RU2488778C2 - Генератор импульсов для устройства, в частности для тахографа, и способ эксплуатации генератора импульсов - Google Patents

Генератор импульсов для устройства, в частности для тахографа, и способ эксплуатации генератора импульсов Download PDF

Info

Publication number
RU2488778C2
RU2488778C2 RU2010116751/28A RU2010116751A RU2488778C2 RU 2488778 C2 RU2488778 C2 RU 2488778C2 RU 2010116751/28 A RU2010116751/28 A RU 2010116751/28A RU 2010116751 A RU2010116751 A RU 2010116751A RU 2488778 C2 RU2488778 C2 RU 2488778C2
Authority
RU
Russia
Prior art keywords
sensors
pulse generator
reference signal
signals
data processing
Prior art date
Application number
RU2010116751/28A
Other languages
English (en)
Other versions
RU2010116751A (ru
Inventor
Хорст ПЛАНКЕНХОРН
Original Assignee
Континенталь Аутомотиве Гмбх
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Континенталь Аутомотиве Гмбх filed Critical Континенталь Аутомотиве Гмбх
Publication of RU2010116751A publication Critical patent/RU2010116751A/ru
Application granted granted Critical
Publication of RU2488778C2 publication Critical patent/RU2488778C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D3/00Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
    • G01D3/08Indicating or recording apparatus with provision for the special purposes referred to in the subgroups with provision for safeguarding the apparatus, e.g. against abnormal operation, against breakdown
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/147Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the movement of a third element, the position of Hall device and the source of magnetic field being fixed in respect to each other
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • G01D5/2451Incremental encoders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P1/00Details of instruments
    • G01P1/12Recording devices
    • G01P1/122Speed recorders
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C7/00Details or accessories common to the registering or indicating apparatus of groups G07C3/00 and G07C5/00

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Time Recorders, Dirve Recorders, Access Control (AREA)
  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Recording Measured Values (AREA)

Abstract

Изобретение относится к генератору импульсов для устройства, в частности для тахографа или тахоспидографа. Генератор (IG) импульсов в устройстве для регистрации эксплуатационных данных в автомобиле, в частности для тахографа или тахоспидографа, с измерительной головкой (10), при этом измерительная головка (10) содержит несколько пространственно-разнесенных друг от друга датчиков (11), отслеживающих механические обороты и генерирующих несколько сигналов (S1, S2, S3) датчиков, соответствующих отслеживаемым оборотам, причем предусмотрен блок (20) обработки данных, выполненный с возможностью сравнения нескольких сгенерированных сигналов (S1, S2, S3) датчиков с записанным эталонным сигналом (SM) и извещения посредством предупредительного сигнала об отклонении от записанного эталонного сигнала (SM), выходящем за пределы заданного допуска. Технический результат - повышение надежности распознавания попыток манипуляций по отношению к устройству регистрации эксплуатационных данных. 3 н. и 8 з.п. ф-лы, 4 ил.

Description

Изобретение относится к генератору импульсов для устройства, в частности для тахографа, или тахоспидографа, согласно ограничительной части пункта 1 формулы изобретения.
Кроме того, изобретение относится к устройству, оснащенному таким генератором импульсов, а также к способу эксплуатации такого генератора импульсов.
В области автомобилей изготавливаются тахографы, или тахоспидографы, применяемые в автомобилях для регистрации скорости движения или пробега, а также других данных, как, например, времени движения и стоянки. В частности, для регистрации скорости движения или пробега, применяются генераторы импульсов, встроенные в автомобиль и установленные предпочтительно на выходе коробки передач для регистрации механических оборотов колеса датчика, или тактового колеса, как, например, шестерни спидометра или аналогичного элемента. Известные генераторы импульсов содержат измерительную головку, имеющую по меньшей мере один датчик, отслеживающий механические обороты и формирующий соответствующий им сигнал датчика. Сигнал датчика часто формируется в виде импульсов с помощью электрооптического или электромагнитного прибора. Часто используется так называемый датчик Холла, регистрирующий вращение оснащенных ферромагнитными зубьями колеса генератора, или тактового колеса, соединенных с шестерней спидометра, и преобразующий их в соответствующие электронные импульсы. При этом количество сформированных импульсов пропорционально пробегу. По количеству импульсов в единицу времени можно непосредственно определить скорость в данный момент времени.
Вообще говоря, генераторы импульсов используются таким образом для регистрации эксплуатационных данных автомобилей.
В частности, в области записи эксплуатационных данных в автомобилях общего назначения безоговорочно следует избегать манипуляций с тахографами и/или генераторами импульсов из-за документального характера записей. Было обнаружено, что генераторы импульсов для тахографов при использовании датчика Холла в результате внешнего воздействия измерительной головки допускают несанкционированные манипуляции. К тому же генераторы импульсов, опломбированные с коробкой передач, разбираются и с помощью управляемой электрической катушки подвергаются воздействию переменных магнитных полей. Это ведет к возбуждению датчика Холла и тем самым к выдаче датчиком ложных сигналов. Другим видом манипуляции является наложение магнитного поля, необходимого для формирования импульсов, на сам датчик Холла. Для этого на постоянное магнитное поле накладывается мощное поле помех, так что датчик Холла устанавливается за пределами своей рабочей точки, что, в свою очередь, делает невозможным точное отслеживание механических оборотов.
Аналогичным образом несанкционированным манипуляциям могут быть подвержены также генераторы импульсов, оснащенные оптическими датчиками.
Для противодействия таким манипуляциям в WO 2006/027297 Al предлагается, например, способ распознавания манипуляций с помощью датчика, выдающего импульсы. Для этого датчик передает в блок записи импульсы измерения в реальном масштабе времени, а также по первой команде запроса - первый сигнал данных, содержащий информацию о промежуточных по времени импульсах в реальном масштабе времени, причем модуль обработки сигналов данных на основе сигналов данных определяет количество импульсов для числа импульсов сигнала данных, причем на основе второй команды запроса он передает в модуль обработки сигналов данных количество импульсов в реальном масштабе времени, соответствующее сумме импульсов в реальном масштабе времени, и причем первая и вторая команды запроса смещены относительно друг друга на определенный промежуток времени, и происходит сравнение количества импульсов в реальном масштабе времени с числом импульсов сигнала данных. Таким образом, в предложенном там способе сравнивается разность количества импульсов в реальном масштабе времени в текущих запросах и их количества в предыдущем запросе с числом импульсов, определенным за тот же период времени в результате обработки циклически передаваемых сигналов данных. Следовательно, этот способ требует определенной внутренней связи между блоком обработки и анализа данных и датчиком. Однако он может быть также весьма успешно применен в уже известных генераторах импульсов для затруднения манипуляций при передаче сигнала, относящегося к пробегу или скорости, от датчика, выдающего импульс, к блоку записи.
Предложенное изобретение ставит перед собой задачу принятия мер в отношении измерительной головки самого генератора импульсов и в части более масштабного затруднения манипуляций вышеупомянутого рода.
Для решения задачи в изобретении предлагается генератор импульсов с признаками пункта 1 формулы изобретения.
Кроме того, предлагаются устройство для регистрации эксплуатационных данных автомобиля, в частности тахограф или тахоспидограф, а также способ эксплуатации генератора импульсов.
Предложенный генератор импульсов отличается, в частности, тем, что измерительная головка имеет несколько пространственно разнесенных, т.е. удаленных друг от друга датчиков, формирующих несколько сигналов датчиков, соответствующих отслеживаемым оборотам, причем блок обработки данных сравнивает несколько сформированных сигналов датчиков между собой и/или только с одним записанным эталонным сигналом. Таким образом, при способе согласно изобретению сигналы нескольких пространственно разнесенных датчиков измерительной головки регистрируются и сравниваются между собой и/или с записанным эталонным сигналом.
В основу изобретения положена идея обеспечения генератора импульсов несколькими отдельными пространственно разнесенными датчиками измерительной головки и проверки сигналов отдельных датчиков на предмет достоверности путем сравнения с относительным и абсолютным эталоном. Операция сравнения относится к сравнению нескольких сигналов датчиков между собой (в качестве относительных эталонов) и/или к сравнению с определенным заранее эталонным сигналом (в качестве абсолютного эталона). Таким образом, может быть точно установлено, являются ли сигналы датчиков, полученные от измерительной головки, достоверными или искаженными в результате манипуляций.
Если, например, обнаруживается, что сформированные сигналы датчиков соответствуют эталонному сигналу, выученному (натренированному) во время или после установки генератора импульсов, то сигналы датчиков считаются действительными. В противном случае, например, с помощью используемой в настоящее время зашифрованной передачи данных, на тахограф передается сообщение об ошибке, в результате чего вслед за этим манипуляция может визуализироваться.
Измерительная головка, используемая в генераторе импульсов согласно изобретению, состоит по меньшей мере из двух, предпочтительно трех или более, отдельных датчиков. Последние предпочтительно интегрированы в ASIC (специализированную интегральную схему) и непосредственно интегрированы на одном чипе с интеллектуальным блоком обработки или анализа данных.
Магнитное поле, необходимое для обнаружения импульсов, предпочтительно, создается с помощью так называемого магнита Back-Bias (обратного смещения), т.е. магнита, установленного за чипом. Последний подает на датчики, находящиеся на чипе, магнитное смещение. На это смещение затем при прохождении ферромагнитного колеса датчика, т.е. тактового колеса или шестерни, накладывается сигнал детектора, который в зависимости от расположения отдельных датчиков имеет определенные форму и фазовый угол. Следовательно, получается однозначный эталонный сигнал, состоящий из нескольких сигналов датчика.
При попытке манипуляции с генератором импульсов с помощью внешних магнитных полей отдельные сигналы датчиков, в частности изменение их амплитуды или их фазовый угол искажаются настолько сильно, что они перестают совпадать с ранее выученным эталонным сигналом. Таким образом, манипуляция распознается достоверно и может визуализироваться.
Изобретение может также дискретным или гибридным способом быть реализовано с использованием тонко- или толстопленочной технологии с узлами или чипами на подложках, принятых в настоящее время в автомобильной технике.
Система, оснащенная генератором импульсов согласно изобретению, может даже достоверно распознавать манипуляцию путем возбуждения измерительной головки с помощью искусственно созданного магнитного поля. Пространственно разнесенное расположение отдельных датчиков обеспечивает надежное разграничение магнитного поля, изменяемого в результате прохождения тактового колеса или зуба, и наведенного магнитного поля. Таким образом, попытка манипуляции серьезно осложняется, поскольку создание трехмерного магнитного поля с соответствующим изменением почти невозможно, особенно если оно к тому же по времени должно было бы коррелировать с фактически зафиксированным магнитным полем. Сюда же следует добавить осложнения, связанные с самим автомобилем. Таким образом, благодаря изобретению любая попытка манипуляции исключается системным образом.
Такой достоверности обычные генераторы импульсов обеспечить не могут, поскольку они располагают только одним датчиком. Так, например, при одном датчике Холла следует учесть, что он или имеет фиксированный порог переключения, или порог переключения записывается при вводе датчика в эксплуатацию, так что накладывающиеся статические внешние поля, или поля помех, выделяться более не могут. Поэтому обычным генераторам импульсов или импульсным системам в принципе нелегко распознать манипуляцию с соответственно управляемыми магнитными полями. Эта проблема также успешно преодолевается с помощью решения согласно изобретению.
Настоящее изобретение и вытекающие из него преимущества более подробно описаны ниже на примерах выполнения со ссылкой на сопровождающие чертежи, на которых изображено:
фиг.1 - вид спереди, а также вид сбоку устройства измерительной головки генератора импульсов согласно изобретению;
фиг.2 - изменяющаяся во временной последовательности ориентация измерительной головки относительно ферромагнитного зуба и получающаяся в результате временная последовательность сигналов датчика;
фиг.3 - генератор импульсов согласно изобретению с измерительной головкой и блоком обработки данных в положении относительно тактового колеса, снабженного зубьями;
фиг.4 - временная характеристика сформированных сигналов и получающийся из нее эталонный сигнал.
На фиг.1 изображены виды спереди и сбоку принципиального устройства измерительной головки 10, используемой в генераторе импульсов согласно изобретению. Измерительная головка 10 имеет, например, три пространственно разнесенных датчика 11, предпочтительно, установленных на одной подложке 12. На обратной стороне или вблизи подложки 12 находится постоянный магнит 13, выполненный в качестве так называемого магнита обратного смещения и создающий магнитное поле, пронизывающее датчики 11, выполненные в качестве датчиков Холла, под прямым углом. Таким образом, в каждом из датчиков Холла 11 создается магнитное смещение (Offset), на которое при прохождении тактового, или зубчатого, колеса накладывается полезный сигнал. На основе эффекта Холла соответствующий датчик 11 формирует собственный сигнал датчика.
Формирование сигнала более подробно поясняется на фиг.2, которая для иллюстрации изменения ориентации измерительной головки 10 во времени относительно проходящего рядом тактового колеса-зуба Z воспроизводит положение в трех изображениях в моменты а), в) и с).
На основе эффекта Холла в каждом датчике 11 формируется импульс напряжения, пропорциональный скорости проходящего рядом зуба Z. В первом изображенном положении а) измерительная головка 10 сориентирована таким образом, что в двух из трех датчиков, а именно, S1 и S2, импульс формируется одновременно, а в третьем датчике S3 - позже. Таким образом, сигналы датчиков формируются во временной последовательности «S1 и S2, а затем S3», что означает, что сигналы S1 и S2 датчиков формируются синхронно, а сигнал S3 датчика только после них. Таким образом, пространственная ориентация измерительной головки 10 воспроизводит соответствующий эталонный сигнал «S1 ││ S2 → S3».
Во втором положении в) измерительная головка 10 установлена со слегка повернутой ориентацией, так что сигналы датчика формируются в другой момент времени, а именно во временной последовательности S2, затем S1, а после этого S3. Следовательно, образующийся эталонный сигнал состоит из трех сигналов датчиков, смещенных относительно друг друга по фазе, и изображается следующим образом: «S2→S1→S3».
В третьем положении с) на фиг.2 формируется другая последовательность, а именно сначала S2, затем S3, затем S1. Здесь также возникает эталонный сигнал «S2→S3→S1».
Благодаря соответствующей ориентации измерительной головки 10 каждый раз получается определенный эталонный сигнал. Эталонные сигналы различаются по меньшей мере различными смещениями по фазе, или по времени. Они могут также различаться по изменению амплитуды, так что соответствующий эталонный сигнал определяется как фазами, так и амплитудами сигналов S1, S2 и S3. Каждая устанавливающийся эталонный сигнал (см., например, сигнал, изображенный на фиг.4) для последующего сравнения с сигналами датчиков, зарегистрированными при эксплуатации автомобиля, может записываться при установке генератора импульсов.
На фиг.3 изображена система генератора IG импульса, содержащая такую измерительную головку 10, а также соединенный с ней блок 20 обработки данных, причем измерительная головка 10 сориентирована на ферромагнитные зубья Z колеса R датчика, или такта. При вращении колеса R такта в измерительной головке 10 формируются и сравниваются в блоке 20 обработки данных три различных сигнала S1, S2 и S3 датчиков.
Как показано на фиг.4, получается эталонный сигнал SM, однозначно определяемый сигналами S1, S2 и S3 датчиков. В этом примере сигналы датчиков формируются в последовательности S2, затем S1, а затем S3. При этом относительное смещение Т между сигналами S2 и S1 датчиков имеет определенную величину, например 95°. Смещение Т´ по фазе между сигналами S2 и S3 датчиков является большим и составляет, например, 240°.
Точно так же сформированные сигналы отличаются по соответствующему изменению амплитуд, т.е. своих амплитуд А сигналов. Сигнал S2 датчика имеет, например, наибольшую амплитуду, в то время как сигнал S3 датчика - наименьшую. Изменение А амплитуды между сигналами S2 и S1 датчиков меньше изменения амплитуды А´ между сигналами S2 и S3 датчиков. Эта характеристика также определяет однозначную структуру SM цифрового сигнала. Эталонный сигнал SM изображенный на фиг.4 может формироваться, например, системой, представленной на фиг.2b.
Таким образом, в распоряжении всегда имеются несколько сигналов датчиков, которые для проверки достоверности сигналов датчиков могут сравниваться между собой непосредственно или же в виде группы с одним заранее записанным эталонным сигналом.
Эталонный сигнал SM, изображенный на фиг.4, записывается, например, в блоке 20 обработки данных и используется для последующего сравнения. Если позднее при эксплуатации автомобиля формируются сигналы S1-S3 датчиков, то при эксплуатации без вмешательств, т.е. при эксплуатации без манипуляций, можно исходить из того, что зарегистрированные сигналы соответствуют эталонному сигналу SM. Если блок 20 обработки данных устанавливает некоторые отклонения, выходящие за рамки заданного допуска, то на тахограф подается предупредительный сигнал, указывающий на манипуляцию.
Тем самым с помощью изобретения добиваются того, что каждая попытка манипуляции сразу же и надежно распознается. Для установления наличия или отсутствия манипуляции в каждом случае может быть даже достаточно сравнить между собой только два отдельных сигнала из числа сформированных сигналов датчиков.
Во временной последовательности сигналов датчиков, изображенной здесь на основе фиг.2b и 4, следует ожидать, что в случае эксплуатации без вмешательств сигналы датчиков формируются в последовательности: «S2→S1→S3». Если теперь в блоке 20 обработки данных установлено, что, например, сигнал S3 датчика появляется раньше сигнала S1 датчика, то это было бы признаком манипуляции. Это было бы обнаружено и индицировано автоматически.
Пример выполнения изобретения относится, в частности, к генератору импульсов, оснащенному датчиками Холла. Однако аналогичным образом генераторы импульсов могут быть выполнены с другими датчиками, как, например, с магниторезистивными датчиками, в частности, с так называемыми датчиками GMR (Giant Magneto-Resistive) или же электрооптическими датчиками. Изобретение предпочтительно используется в тахографах или тахоспидографах, однако оно может быть также использовано в других видах электронных измерительных систем, в частности для регистрации эксплуатационных данных в автомобиле.

Claims (11)

1. Генератор (IG) импульсов в устройстве для регистрации эксплуатационных данных в автомобиле, в частности для тахографа или тахоспидографа, с измерительной головкой (10), при этом измерительная головка (10) содержит несколько пространственно разнесенных друг от друга датчиков (11), отслеживающих механические обороты и генерирующих несколько сигналов (S1, S2, S3) датчиков, соответствующих отслеживаемым оборотам, отличающийся тем, что предусмотрен блок (20) обработки данных, выполненный с возможностью сравнения нескольких сгенерированных сигналов (S1, S2, S3) датчиков с записанным эталонным сигналом (SM) и извещения посредством предупредительного сигнала об отклонении от записанного эталонного сигнала (SM), выходящем за пределы заданного допуска.
2. Генератор (IG) импульсов по п.1, отличающийся тем, что датчики выполнены в виде магниторезистивных датчиков, в частности датчиков GMR (Giant Magneto-Resistive), или датчиков (11) Холла, установленных вблизи постоянного магнита (13) и отслеживающих обороты тактового колеса (R), содержащего выступающие участки, в частности зубья (Z), из ферромагнитного материала.
3. Генератор (IG) импульсов по п.2, отличающийся тем, что датчики (11) Холла и блок (20) обработки данных интегрированы в одном чипе, в частности в ASIC (специализированной интегральной схеме), причем постоянный магнит зафиксирован за чипом, в частности, в виде магнита обратного смещения.
4. Генератор (IG) импульсов по п.3, отличающийся тем, что чип выполнен на подложке (12) по тонко- или толстопленочной технологии.
5. Генератор (IG) импульсов по одному из пп.1-4, отличающийся тем, что датчики (11) установлены с различными интервалами между собой, в частности, на подложке (12).
6. Генератор (IG) импульсов по п.1, отличающийся тем, что блок (20) обработки данных сравнивает сигналы (S1, S2, S3) датчиков между собой на основе задаваемых свойств сигналов, в частности изменения (А, А') амплитуды, смещения (Т, Т') по времени, или по фазе, и/или формы сигнала.
7. Генератор (IG) импульсов по п.1, отличающийся тем, что блок (20) обработки данных регистрирует по меньшей мере один из сигналов (S1, S2, S3) датчиков за задаваемый промежуток времени и записывает его в виде эталонного сигнала (SM) для сравнения с последующими регистрируемыми сигналами датчиков.
8. Генератор (IG) импульсов по п.1, отличающийся тем, что блок (20) обработки данных при установленном путем сравнения отклонении сигналов (S1, S2, S3) датчиков друг от друга и/или от эталонного сигнала (SM), в частности, превышающем величину допуска, индицирует манипуляцию над генератором (IG) импульсов.
9. Генератор (IG) импульсов по п.3, отличающийся тем, что по меньшей мере два, предпочтительно три или более отдельных датчиков (11), интегрированных в виде ASIC (специализированной интегральной схемы), интегрированы на одном чипе непосредственно с блоком (20) обработки данных.
10. Устройство для регистрации эксплуатационных данных в автомобиле, в частности тахограф или тахоспидограф, с генератором (IG) импульсов с измерительной головкой (10), при этом измерительная головка (10) содержит несколько пространственно разнесенных друг от друга датчиков (11), отслеживающих механические обороты и генерирующих несколько сигналов (S1, S2, S3) датчиков, соответствующих отслеживаемым оборотам, отличающийся тем, что предусмотрен блок (20) обработки данных, выполненный с возможностью сравнения нескольких сгенерированных сигналов (S1, S2, S3) датчиков с записанным эталонным сигналом (SM) и извещения посредством предупредительного сигнала об отклонении от записанного эталонного сигнала (SM), выходящем за пределы заданного допуска.
11. Способ эксплуатации генератора (IG) импульсов с измерительной головкой (10), при этом посредством нескольких пространственно разнесенных друг от друга датчиков (11) отслеживают механические обороты и генерируют несколько сигналов (S1, S2, S3) датчиков, соответствующих отслеживаемым оборотам, отличающийся тем, что несколько сгенерированных сигналов (S1, S2, S3) датчиков сравнивают с записанным эталонным сигналом (SM) и извещают посредством предупредительного сигнала об отклонении от записанного эталонного сигнала (SM), выходящем за пределы заданного допуска.
RU2010116751/28A 2007-09-28 2008-09-25 Генератор импульсов для устройства, в частности для тахографа, и способ эксплуатации генератора импульсов RU2488778C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102007046942A DE102007046942A1 (de) 2007-09-28 2007-09-28 Impulsgeber für eine Vorrichtung, insbesondere für einen Tachopraphen, und Verfahren zum Betreiben des Impulsgebers
DE102007046942.1 2007-09-28
PCT/EP2008/062838 WO2009043792A2 (de) 2007-09-28 2008-09-25 Impulsgeber für eine vorrichtung, insbesondere für einen tachographen, und verfahren zum betreiben des impulsgebers

Publications (2)

Publication Number Publication Date
RU2010116751A RU2010116751A (ru) 2011-11-10
RU2488778C2 true RU2488778C2 (ru) 2013-07-27

Family

ID=40435236

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010116751/28A RU2488778C2 (ru) 2007-09-28 2008-09-25 Генератор импульсов для устройства, в частности для тахографа, и способ эксплуатации генератора импульсов

Country Status (6)

Country Link
EP (1) EP2195616B1 (ru)
CN (1) CN101809414B (ru)
BR (1) BRPI0817277A2 (ru)
DE (1) DE102007046942A1 (ru)
RU (1) RU2488778C2 (ru)
WO (1) WO2009043792A2 (ru)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009042799A1 (de) * 2009-09-25 2011-03-31 Continental Automotive Gmbh Tachographenanordnung für ein Fahrzeug und Sensoranordnung für einen Tachographen
FR2982675B1 (fr) * 2011-11-14 2014-01-17 Continental Automotive France Procede de diagnostic d'une tete de detection magnetique a reluctance variable et circuit de detection
DE102012222834A1 (de) * 2012-12-12 2014-06-12 Continental Automotive Gmbh Verfahren zum Überprüfen einer in einem Kraftfahrzeug angezeigten Gesamtfahrstrecke des Kraftfahrzeugs
DE102013217883A1 (de) * 2013-09-06 2015-03-12 Continental Teves Ag & Co. Ohg Verfahren zum Überwachen eines Drehzahlsensors
DE102013219796A1 (de) 2013-09-30 2015-04-16 Continental Automotive Gmbh Impulsgeber für eine Vorrichtung zur Betriebsdatenerfassung, Getriebeanordnung mit einem Impulsgeber, Tachographenanordnung sowie Verfahren zur Erzeugung eines Ausgabesignals für eine Vorrichtung zur Betriebsdatenerfassung in einem Fahrzeug
CN103487598A (zh) * 2013-10-15 2014-01-01 湖南湘依铁路机车电器股份有限公司 机车测速多通道霍尔转速传感器及其安装方法
CN105807086B (zh) * 2016-03-11 2020-01-17 浙江万向精工有限公司 智能传感器
CN109360424B (zh) * 2018-08-31 2021-12-10 南京理工大学 一种基于人工磁场的车辆检测装置及方法
DE102020212426A1 (de) * 2020-10-01 2022-04-07 Robert Bosch Gesellschaft mit beschränkter Haftung Bewegungssensor zur Erfassung einer Bewegung eines beweglichen Objektes, System mit einem solchen Bewegungssensor und Verfahren zur Überprüfung einer Manipulation eines solchen Bewegungssensors
DE102020216530A1 (de) * 2020-12-23 2022-06-23 Continental Automotive Gmbh Tachographensystem für ein Kraftfahrzeug, Kraftfahrzeug und Verfahren zum Betreiben eines Tachographensystems

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19722549A1 (de) * 1997-05-30 1998-12-03 Bosch Gmbh Robert Elektrische Meßeinrichtung bzw. elektrisches Meßverfahren zur Erzeugung eines elektrischen Signals
DE10054530A1 (de) * 2000-07-27 2002-02-14 Daimler Chrysler Ag Verfahren zur Ermittlung der Winkellage einer drehbaren Welle und Vorrichtung zur Durchführung des Verfahrens
RU2290606C1 (ru) * 2005-06-21 2006-12-27 Дмитрий Владимирович Кизеветтер Волоконно-оптический датчик угла поворота
EP1744136A1 (en) * 2005-07-11 2007-01-17 NCTEngineering GmbH Angle sensor device
DE102005039280A1 (de) * 2005-08-19 2007-02-22 Continental Teves Ag & Co. Ohg Universeller Sensorchip

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19522257A1 (de) * 1995-06-20 1997-01-02 Vdo Schindling Verfahren zur Erkennung von Manipulationen an einer mit einem Impulsgeber durchgeführten Messung einer von einem Fahrzeug zurückgelegten Wegstrecke
DE102004043052B3 (de) 2004-09-06 2006-01-19 Siemens Ag Verfahren zur Manipulationserkennung an einer Anordnung mit einem Sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19722549A1 (de) * 1997-05-30 1998-12-03 Bosch Gmbh Robert Elektrische Meßeinrichtung bzw. elektrisches Meßverfahren zur Erzeugung eines elektrischen Signals
DE10054530A1 (de) * 2000-07-27 2002-02-14 Daimler Chrysler Ag Verfahren zur Ermittlung der Winkellage einer drehbaren Welle und Vorrichtung zur Durchführung des Verfahrens
RU2290606C1 (ru) * 2005-06-21 2006-12-27 Дмитрий Владимирович Кизеветтер Волоконно-оптический датчик угла поворота
EP1744136A1 (en) * 2005-07-11 2007-01-17 NCTEngineering GmbH Angle sensor device
DE102005039280A1 (de) * 2005-08-19 2007-02-22 Continental Teves Ag & Co. Ohg Universeller Sensorchip

Also Published As

Publication number Publication date
EP2195616A2 (de) 2010-06-16
BRPI0817277A2 (pt) 2015-06-16
CN101809414B (zh) 2012-06-06
WO2009043792A3 (de) 2009-12-03
EP2195616B1 (de) 2017-11-15
CN101809414A (zh) 2010-08-18
RU2010116751A (ru) 2011-11-10
DE102007046942A1 (de) 2009-04-16
WO2009043792A2 (de) 2009-04-09

Similar Documents

Publication Publication Date Title
RU2488778C2 (ru) Генератор импульсов для устройства, в частности для тахографа, и способ эксплуатации генератора импульсов
EP2999943B1 (en) System and method for providing signal encoding representative of a signature region in a target and of a direction of rotation
US11914007B2 (en) Redundant magnetic field sensor arrangement with galvanically decoupled chips for error detection and method for detecting errors while measuring an external magnetic field using redundant sensing
US7830278B2 (en) Sensor arrangement for the precise detection of relative movements between an encoder and a sensor
US10495700B2 (en) Method and system for providing information about a target object in a formatted output signal
US6498474B1 (en) Rotational velocity and direction sensing system
US7170280B2 (en) Method and device for the detection of local displacements and rotations
JP4972086B2 (ja) 確実な車輪回転数検出配列装置
US8138752B2 (en) Rotation detection apparatus
US8370024B2 (en) Method for detecting the direction of travel of a motor vehicle
KR20080030081A (ko) 증가된 본질 안전을 갖는 차륜 회전속도 검출 장치
US20120268109A1 (en) Method and arrangement for synchronizing a segment counter with a fine position sensor
US10845210B2 (en) Sensor with interface for functional safety
CN109471050A (zh) 用于***层级诊断的磁传感器
JP5313178B2 (ja) 位置センサ
US11531040B2 (en) Method and device for determining a speed by means of an inductive speed sensor
CN111433568B (zh) 用于确定围绕至少一个旋转轴线旋转的旋转元件的至少一个旋转特性的传感器***
JP2004198425A (ja) 回転可能なエレメントの回転角を検出するための装置
EP1583977A2 (en) Use of a ring magnet to achieve a magnetic sensor pulse train output
PL204399B1 (pl) Sposób i układ do określania ruchu elementu względem układu czujnikowego
US9612135B2 (en) Device for determining motion parameters
CN104417513B (zh) 用于监控转速传感器的方法
CN109073671A (zh) 车轮传感器接收座以及用于安装在车辆车轴上的车轮传感器***
US20210364544A1 (en) Method and device for determining a speed by means of an inductive speed sensor
US7652471B2 (en) Magnetic tagging of magnetoresistive sensors