминий, предпочтительно в сочетании с одним из металлов Cr, Ni, Co или Fe. Содержание алюминия в прутке составляет от 30 до 80% ат., в частности, от 40 до 70 ат.%.
Вводя донор в виде прутка внутрь полости, обеспечивают эффективное осаждение. В частности, решается проблема доступности внутрь детали снаружи и контролируется количество вводимого внутрь донора, например, за счет длины прутка.
В частности, пруток содержит также, по меньшей мере, один элемент, повышающий стойкость против окисления, входящий в следующую группу (Hf, У, Zr, Si, Ti, Ta, Pt, Pd, Ir).
Способ можно использовать для деталей из жаропрочного сплава на основе никеля или кобальта, таких как лопатка соплового направляющего аппарата с внутренней полостью циркуляции охлаждающей текучей среды.
Известен документ EP 1577415, в котором раскрыт способ алюминирования из паровой фазы деталей газотурбинного двигателя, таких как подвижные полые лопатки турбины, согласно которому внутрь деталей помещают полосы, состоящие на 85 мас.% из порошка на основе алюминия, остальную часть составляет органическое связующее и, в случае необходимости, активатор. Органическое связующее во время обработки обугливается, и неизрасходованную часть полосы можно легко извлечь из полости. Такая полоса сама по себе известна и описана в документе US 5334417. Решение в соответствии с настоящим изобретением позволяет легко производить манипуляции с прутком, при этом его преимуществом является отсутствие органического остатка в силу использования чисто металлического материала. Кроме того, пруток можно обрабатывать для придания ему нужной Фомы, облегчающей его использование.
Наконец, пруток не требует специальной операции извлечения, поскольку остатки удаляются во время обычных операций очистки.
Далее следует описание неограничительного варианта выполнения изобретения со ссылками на прилагаемые чертежи, на которых:
Фиг.1 изображает лопатку направляющего соплового аппарата с внутренней полостью и рубашкой для циркуляции охлаждающего воздуха, соединенной с этой полостью, при этом в упомянутую рубашку вставлен пруток, согласно изобретению;
Фиг.2 - известную в технике установку для алюминирования, в которой используется способ, согласно изобретению;
Фиг.3 - диаграмму изменения толщины слоя, наносимого на стенки внутренних полостей неподвижных лопаток при помощи известного способа и при помощи способа согласно изобретению.
На фиг.2 схематично показана известная установка для алюминирования путем осаждения из паровой фазы, в которой применяют способ в соответствии с настоящим изобретением.
Камеру 12 устанавливают внутрь печи 4, выполненной с возможностью нагрева деталей до температуры 1200°C. В этой камере размещают контейнеры 16, в данном случае три расположенных друг над другом контейнера с крышкой 16'. Эти контейнеры содержат предназначенные для обработки детали P, например, турбинные направляющие сопловые аппараты, металлический донор D в виде порошка или блоков и активатор А, например, NH4F или NH4Cl. В данном случае камера 12 содержит подвод 18 продувочного газа-носителя, подвод 19 газа-носителя для обдувки и выход 20, управляемый вентилем 21. Вместе с тем следует отметить, что в существующих установках функция обдувки является факультативной.
После размещения деталей, донора и активатора в контейнерах 16 начинают продувку камеры 12, нагнетая в нее газ-носитель, например, аргон, через трубопровод 18. Когда аргон полностью замещает воздух в камере, его подачу прекращают. После этого начинают нагрев камеры, продолжая подавать в камеру аргон через трубопровод 19. Избыток газа удаляется через трубопровод 20. При температуре активации активатора А галоген, хлор или фтор высвобождается. Входя в контакт с донором, галоген реагирует с металлом и образует галогенид. Полученный, таким образом, пар галогенида циркулирует внутри контейнеров 16 и входит в контакт с металлическими деталями Р. В этот момент галогенид разлагается и высвобождает металл, который осаждается на детали.
Аргон непрерывно подают в камеру 12 через трубопровод 19 и удаляют через трубопровод 20. Продолжительность обработки составляет от 2 до 6 часов.
Согласно изобретению, донор вводят в полость, используя донорский пруток 10.
Перед началом обработки донорский пруток 10 вводят через отверстие.
Пруток получают при помощи технологии порошковой металлургии.
Согласно этой технологии, получают смесь компонентов в виде металлического порошка, затем полученную смесь уплотняют путем спекания под давлением. Как известно, спекание является процессом, который путем термической обработки меняет агломерированную смесь из отдельных частиц под действием давления. Этот способ обеспечивает полное или частичное реагирование компонентов для получения интерметаллических элементов, которые будут выполнять функцию донора. Таким образом, получают твердый блок с пористостью, меньшей, чем первоначальная пористость. Этот процесс характеризуется также сохранением, по меньшей мере, одной интерметаллической твердой фазы, такой как алюминид хрома, в течение всей термической обработки, и сохранение определенной стабильности формы и размера.
После операции спекания пруток можно подвергнуть механической обработке, чтобы адаптировать его форму к имеющемуся пространству для введения в полость.
Преимуществом этого решения по сравнению с другим решением, согласно которому контейнер-донор размещали внутри полости, является возможность обработки детали в уже собранном виде. Применение контейнера на промежуточном этапе вынудило бы обрабатывать деталь без рубашки, затем устанавливать рубашку на деталь, стенки которой покрыты алюминиевым слоем, что требует специальной адаптации средств пайки.
Кроме того, нет необходимости очищать внутреннее пространство полости от остатков донора при помощи специального процесса. Остатки удаляются при помощи уже предусмотренных классических операций очистки.
На фиг.3 на диаграмме показана толщина слоя алюминия, образованного на поверхности внутренних стенок лопаток. Отмечается, что, согласно известному решению, эта толщина А практически является нулевой со стороны передней кромки по обе стороны вдоль части корытца и спинки. Согласно способу, в соответствии с настоящим изобретением, получают более однородную толщину В, например, от 50 до 70 мкм, как по контуру лопатки, так и между ножкой и вершиной лопатки.
Толщину внутреннего слоя можно сравнить с толщиной после обработки на наружной поверхности детали, которая на фиг.3 обозначена буквой С.

Claims (6)

1. Способ алюминирования внутренних стенок полостей лопатки соплового направляющего аппарата газотурбинного двигателя путем осаждения из паровой фазы, причем упомянутая лопатка содержит полость с отверстием для подачи охлаждающей текучей среды, включающий получение галогенида путем реакции между галогеном и металлическим донором, содержащим алюминий, затем галогенид переносят газом-носителем для вхождения в контакт с внутренней стенкой лопатки упомянутого соплового направляющего аппарата, при этом упомянутый металлический донор размещают, по меньшей мере, частично в упомянутой полости, отличающийся тем, что упомянутый металлический донор используют в виде прутка, который вводят через отверстие для подачи охлаждающей текучей среды и который получают путем высокотемпературного спекания под давлением металлического порошка, содержащего алюминий в количестве от 30 до 80 ат.%.
2. Способ по п.1, отличающийся тем, что металлическая составляющая прутка содержит алюминий в комбинации с одним из металлов Cr, Ni, Co или Fe.
3. Способ по п.1, отличающийся тем, что содержание алюминия в прутке составляет от 45 до 70 ат.%.
4. Способ по п.1, отличающийся тем, что пруток содержит также, по меньшей мере, один элемент, повышающий стойкость к окислению, выбранный из группы, состоящей из Hf, Y, Zr, Si, Ti, Ta, Pt, Pd, Ir.
5. Способ по п.1, отличающийся тем, что лопатка соплового направляющего аппарата выполнена из жаропрочного сплава на основе никеля или кобальта.
6. Способ по п.5, отличающийся тем, что внутренняя рубашка для циркуляции охлаждающей текучей среды установлена в полости лопатки соплового направляющего аппарата через отверстие подачи охлаждающей текучей среды.
RU2008139344/02A 2007-10-03 2008-10-02 Способ алюминирования из паровой фазы полых металлических деталей газотурбинного двигателя RU2489513C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0706935 2007-10-03
FR0706935A FR2921939B1 (fr) 2007-10-03 2007-10-03 Procede d'aluminisation en phase vapeur sur pieces metalliques creuses de turbomachine

Publications (2)

Publication Number Publication Date
RU2008139344A RU2008139344A (ru) 2010-04-10
RU2489513C2 true RU2489513C2 (ru) 2013-08-10

Family

ID=39365627

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008139344/02A RU2489513C2 (ru) 2007-10-03 2008-10-02 Способ алюминирования из паровой фазы полых металлических деталей газотурбинного двигателя

Country Status (8)

Country Link
US (1) US8137749B2 (ru)
EP (1) EP2045354B1 (ru)
JP (1) JP5483854B2 (ru)
CN (1) CN101403103B (ru)
CA (1) CA2640209C (ru)
DE (1) DE602008005080D1 (ru)
FR (1) FR2921939B1 (ru)
RU (1) RU2489513C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MD856Z (ru) * 2014-08-11 2015-07-31 Институт Прикладной Физики Академии Наук Молдовы Способ алитирования изделий из стали из немагнитных материалов и цветных металлов

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2921937B1 (fr) 2007-10-03 2009-12-04 Snecma Procede d'aluminisation en phase vapeur d'une piece metallique de turbomachine
DE102008056411A1 (de) * 2008-11-07 2010-05-20 Dürr Systems GmbH Beschichtungsanlagenbauteil, insbesondere Glockenteller, und entsprechendes Herstellungsverfahren
EP2432912B1 (en) * 2009-05-18 2018-08-15 Sifco Industries, Inc. Forming reactive element modified aluminide coatings with low reactive element content using vapor phase diffusion techniques
FR2950364B1 (fr) 2009-09-18 2014-03-28 Snecma Procede pour former sur la surface d'une piece metallique un revetement protecteur contenant de l'aluminium
US20130017071A1 (en) * 2011-07-13 2013-01-17 General Electric Company Foam structure, a process of fabricating a foam structure and a turbine including a foam structure
US9587492B2 (en) * 2012-05-04 2017-03-07 General Electric Company Turbomachine component having an internal cavity reactivity neutralizer and method of forming the same
FR3009842B1 (fr) * 2013-08-20 2015-08-28 Snecma Procede d'assemblage de deux pales d'un distributeur de turbomachine
US9771644B2 (en) * 2013-11-08 2017-09-26 Praxair S.T. Technology, Inc. Method and apparatus for producing diffusion aluminide coatings
FR3081027B1 (fr) * 2018-05-09 2020-10-02 Safran Aircraft Engines Turbomachine comportant un circuit de prelevement d'air
CN111850439B (zh) * 2020-07-30 2021-11-05 西安热工研究院有限公司 一种Nimonic 80A合金材质的螺栓热处理工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1687375A1 (ru) * 1989-02-23 1991-10-30 Институт Физики Прочности И Материаловедения Со Ан Ссср Способ получени порошкового сплава на основе алюмини
RU2017846C1 (ru) * 1992-06-25 1994-08-15 Научно-производственное объединение "Металл" Способ изготовления изделий из композиционных материалов
FR2706171A1 (fr) * 1993-06-07 1994-12-16 Europ Gas Turbines Sa Procédé d'aluminisation notamment pour cavités métalliques allongées.
RU2085339C1 (ru) * 1995-08-31 1997-07-27 Акционерное общество открытого типа "Всероссийский институт легких сплавов" Способ получения пористых полуфабрикатов из порошков алюминиевых сплавов
RU2121904C1 (ru) * 1997-11-13 1998-11-20 Общество с ограниченной ответственностью "Алюминиевые спеченные порошковые сплавы" Способ производства пористых полуфабрикатов из порошковых алюминиевых сплавов

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2633641B1 (fr) * 1988-06-30 1993-02-05 Snecma Procede et dispositif de protection simultanee des surfaces internes et externes, notamment par aluminisation de pieces en alliages resistant a chaud, a base de ni, co ou fe
US5071678A (en) * 1990-10-09 1991-12-10 United Technologies Corporation Process for applying gas phase diffusion aluminide coatings
US5221354A (en) * 1991-11-04 1993-06-22 General Electric Company Apparatus and method for gas phase coating of hollow articles
US5334417A (en) * 1992-11-04 1994-08-02 Kevin Rafferty Method for forming a pack cementation coating on a metal surface by a coating tape
US5997604A (en) * 1998-06-26 1999-12-07 C. A. Patents, L.L.C. Coating tape
US6224941B1 (en) * 1998-12-22 2001-05-01 General Electric Company Pulsed-vapor phase aluminide process for high temperature oxidation-resistant coating applications
US6521294B2 (en) * 1999-08-11 2003-02-18 General Electric Co. Aluminiding of a metallic surface using an aluminum-modified maskant, and aluminum-modified maskant
US6326057B1 (en) * 1999-12-29 2001-12-04 General Electric Company Vapor phase diffusion aluminide process
US6533875B1 (en) * 2000-10-20 2003-03-18 General Electric Co. Protecting a surface of a nickel-based article with a corrosion-resistant aluminum-alloy layer
FR2830874B1 (fr) * 2001-10-16 2004-01-16 Snecma Moteurs Procede de protection par aluminisation de pieces metalliques de turbomachines munies de trous et cavites
US7026011B2 (en) * 2003-02-04 2006-04-11 General Electric Company Aluminide coating of gas turbine engine blade
US6989174B2 (en) * 2004-03-16 2006-01-24 General Electric Company Method for aluminide coating a hollow article
US7332024B2 (en) * 2004-04-29 2008-02-19 General Electric Company Aluminizing composition and method for application within internal passages
US7927656B2 (en) * 2006-08-31 2011-04-19 General Electric Company Method and apparatus for controlling diffusion coating of internal passages

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1687375A1 (ru) * 1989-02-23 1991-10-30 Институт Физики Прочности И Материаловедения Со Ан Ссср Способ получени порошкового сплава на основе алюмини
RU2017846C1 (ru) * 1992-06-25 1994-08-15 Научно-производственное объединение "Металл" Способ изготовления изделий из композиционных материалов
FR2706171A1 (fr) * 1993-06-07 1994-12-16 Europ Gas Turbines Sa Procédé d'aluminisation notamment pour cavités métalliques allongées.
RU2085339C1 (ru) * 1995-08-31 1997-07-27 Акционерное общество открытого типа "Всероссийский институт легких сплавов" Способ получения пористых полуфабрикатов из порошков алюминиевых сплавов
RU2121904C1 (ru) * 1997-11-13 1998-11-20 Общество с ограниченной ответственностью "Алюминиевые спеченные порошковые сплавы" Способ производства пористых полуфабрикатов из порошковых алюминиевых сплавов

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MD856Z (ru) * 2014-08-11 2015-07-31 Институт Прикладной Физики Академии Наук Молдовы Способ алитирования изделий из стали из немагнитных материалов и цветных металлов

Also Published As

Publication number Publication date
JP2009091658A (ja) 2009-04-30
FR2921939A1 (fr) 2009-04-10
CN101403103A (zh) 2009-04-08
CA2640209C (fr) 2016-03-15
JP5483854B2 (ja) 2014-05-07
DE602008005080D1 (de) 2011-04-07
US8137749B2 (en) 2012-03-20
FR2921939B1 (fr) 2009-12-04
RU2008139344A (ru) 2010-04-10
US20090092753A1 (en) 2009-04-09
CA2640209A1 (fr) 2009-04-03
EP2045354A1 (fr) 2009-04-08
EP2045354B1 (fr) 2011-02-23
CN101403103B (zh) 2012-05-02

Similar Documents

Publication Publication Date Title
RU2489513C2 (ru) Способ алюминирования из паровой фазы полых металлических деталей газотурбинного двигателя
RU2485206C2 (ru) Способ алюминирования из паровой фазы металлической детали газотурбинного двигателя, донорская рубашка и лопатка газотурбинного двигателя, содержащая такую рубашку
KR101523099B1 (ko) 슬러리 확산 알루미나이드 코팅 조성물 및 방법
EP3049547B1 (en) Method of simultaneously applying three different diffusion aluminide coatings to a single part
EP1199377A2 (en) Protecting a surface of a nickel-base article with a corrosion-resistant aluminum-alloy layer
EP1927672B1 (en) Diffusion aluminide coating process
US7700154B2 (en) Selective aluminide coating process
US6199276B1 (en) Method for removing a dense ceramic thermal barrier coating from a surface
JP4066418B2 (ja) 孔およびキャビティを有するターボ機関の金属部品をアルミニウム処理することによって保護する方法
JP2005133206A (ja) Srzの形成に対して安定化された被覆超合金の製造方法
JP2007191790A (ja) ガスタービン部品を被覆する方法及び装置

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner