RU2488090C1 - Устройство для испытания на прочность при сложнонапряженном состоянии тонкостенных трубчатых образцов или отрезков труб - Google Patents

Устройство для испытания на прочность при сложнонапряженном состоянии тонкостенных трубчатых образцов или отрезков труб Download PDF

Info

Publication number
RU2488090C1
RU2488090C1 RU2011154564/28A RU2011154564A RU2488090C1 RU 2488090 C1 RU2488090 C1 RU 2488090C1 RU 2011154564/28 A RU2011154564/28 A RU 2011154564/28A RU 2011154564 A RU2011154564 A RU 2011154564A RU 2488090 C1 RU2488090 C1 RU 2488090C1
Authority
RU
Russia
Prior art keywords
sample
expanding
levers
central body
angle
Prior art date
Application number
RU2011154564/28A
Other languages
English (en)
Inventor
Николай Яковлевич Сысоев
Владимир Николаевич Гостев
Алексей Александрович Иванов
Original Assignee
Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" - Госкорпорация "Росатом"
Федеральное государственное унитарное предприятие "Российский Федеральный ядерный центр - Всероссийский научно-исследовательский институт экспериментальной физики" - ФГУП "РФЯЦ-ВНИИЭФ"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" - Госкорпорация "Росатом", Федеральное государственное унитарное предприятие "Российский Федеральный ядерный центр - Всероссийский научно-исследовательский институт экспериментальной физики" - ФГУП "РФЯЦ-ВНИИЭФ" filed Critical Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" - Госкорпорация "Росатом"
Priority to RU2011154564/28A priority Critical patent/RU2488090C1/ru
Application granted granted Critical
Publication of RU2488090C1 publication Critical patent/RU2488090C1/ru

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

Изобретение относится к испытаниям на прочность при сложнонапряженном деформированном состоянии тонкостенных трубчатых образцов, в том числе отрезков труб постоянного сечения. Устройство состоит из распорного приспособления, устанавливаемого внутри образца по его краю, в состав которого входит соединенный с эластичной самоуплотняющейся манжетой и имеющий возможность осевого перемещения поршень, и канал для подачи гидравлического давления в полость образца. С другого края образца установлено такое же распорное приспособление. Каждый поршень снабжен самоцентрирующимся разжимным механизмом, состоящим из центрального корпуса с шарнирно закрепленными, по крайней мере, двумя рычагами, расположенными относительно радиального направления под углом, не превышающим угла трения, шарнирно соединенными с разжимными кулачками, контактирующими с внутренней поверхностью образца. С наружной стороны образца по его окружности в том же сечении, где расположены разжимные кулачки, размещен силовой бандаж, между рычагами и центральным корпусом установлены упругие элементы, канал для подачи гидравлического давления выполнен в одном из поршней. Технический результат: возможность гидравлических испытаний на прочность при сложнонапряженном состоянии тонкостенных трубчатых образцов постоянного сечения, не имеющих специально изготовленной захватной части, без дополнительных мер по герметизации труб, исключение риска пластического пережима образца металлов и сплавов, снижение габаритов устройства. 3 з.п. ф-лы, 1 ил.

Description

Изобретение относится к испытаниям на прочность при сложнонапряженном деформированном состоянии тонкостенных трубчатых образцов, в том числе отрезков труб постоянного сечения.
Большинство испытывающих нагрузку изделий работают в условиях сложнонапряженного состояния. Одним из способов моделирования реального сложнонапряженного состояния является испытание трубчатых образцов, при проведении которых можно создать и контролировать все возможные компоненты напряжений в любых сочетаниях. Проблема актуальна и в тех отраслях промышленности, где широко используются тонкостенные трубы, работающие под относительно высоким давлением, создающим проблему обеспечения их механической прочности (трубопроводы в нефтяной, газовой, химической промышленности, в тепловой энергетике и т.п.). Аварийное разрушение труб связано со значительным вредом, а нередко и с техногенными катастрофами, что требует неукоснительного поддержания достаточного запаса прочности при эксплуатации трубопроводов. Контроль исходной прочности труб необходим и в процессе их производства, однако в стационарных условиях предприятий-изготовителей организация комплексных испытаний качества продукции проблемы не представляет. Гораздо сложнее проведение такого контроля в условиях эксплуатации, где необходимость в нем гораздо острее. При эксплуатации труб их прочность зависит не только от исходных свойств материала, но и от продолжительности и условий эксплуатации, приводящей к коррозии, усталостному старению и другим изменениям материала, что, в конечном счете, приводит к снижению запаса прочности, и, в случае возникновения технологических пиков давления - к разрыву трубопроводов.
Существует способ контроля прочности трубопроводных систем их опрессовкой, т.е. умышленным созданием повышенного испытательного давления. Такие испытания позволяют при последующей эксплуатации трубопровода гарантировать запас прочности, соответствующий соотношению нормального и испытательного давлений. Недостатком такого способа испытаний, проводимых непосредственно на контролируемом объекте, является сложность и трудоемкость обеспечения мер безопасности, а также невозможность оценить фактический запас прочности, и в особенности изменение его во времени.
Более полную информацию о фактической текущей прочности материала трубопроводов получают при испытаниях вырезанных из них отрезков. Так, при испытании на одноосное растяжение вырезанных из труб криволинейных образцов [патент РФ №2402009, Устройство для определения упруго-пластичных свойств материала при растяжении дугообразных образцов] можно получить исчерпывающую характеристику прочности материала при воздействии на трубу окружных напряжений, вызванных радиальной нагрузкой вследствие внутреннего давления. Подобное напряженное состояние возникает на протяженных прямолинейных участках трубопроводов. Однако на перегибах труб, помимо радиальных напряжений, возникают еще и осевые напряжения, по величине уступающие радиальным лишь вдвое. В итоге возникает характерное для труб сложнонапряженное деформированное состояние, сопротивление которому, вследствие анизотропии свойств, различной степени коррозии на внутренней и внешней поверхности трубы и др. теоретически оценить трудно. Определить предельное давление, которое труба может выдержать без пластического деформирования или без разрушения, можно только экспериментально. Во избежание повреждения трубопроводной системы такие испытания проводят отдельно от нее, на фрагментах труб. Такие фрагменты могут быть получены вырезкой на проблемных участках во время восстановительных или профилактических работ.
Испытания могут быть проведены такой же гидравлической опрессовкой, но с доведением гидравлического давления до разрушения трубы. Для проведения испытаний отрезок трубы должен быть герметизирован. Простейшим способом герметизации является заваривание отрезка трубы по торцам. Однако, несмотря на внешнюю простоту, заваривание является весьма трудоемкой операцией, так как должно выполняться с высоким качеством, что сложно обеспечить на отрезках труб, длительное время находившихся в эксплуатации. Локальное снижение качества сварки на небольшом участке шва при опрессовке может привести к образованию свища, протечка в котором не позволит довести гидравлическое давление до разрушающего уровня. Заваривание торца не решает также проблему приложения к образцу или трубе внешней нагрузки при более сложной схеме испытания.
Для снижения трудоемкости и повышения надежности испытаний нагрузку к трубчатым образцам прикладывают с помощью механических зажимов, например, с использованием цанговых зажимов или креплением по специально отвальцованным по периметру трубы окружным гофрам [Писаренко Г.П., Лебедев А.А. Деформирование и прочность материалов при сложном напряженном состоянии. Киев, изд-во «Наукова думка», 1976, с. 224]. Для создания в полости трубы гидравлического давления ее торцы герметизируют, например, с помощью самоуплотняющихся манжет. Обеспечивая надежность испытаний, такие устройства остаются весьма трудоемкими в эксплуатации, так как требуют достаточно высокой и равномерно распределенной по периметру закрепляющей нагрузки. Сложность задачи возрастает по мере роста диаметра трубы, пропорционально второй степени которого возрастает нагрузка на торец трубы, а соответственно и закрепляющее усилие.
Наиболее близким к предлагаемому устройству является устройство для испытания труб внутренним давлением [патент РФ, №2055342 с приоритетом от 27.02.1996, G01N 3/10. Устройство для испытания труб внутренним давлением]. Устройство содержит корпус с центральным цилиндрическим отверстием для размещения конца испытываемой трубы. В корпусе выполнены пазы, канал для подвода рабочей среды. Имеется уплотнительная манжета, а также нажимной механизм, выполненный в виде плунжера и возвратной пружины и установленный с возможностью перемещения в радиальном направлении. Устройство снабжено распорным механизмом, содержащим верхний язычок, нижний язычок и клин, а также привод перемещения механизма в виде зубчатой рейки и шестерни.
Недостатком рассматриваемого устройства является то, что для создания закрепляющего усилия необходимо приложение внешней активной силы, для чего, в свою очередь, требуются дополнительные устройства.
Устройство для испытания труб внутренним давлением [патент РФ, №2055342, с приоритетом от 27.02.1996, G01N 3/10] выбрано в качестве прототипа.
Задачей, стоящей перед авторами предполагаемого изобретения, является разработка устройства для испытаний на прочность при сложнонапряженном деформированном состоянии тонкостенных трубчатых образцов (отрезков труб) внутренним гидравлическим давлением, гарантирующего достаточное закрепляющее усилие и исключающее разрушение хвостовиков образца под действием закрепляющих усилий, т.е. повышающее надежность испытаний и снижающее трудоемкость их проведения.
Техническим результатом данного технического решения является возможность гидравлических испытаний на прочность при сложнонапряженном состоянии тонкостенных трубчатых образцов (отрезков труб) постоянного сечения, не имеющих специально изготовленной захватной части, без дополнительных мер по герметизации труб, исключение риска пластического пережима образца металлов и сплавов, снижение габаритов устройства.
Технический результат достигается тем, что устройство для испытания на прочность тонкостенных трубчатых образцов, состоящее из распорного приспособления, устанавливаемого внутри образца по его краю, в состав которого входит соединенный с эластичной самоуплотняющейся манжетой и имеющий возможность осевого перемещения поршень, и канал для подачи гидравлического давления в полость образца. Согласно изобретению, с другого края образца установлено такое же распорное приспособление, при этом каждый поршень снабжен контактирующим с ним самоцентрирующимся разжимным механизмом, состоящим из центрального корпуса с шарнирно закрепленными по крайней мере двумя рычагами, расположенными относительно радиального направления под углом, не превышающим угла трения, шарнирно соединенными с разжимными кулачками, контактирующими с внутренней поверхностью образца, а с наружной стороны образца по его окружности в том же сечении, где расположены разжимные кулачки, размещен силовой бандаж, между рычагами и центральным корпусом установлены упругие элементы, канал для подачи гидравлического давления выполнен в одном из поршней.
Рычаги равномерно распределены на окружности разжимного механизма.
На центральном корпусе устройства соосно с конструкцией могут быть выполнены элементы, обеспечивающие приложение к образцу внешней осевой нагрузки в растягивающем или сжимающем направлениях.
На разжимных кулачках могут быть выполнены элементы, обеспечивающие приложение к образцу крутящего момента.
Основное достоинство самоцентрирующегося разжимного механизма состоит в простоте и надежности, которая обеспечивается применением шарнирно и равномерно закрепленных на корпусе рычагов под углом, не превышающем угла трения. Такой выбор угла наклона рычагов дает возможность при увеличении давления в полости трубчатого образца или отрезка трубы, автоматически увеличивать усилие прижима кулачков к внутренней поверхности образца. Силовой бандаж, установленный с наружной стороны образца по его окружности в том же сечении, где расположены разжимные кулачки, обеспечивает замыкание силовой цепи, а упругие элементы, воздействующие на рычаги в направлении отклонения их продольной оси, создают начальную радиальную нагрузку на разжимных кулачках.
На фиг. 1 показана схема конкретного исполнения устройства для герметизации и силового замыкания внутреннего пространства трубчатого образца или отрезка трубы при гидравлических испытаниях, где:
1 - трубчатый образец;
2 - поршень;
3 - самоуплотняющаяся манжета;
4 - центральный корпус;
5 - рычаги;
6 - разжимные кулачки;
7 - упругие элементы;
8 - силовой бандаж;
9 - рабочая жидкость.
Устройство работает следующим образом. Создаваемое внутри трубчатого образца 1 гидравлическое давление воздействует на каждый из двух поршней 2, стремясь вытолкнуть их из трубчатого образца 1. Утечку рабочей жидкости 9 через зазор между поршнем 2 и трубчатым образцом 1 предотвращает закрепленная по периметру поршня 2 самоуплотняющаяся манжета 3, имеющая возможность осевого перемещения вместе с поршнем. Для подачи рабочей жидкости во внутреннюю полость трубчатого образца 1 в одном из двух поршней 2 имеется проходное отверстие и штуцер (на фиг. 1 не показано) для присоединения к внешней гидравлической системе.
Выталкиванию поршня 2 препятствует самоцентрирующий разжимной механизм, который состоит из центрального корпуса 4, шарнирно закрепленных на нем и равномерно распределенных по его окружности, расположенных относительно радиального направления под углом, не превышающим угла трения α двух или трех рычагов 5, также шарнирно закрепленных с разжимными кулачками 6, соприкасающимися с внутренней поверхностью трубчатого образца 1.
Шарнирно закрепленные к центральному корпусу 4 и равномерно распределенные по окружности рычаги 5 с шарнирно закрепленными на них разжимными кулачками 6 под действием упругих элементов 7 стремятся принять радиальное положение, чему препятствуют габариты трубчатого образца 1. Размеры рычагов 5 подбираются таким образом, чтобы в рабочем положении угол между рычагами 5 и радиальным направлением не превышал угла трения α между разжимными кулачками 6 и внутренней поверхностью трубчатого образца 1. До создания гидравлического давления в полости трубчатого образца 1 упругие элементы 7, воздействуя через рычаги 5, создают между разжимными кулачками 6 и внутренней поверхностью трубчатого образца 1 небольшие начальные усилия. При создании гидравлического давления пропорциональная ему осевая нагрузка передается на центральный корпус 4, от него на рычаги 5, угол установки которых приводит к преобразованию осевой нагрузки в рабочие радиальные усилия, одинаковые на всех кулачках 6 вследствие симметрии самоцентрирующейся рычажной системы. С внешней стороны трубчатого образца 1 по его окружности и в том же сечении, где расположены разжимные кулачки 6, размещается силовой бандаж 8, имеющий прочность и жесткость, достаточные для восприятия радиального усилия от разжимных кулачков 6. Зазор между силовым бандажом 8 и внешней поверхностью трубчатого образца 1 должен либо отсутствовать, либо иметь размер, в пределах которого разжатие края трубчатого образца 1 неспособно привести к возникновению разрушающих напряжений. Угол установки рычагов 5 обеспечивает такую величину радиальных усилий, при которой соответствующая им и коэффициенту трения величина силы трения достаточна для удержания устройства от перемещения в осевом направлении под воздействием гидравлической осевой нагрузки. В конечном счете, осевая нагрузка воспринимается сечением трубчатого образца 1, создавая в рабочей части продольную компоненту напряжений, действующую одновременно с окружной компонентой. Таким образом, в стенке трубчатого образца 1 создается напряженно-деформированное состояние, с наиболее опасным характером, свойственным для мест перегиба трубопроводов.
Для создания сложнонапряженного деформированного состояния с иным соотношением действующих напряжений, помимо действующей от гидравлического давления нагрузки, к центральному корпусу 4 может быть приложена дополнительная осевая сила Р, как совпадающая по направлению с гидравлической нагрузкой, повышающая растягивающие трубчатый образец 1 продольные напряжения, так противоположная гидравлической нагрузке, т.е. компенсирующая продольные напряжения в трубе. Устройство допускает также приложение к трубчатому образцу 1 крутящего момента, который может быть приложен с помощью внешнего устройства к разжимным кулачкам 6.

Claims (4)

1. Устройство для испытания на прочность при сложнонапряженном состоянии тонкостенных трубчатых образцов или отрезков труб, состоящее из распорного приспособления, устанавливаемого внутри образца по его краю, в состав которого входит соединенный с эластичной самоуплотняющейся манжетой и имеющий возможность осевого перемещения поршень, и канал для подачи гидравлического давления в полость образца, отличающееся тем, что с другого края образца установлено такое же распорное приспособление, при этом каждый поршень снабжен контактирующим с ним самоцентрирующимся разжимным механизмом, состоящим из центрального корпуса с шарнирно закрепленными по крайней мере двумя рычагами, расположенными относительно радиального направления под углом, не превышающим угла трения, шарнирно соединенными с разжимными кулачками, контактирующими с внутренней поверхностью образца, а с наружной стороны образца по его окружности в том же сечении, где расположены разжимные кулачки, размещен силовой бандаж, между рычагами и центральным корпусом установлены упругие элементы, канал для подачи гидравлического давления выполнен в одном из поршней.
2. Устройство по п.1, отличающееся тем, что рычаги равномерно распределены на окружности разжимного механизма.
3. Устройство по п.1, отличающееся тем, что на его центральном корпусе соосно с конструкцией установлены элементы, обеспечивающие приложение к образцу внешней осевой нагрузки в растягивающем или сжимающем направлениях.
4. Устройство по п.1, отличающееся тем, что на разжимных кулачках установлены элементы, обеспечивающие приложение к образцу крутящего момента.
RU2011154564/28A 2011-12-29 2011-12-29 Устройство для испытания на прочность при сложнонапряженном состоянии тонкостенных трубчатых образцов или отрезков труб RU2488090C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011154564/28A RU2488090C1 (ru) 2011-12-29 2011-12-29 Устройство для испытания на прочность при сложнонапряженном состоянии тонкостенных трубчатых образцов или отрезков труб

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011154564/28A RU2488090C1 (ru) 2011-12-29 2011-12-29 Устройство для испытания на прочность при сложнонапряженном состоянии тонкостенных трубчатых образцов или отрезков труб

Publications (1)

Publication Number Publication Date
RU2488090C1 true RU2488090C1 (ru) 2013-07-20

Family

ID=48791250

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011154564/28A RU2488090C1 (ru) 2011-12-29 2011-12-29 Устройство для испытания на прочность при сложнонапряженном состоянии тонкостенных трубчатых образцов или отрезков труб

Country Status (1)

Country Link
RU (1) RU2488090C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2566393C1 (ru) * 2014-09-01 2015-10-27 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" - Госкорпорация "Росатом" Устройство для испытания на растяжение дугообразных образцов из токопроводящего материала при повышенной температуре
CN110487640A (zh) * 2019-07-31 2019-11-22 西南石油大学 一种变径膨胀锥试验装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU367354A1 (ru) * 1970-06-22 1973-01-23 Герметизирующая головка
SU411347A1 (ru) * 1971-08-18 1974-01-15
RU2055342C1 (ru) * 1992-05-08 1996-02-27 Колпинское отделение Всесоюзного научно-исследовательского и проектно-конструкторского института металлургического машиностроения Устройство для гидроиспытаний труб внутренним давлением
CN201583391U (zh) * 2009-10-27 2010-09-15 河北可耐特玻璃钢有限公司 大口径管道水压试压台

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU367354A1 (ru) * 1970-06-22 1973-01-23 Герметизирующая головка
SU411347A1 (ru) * 1971-08-18 1974-01-15
RU2055342C1 (ru) * 1992-05-08 1996-02-27 Колпинское отделение Всесоюзного научно-исследовательского и проектно-конструкторского института металлургического машиностроения Устройство для гидроиспытаний труб внутренним давлением
CN201583391U (zh) * 2009-10-27 2010-09-15 河北可耐特玻璃钢有限公司 大口径管道水压试压台

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2566393C1 (ru) * 2014-09-01 2015-10-27 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" - Госкорпорация "Росатом" Устройство для испытания на растяжение дугообразных образцов из токопроводящего материала при повышенной температуре
CN110487640A (zh) * 2019-07-31 2019-11-22 西南石油大学 一种变径膨胀锥试验装置
CN110487640B (zh) * 2019-07-31 2024-04-05 西南石油大学 一种变径膨胀锥试验装置

Similar Documents

Publication Publication Date Title
da Costa Mattos et al. Failure analysis of corroded pipelines reinforced with composite repair systems
Lasebikan et al. Burst pressure of super duplex stainless steel pipes subject to combined axial tension, internal pressure and elevated temperature
AU2013200494B2 (en) Low Pressure Hot Tap Pipeline Isolation
Kyriakides et al. On the effect of the UOE manufacturing process on the collapse pressure of long tubes
FI80793C (fi) Anordning foer laeckagedetektering.
RU2488090C1 (ru) Устройство для испытания на прочность при сложнонапряженном состоянии тонкостенных трубчатых образцов или отрезков труб
CN107607311B (zh) 一种闸阀关闭件强度试验装置
JP6359416B2 (ja) 密封構造及びその密封構造を備えた外圧負荷試験機
Ye et al. Limit bending moment for pipes with two circumferential flaws under combined internal pressure and bending
Cosham et al. Crack-like defects in pipelines: the relevance of pipeline-specific methods and standards
Takahashi et al. Fracture and deformation behaviors of tee pipe with local wall thinning
CN104655486A (zh) 管状试样恒变形应力腐蚀试验夹具
Pisarski et al. Flaw tolerance of pipelines containing circumferential flaws subjected to axial straining and internal pressure-tests and analyses
Weber et al. Joining by die-less hydroforming with outer pressurization
KR200487255Y1 (ko) 배관의 조인트부 시험 평가 장치
RU2668953C1 (ru) Способ определения несущей способности трубчатого анкера и установка для его реализации
RU2410666C1 (ru) Устройство для определения свойств материала при гидростатическом нагружении тонкостенных оболочек
Liessem et al. UOE Pipes For Ultra Deep Water Application—Analytical a Nd FE Collapse Strength Prediction Vs. Full-Scale Tests of Thermally Treated Line Pipe
Höhler et al. Influence of material heterogeneity on the strain capacity of pipelines
Jones Review of HT bolt tightening, removal and replacement procedures
Verstraete et al. Considerations in selecting laboratory scale test specimens for evaluation of fracture toughness
RU2556312C1 (ru) Способ испытания материалов на фреттинг-усталость
Quesada et al. Considerations When Restraining Molecularly Oriented PVC Pipe
Saito et al. Fatigue life properties of stainless steels in wide ranged biaxial stress state
SU1320701A1 (ru) Способ испытани труб на сопротивление разрушению