RU2480247C2 - Пригодный для медицинского применения препарат, состоящий из макромера с концевыми диизоцианатными группами, используемый в качестве клея или уплотнителя для внутреннего применения - Google Patents

Пригодный для медицинского применения препарат, состоящий из макромера с концевыми диизоцианатными группами, используемый в качестве клея или уплотнителя для внутреннего применения Download PDF

Info

Publication number
RU2480247C2
RU2480247C2 RU2010139854/15A RU2010139854A RU2480247C2 RU 2480247 C2 RU2480247 C2 RU 2480247C2 RU 2010139854/15 A RU2010139854/15 A RU 2010139854/15A RU 2010139854 A RU2010139854 A RU 2010139854A RU 2480247 C2 RU2480247 C2 RU 2480247C2
Authority
RU
Russia
Prior art keywords
acid
composition
adhesive
range
medical use
Prior art date
Application number
RU2010139854/15A
Other languages
English (en)
Other versions
RU2010139854A (ru
Inventor
Роберт Б. ВЕТРЕСИН
Элизабет ВАЙЛХЕ
ХОЛТЕН Роберт В. ВАН
Original Assignee
Этикон, Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Этикон, Инк. filed Critical Этикон, Инк.
Publication of RU2010139854A publication Critical patent/RU2010139854A/ru
Application granted granted Critical
Publication of RU2480247C2 publication Critical patent/RU2480247C2/ru

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/001Use of materials characterised by their function or physical properties
    • A61L24/0042Materials resorbable by the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/04Surgical adhesives or cements; Adhesives for colostomy devices containing macromolecular materials
    • A61L24/043Mixtures of macromolecular materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4244Polycondensates having carboxylic or carbonic ester groups in the main chain containing oxygen in the form of ether groups
    • C08G18/4247Polycondensates having carboxylic or carbonic ester groups in the main chain containing oxygen in the form of ether groups derived from polyols containing at least one ether group and polycarboxylic acids
    • C08G18/4252Polycondensates having carboxylic or carbonic ester groups in the main chain containing oxygen in the form of ether groups derived from polyols containing at least one ether group and polycarboxylic acids derived from polyols containing polyether groups and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2230/00Compositions for preparing biodegradable polymers

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Surgery (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Organic Chemistry (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Materials For Medical Uses (AREA)
  • Medicinal Preparation (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Sealing Material Composition (AREA)

Abstract

Настоящее изобретение относится к медицине и описывает пригодный для медицинского применения состав, содержащий макромер с концевыми диизоцианатными группами или его смеси и окисленную целлюлозу. Данный состав используется в качестве клея или уплотнителя для внутреннего применения. При использовании описанного состава адгезия полимера к субстрату улучшается, когда избыток свободной воды в месте проведения операции ограничивает эффективность клея. 5 з.п. ф-лы, 2 пр., 4 ил.

Description

Перекрестные ссылки на смежные изобретения
В настоящей заявке объявляется о приоритете изобретения из Заявки на патент США за № 12/040211, поданной 29 февраля 2008 года. Полная раскрываемая информация упомянутой выше смежной заявки на патент США для любых целей включается в текст настоящего документа путем ссылки.
Смежные заявки
Данная заявка является смежной с заявкой на патент США № 11/772401, поданной 02 июля 2007 г.; заявкой на патент США № 11/333057, поданной 17 января 2006 г., и заявкой на патент США № 11/476512, поданной 28 июня 2006 г., являющейся частичным продолжением заявки на патент США № 11/032332, поданной 10 января 2005 г.
Область изобретения
В настоящем документе описываются новые полиизоцианатные макромеры или их смеси, а также их использование для создания клея или уплотнителя для внутреннего применения для использования в хирургии сердечно-сосудистой системы, периферийных сосудов, кардиоторакальной хирургии, а также в гинекологической, неврологической и общей брюшной хирургии. Более конкретно, макромеры, их смеси и препараты на их основе полимеризуются в организме человека с образованием эластичного геля, являющегося биологически совместимым и распадающегося на нетоксичные и биосовместимые продукты. Кроме того, продукты распада растворимы в воде, что позволяет выводить их из организма вместе с продуктами обмена.
Предпосылки создания изобретения
В общем случае к тканевому клею предъявляются следующие основные требования:
(1) применяемый клей должен имитировать механические свойства неповрежденной ткани;
(2) клей должен быть достаточно липким для «первичной» фиксации при сохранении возможности манипуляций и выравнивания перед затвердеванием;
(3) экзотермические процессы, протекающие при затвердевании клея, не должны повреждать окружающую ткань;
(4) клей не должен вызывать токсической реакции у окружающей ткани и должен, по возможности, способствовать восстановлению новой ткани;
(5) клей не должен выделять вредных продуктов распада;
(6) клей должен распадаться и при распаде должен замещаться новой тканью с минимальным образованием рубцов; и
(7) продукты биологического распада не должны накапливаться в организме, а должны естественным путем устраняться либо путем выделения, либо путем встраивания в естественный биохимический цикл.
[«Polymeric Biomaterials», 2е издание, Marcel Dekker Inc., (2002) стр. 716]
Специалистам в данной области хорошо известно, что диизоцианатные мономеры могут использоваться для создания полимерных клеев. Однако многие диизоцианатные мономеры, имеющиеся в продаже, представляют собой низкомолекулярные диизоцианатные мономеры, которые являются токсичными, обладают сенсибилизирующими свойствами и полимеризуются с образованием материалов, имеющих токсичные продукты распада, например ароматические амины. Низкомолекулярные диизоцианатные мономеры как таковые не подходят для применения в организме человека в качестве клея или уплотнителя для внутреннего применения.
Приемлемые с метаболической точки зрения полиизоцианатные мономеры описаны в патенте США № 4829099. Более конкретно, в указанном документе описывается мономер с концевыми группами ароматического бензоил-изоцианата, содержащий остатки гликолевой кислоты и остатки полиэтиленгликоля с формулой «I, предпочтительно». В описанном выше документе указывается, что образующийся полимер распадается с образованием, в конечном счете, приемлемых с метаболической точки зрения продуктов, включая пара-аминобензойную кислоту, полиэтиленгликоль и гликолевую кислоту. Хотя полученный полимер в основном может распадаться на упомянутые выше соединения, считается, что лишь гликолевая кислота может гидролизоваться in vivo с образованием смеси водорастворимых и водонерастворимых фрагментов. Водорастворимые фрагменты могут выводиться из организма естественным путем, через выделения. Однако водонерастворимые фрагменты естественным путем не выводятся, что приводит к их нежелательному накоплению в организме.
В патенте США № 6210441 описаны блок-сополимеры полиэфир-уретан-мочевины, полученные из имеющихся в продаже низкомолекулярных диизоцианатов, таких как толуол диизоцианат (TDI), дифенилметан-4,4'-диизоцианат (MDI) и гексаметилен диизоцианат (HMDI). Однако данные сополимеры не могут использоваться в качестве хирургического клея или уплотнителя, поскольку сополимеры уже полимеризованы, то есть затвердели, и не обеспечивают достаточных возможностей для манипуляций и выравнивания. Кроме того, данные сополимеры, как предполагается, не имитируют механических характеристик неповрежденной ткани.
Таким образом, существует потребность в составе клея или уплотнителя для внутреннего применения на основе мономера, способного полимеризоваться in vivo с образованием клея или уплотнителя для внутреннего применения, сохраняющего способность к манипуляциям и выравниванию. В частности, желательно, чтобы состав клея или уплотнителя заполнял внутренние пазухи и пустоты, проникал и плотно прилегал к полостям и порам ткани перед затвердеванием или схватыванием.
Кроме того, существует потребность в составе клея или уплотнителя для внутреннего применения на основе мономера, полимеризующегося in vivo, в котором мономер, состав на его основе и образующийся полимер являются биосовместимыми. Образующийся полимер также должен подвергаться биологическому распаду.
Наконец, желательно, чтобы продукты распада полученного полимера были как биологически совместимыми, так и растворимыми в воде, чтобы продукты распада полностью выводились из человеческого организма вместе с продуктами обмена.
Краткое описание изобретения
В настоящем документе описываются новые макромеры или их смеси, содержащие концевые остатки бензоил-изоцианата, включающие как минимум одну группу мочевины в жестком сегменте и как минимум два остатка водорастворимого полимера в гибком сегменте, с молекулярным весом от 80 до 10000, прилегающие к карбонильной группе бензоил-изоцианатных остатков, образующих, таким образом, как минимум две эфирные связи в макромере.
Определения
Все технические и научные термины, используемые в настоящем документе, если не дано иное определение, имеют общепринятое значение, понятное специалисту в области, к которой имеет отношение настоящее изобретение. Все патенты и публикации, упоминаемые в настоящем документе, включаются в него путем ссылки.
«Биосовместимым» в настоящем документе называется материал, который, будучи введенным, существенно не препятствует заживлению раны и/или регенерации ткани и не вызывает существенных метаболических нарушений.
«Биоразлагаемым» и «биопоглощаемым» в настоящем документе называется материал, который спонтанно или средствами организма млекопитающих разлагается на компоненты таким образом, что существенно не препятствует заживлению раны и/или регенерации тканей и не вызывает существенных метаболических нарушений.
«Водорастворимым полимером» в настоящем документе называется полимер, который растворяется в воде с образованием прозрачных растворов в условиях окружающей среды (например, при температуре тела).
«Полиизоцианатом» в настоящем документе называется соединение, содержащее две и несколько изоцианатных групп.
«Уретановой связью» в настоящем документе называется остаток, получающийся из уретановой группы и включающий карбонилсодержащую функциональную группу, в которой углеродный атом карбонильной группы связан как с кислородом эфира, так и с азотом амина:
Figure 00000001
[«Organic Chemistry», J. McMurry, 2е издание, Brooks/Cole Publishing Company, (1988), стр.1129].
«Мочевинной связью» в настоящем документе называется остаток, получающийся из группы, включающей карбонилсодержащую функциональную группу, в которой углеродный атом карбонильной группы связан с идентичными атомами азота аминных групп:
Figure 00000001
[«Nomenclature of Organic Chemistry», Pergamon Press, Oxford, (1979)].
«Жестким сегментом» в настоящем документе называется часть повторяющегося фрагмента, придающая полимеру прочность и жесткость.
«Гибким сегментом» в настоящем документе называется часть повторяющегося фрагмента, которая, как правило, модифицируется для управления эластичностью, пластичностью и другими подобными свойствами полимера
Краткое описание чертежей
На фиг.1 показана структура полиуретана, имеющего «жесткие» и «гибкие» сегменты.
На фиг.2 показан пример линейного макромера с формулой Ia.
На фиг.3 показан пример разветвленного макромера с формулой Ib.
На фиг.4 показано улучшение прочности на разрыв, достигаемое при помощи настоящего состава.
Подробное описание изобретения
Как описано выше, состав клея или уплотнителя на основе мономера, способный полимеризоваться in vivo с образованием клея или уплотнителя для внутреннего применения, должен смачивать ткань, на которую он наносится, пропитывать ее и прилегать к полостям и порам ткани перед затвердеванием или схватыванием. Кроме того, мономер, состав на его основе и получающийся полимер должны быть биосовместимыми.
Мономер и состав на его основе, описанные в настоящем документе, могут иметь внутреннее применение, поскольку ни мономер, ни состав на его основе, ни получающийся полимер не метаболизируются в организме человека с образованием токсичных продуктов.
Кроме того, мономер и состав на его основе полимеризуются и образуют при контакте с водой и жидкостями организма биосовместимый полимер. Далее биосовместимый полимер распадается in vivo с образованием продуктов распада, биосовместимых и растворимых в воде, которые выводятся из организма с продуктами обмена.
Указанный мономер и состав на его основе имеют много вариантов применения в медицине и могут использоваться во многих типах хирургических операций, включая, помимо прочего, сердечно-сосудистую хирургию, хирургию периферических сосудов, кардиоторакальную хирургию, гинекологическую, неврологическую и общую брюшную хирургию.
Например, мономер и состав на его основе могут использоваться в качестве хирургического клея для внутреннего применения при ортопедических процедурах, таких как восстановление передней крестообразной связки, лечение разрыва мениска (или в качестве гидрогеля при замене мениска), реконструкция задней суставной капсулы, восстановление манжеты вращателя плечевого сустава, а также в качестве костного клея. Также он может использоваться в качестве клея при уменьшении объема легких, для фиксации повязок, восстановления подкожных тканей и при расслоении аорты. В частности, он может использоваться в качестве клея при операции уменьшения объема желудка, а также как клей для фиксации сетки при грыжесечении, фиксации дренажа, прикрепления клапанов, прикрепления пленок, препятствующих адгезии, присоединения тканей друг к другу (например, синтетического или биологического тканевого каркаса - к ткани, ткани биотехнологического происхождения - к ткани), ткани к приспособлению (например, сетке, зажиму, пленке) и приспособлений друг к другу.
Во-вторых, мономер и состав на его основе могут применяться для восстановления тканей и предотвращения опухолевидных скоплений сыворотки (сером) при таких процедурах, как маммэктомия, пластика молочных желез и их увеличение, реконструктивная или косметическая абдоминопластика и липосакция, подтяжка лица, кесарево сечение, удаление матки у пациенток с ожирением, ортопедические операции на бедре, лечение постоперационной грыжи, удаление липомы, травматические повреждения, лечение фистул, фиксация трансплантатов и реконструкция нервов.
В-третьих, мономер и состав на его основе могут использоваться в качестве уплотнителя для закрепления и уплотнения дуральных заплаток, желчных протоков, утечек желчи в печеночном ложе, утечек из мочевого пузыря, крепления и уплотнения костных трансплантатов, ожоговых трансплантатов и обтураций с истечением жидкости. В качестве уплотнителя данный материал может наноситься на ткань, на приспособление, на границу раздела ткани и приспособления. Он может использоваться в качестве дурально-краниального, дурально-спинального уплотнителя, в сердце и периферических сосудах, в желудочно-кишечном тракте (например, в пищеводе, кишечнике, в крупных органах, поджелудочной железе, желудке и при лечении язвы желудка), в легких, в мягких органах (например, в печени, селезенке, поджелудочной железе), как замена костному воску, как уплотнитель для опухолей, в сочетании скоба/клей, в сочетании уплотнитель/кровоостанавливающее средство, как уплотнитель для мочеиспускательного канала. Его можно использовать (помимо прочего) в следующих операциях: обходной желудочный анастомоз, резекция паренхиматозных органов, трахеостомия, дивертикулезный язвенный колит, радикальная простатэктомия, реконструкция синуса, стернотомия, холедоходуоденостомия, уплотнение ложа желчного пузыря (печеночного ложа) и холецистэктомия.
В-четвертых, мономер и состав на его основе могут использоваться в качестве заполнителя или периуретрального агента-наполнителя при следующих операциях (помимо прочего): устранение мертвого пространства при реконструктивной и косметической хирургии (например, пластическая/косметическая/реконструктивная хирургия, устранение дефектов лица или заполнение пустот), лечение недержания мочи и другие гинекологическое операции, анальные трещины/фистулы, ввод катетера в миокард для лечения застойной сердечной недостаточности, рост ядер, удаление кист/фистул поджелудочной железы или печени и педиатрической фистулы пищевода.
В-пятых, мономер и состав на его основе могут использоваться в качестве матрикса для тканевой инженерии (например, скаффолды, матриксы доставки для клеток, матриксы доставки для реагентов, используемых при брахитерапии (радиационной терапии), матриксы доставки для факторов роста, инъекционный матрикс для пустого скаффолда, формируемого in situ, инъекционный матрикс для скаффолда доставки стволовых клеток, клеточных лизатов и других биопродуктов, биоактивных веществ, фармацевтических препаратов и нутрицевтиков, локализационный матрикс для химиотерапии и локализационный матрикс для контрастного вещества.
В-шестых, мономер и состав на его основе могут использоваться в качестве барьера, предотвращающего образование спаек при таких операциях, как сердечная хирургия, хирургия грудной полости, общая хирургия, акушерство и гинекологическая хирургия, ортопедическая хирургия и спинальная хирургия (например, искусственный диск).
В-седьмых, мономер и состав на его основе могут использоваться в качестве заградительного материала при эмболизации (например, при фистуле ЖКТ, церебральном/васкулярном закрытии аневризмы мозга, закрытии маточной трубы и закупоривании варикозных вен).
Макромер
В химии полиуретанов термин «жесткий сегмент» используется для описания части отвержденной полиуретановой цепи, образовавшейся из исходного полиизоцианата, а термин «гибкий сегмент» используется для описания части отвержденной полиуретановой цепи, образовавшейся из полиола, полиамина и так далее. Гибкий сегмент получил свое название из-за того, что данная часть повторяющегося фрагмента, как правило, модифицируется для управления эластичностью, пластичностью и другими подобными свойствами полимера. Жесткий сегмент, как правило, представляет собой часть повторяющегося фрагмента, придающую полимеру прочность и жесткость. Увеличение или уменьшение массовой доли каждого из сегментов в повторяющемся фрагменте полимера будет влиять на конечные свойства пленки, такие как гибкость, прочность и другие. Примером модификации прочности полиуретанов, помимо прочего, является состав, содержащий молярный избыток полиизоцианата относительно полиола. После отверждения полиуретан будет содержать жесткие сегменты из повторяющихся мочевинных групп, показанные на фиг.1.
Мономер, описанный в настоящем документе, представляет собой биосовместимый полиизоцианатный макромер с концевыми группами бензоил-изоцианата, имеющий структурную формулу I:
Figure 00000002
где R1 представляет собой органический остаток, содержащий уретановую связь, соединенную с R2, причем значение «a» равно 1 или более, предпочтительно от 1 до 5. Значение f представляет собой количество концевых групп в макромере. Если f равно 2, формула Ia (фиг.2) отражает линейный макромер, если f равно 3 и более, формула Ib (фиг.3) отражает разветвленный макромер.
Ниже показан пример R1, когда значение «a» равно 1 или более:
Figure 00000003
где d представляет собой среднее количество повторяющихся «жестких» сегментов в изоцианатном макромере, и d находится в диапазоне от 0 до 5; этиленоксидная часть R1 может быть линейной или разветвленной, и c может находиться в диапазоне от 1 до 100, предпочтительно от 1 до 10. Значение d отражает количество мочевинных групп. Увеличение d связано с увеличением количества мочевинных групп, что ведет к повышению прочности и жесткости полиуретана. В случае если количество концевых групп макромера в соединении с формулой (I) превышает 2, значение d может быть дробным. Значение d определяется приведенным уравнением 1:
Figure 00000004
R1' представляет собой зеркальное отображение R1. Не ограничивающий настоящее изобретение пример, в котором d не является целым числом, приведен в формуле (II) ниже.
Figure 00000005
В данной структурной формуле (II), где d = d' + d" + d'" = 1 + 0 + 0 = 1 и f=3, среднее значение d = 0,3333 на f групп.
Общая структура R2 в формуле I следующая:
Figure 00000006
где R2 в формуле I содержит гидролизуемые эфирные связи, которые являются биоразлагаемыми in vivo;
R3 может представлять собой остаток водорастворимого полимера, включая, помимо прочего, остаток полиалкиленгликоля, такого как полиэтиленгликоль, полиалкиленоксида, поливинилпиролидона, поли(винилового спирта), поли(винил-метилового эфира), полигидроксиметилметакрилата, полимера и сополимера полиакриловой кислоты, полиоксазолина, полифосфазина, полиакриламида, полипептида или водорастворимых производных любого из этих соединений, способных образовывать эфирные связи с R4 и уретановые связи с R1, где «a» равно 1 или более. Кроме того, R3 может быть линейным или разветвленным. Если R3 представляет собой остаток полиэтиленгликоля
Figure 00000007
и «a» равно 1 или более, то n должно быть достаточно большим, чтобы продукт распада IV (указанный ниже) был растворим в воде. Например, n может находиться в диапазоне от 2 до 250, предпочтительно - от 5 до 100, более предпочтительно - от 5 до 25. Молекулярная масса R3 может находиться в диапазоне от 80 до 10000, предпочтительно - от 200 до 6000, более предпочтительно - от 200 до 4000. Эти остатки водорастворимого полимера должны соединяться с макромером по положению R3. Они очень важны для обеспечения растворимости продуктов распада, что будет более подробно рассмотрено ниже.
R4 может представлять собой органический остаток, имеющий «х» карбоксилатных концевых групп, где «х» находится в диапазоне 2≤x≤6. Например, R4 может являться производным линейной двухосновной кислоты, такой как дигликолевая кислота, малоновая кислота, янтарная кислота, глутаровая кислота, янтарная кислота, адипиновая кислота, или полиалкиленгликолей с концевыми группами карбоновых кислот, такими как дикарбоксилаты полиалкиленгликоля.
Если R4 представляет собой алифатический дикарбоксилат:
Figure 00000008
m может находиться в диапазоне от 1 до 10. Выбор значения m зависит от двух факторов: биосовместимости и растворимости продуктов распада. Если m равно 0, то продукт гидролитической деградации макромера, содержащий двухосновную кислоту, будет слишком кислым, что негативно повлияет на биосовместимость препарата. Если значение m слишком велико, то продукт распада, содержащий двухосновную кислоту, будет нерастворим в воде.
Как вариант, R4 может являться производным разветвленной кислоты, такой как трикарбаллиловая кислота, лимонная кислота или винная кислота, или их соединения с глутаровым ангидридом. Как вариант, R4 может являться производным любой из вышеупомянутых кислот, полиалкиленгликолей с концевыми остатками карбоновых кислот или производным глутарового ангидрида, в результате чего получается соединение с карбоксилатными концевыми группами. Дополнительные примеры R4 приведены ниже:
Figure 00000009
или
Figure 00000010
Как вариант, R2 может образовываться из любой карбонилсодержащей группы методами синтеза (включая, помимо прочего, переэтерификацию, конденсацию галоген-ангидрида со спиртом, конденсацию кислоты со спиртом) с образованием эфирных связей с R3.
К примерам R2 относятся, помимо прочего, остаток эфира полиэтиленгликоля (ПЭГ), полученный в результате реакции поликонденсации полиэтиленгликоля и соединения, содержащего несколько карбоксильных групп, причем к соединениям, содержащим карбоксильные группы, относятся, помимо прочего, дигликолевая кислота, малоновая кислота, янтарная кислота, глутаровая кислота, адипиновая кислота, винная кислота и полиэтиленгликоли с концевыми группами карбоновых кислот.
К примерам ПЭГ-эфирного варианта остатка R2 относятся, помимо прочего:
(a)
Figure 00000011
где n равно 20 для ПЭГ с молекулярной массой 900, а двухосновная кислота представляет собой дигликолевую кислоту
(b)
Figure 00000012
где n равно 20 для ПЭГ с молекулярной массой 900, а двухосновная кислота представляет собой янтарную кислоту
(c)
Figure 00000013
где n равно 20 для ПЭГ с молекулярной массой 900, а двухосновная кислота представляет собой глутаровую кислоту
(d)
Figure 00000014
где n равно 20 для ПЭГ с молекулярной массой 900, а двухосновная кислота представляет собой адипиновую кислоту
(e)
Figure 00000015
Другие примеры, включающие разветвленные остатки R2, приводятся ниже:
(f)
Figure 00000016
(g)
Figure 00000017
(h)
Figure 00000018
(i)
Figure 00000019
(j)
Figure 00000020
(k)
Figure 00000021
(l)
Figure 00000022
Молекулярная масса части макромера, относящейся к R2, может находиться в диапазоне от 80 до 20000 г/моль. Пример линейного макромера показан в виде формулы Ia (фиг.2). Пример разветвленного макромера показан в виде формулы Ib (фиг.3).
Для получения с высоким полезным выходом полиэфир-полиола, производным которого может являться R2, требуется катализатор из переходного металла, например олова (II). Соли олова являются хорошо известными катализаторами реакции этерификации. Они являются гидролитически устойчивыми и могут выдерживать присутствие влаги, образующейся при этерификации без потери активности. Они являются более предпочтительными, чем кислотные катализаторы, такие как p-толуолсульфоновая кислота или минеральные кислоты, поскольку указанные материалы способствуют расщеплению эфира, а также окислению, особенно при высоких температурах. Стандартные температуры реакции этерификации полиолов и поликислот находятся в диапазоне 160-220°C. Желательно получать полиэфир-полиол, содержащий как можно меньше побочных продуктов окисления, поскольку они будут влиять на характеристики макромера. Катализаторы из олова также существенно уменьшают время протекания реакции. Стандартное время получения полимера с желаемой молекулярной массой и кислотностью находится в диапазоне 12-18 часов. Получение аналогичного продукта без использования катализатора потребует более 60 часов. Однако металлическое олово является токсичным, и его необходимо удалить из полиола после окончания реакции этерификации.
Удаление катализатора из олова после завершения реакции представляет собой нетривиальную проблему, поскольку обычные методы удаления катализатора в полиэфир-полиолах малоэффективны. Распространенным методом является использование небольшого количества перекиси водорода, окисляющей олово до нерастворимого оксида олова, который можно отфильтровать. Такой метод является нежелательным, поскольку обработка перекисью любого материала, содержащего полиэтиленгликоль, ускоряет образование карбонильных и пероксидных групп, которые являются нежелательными примесями. Промывка материала водой также неэффективна, поскольку материал сам является гидрофильным, а олово гидрируется плохо. Добавление минеральной кислоты для нейтрализации олова является нежелательным, поскольку при этом также гидролизуются эфирные связи в полимере. Таким образом, желательно найти неагрессивный адсорбирующий реагент, который избирательно удалял бы олово.
Для хелатирования катализатора из олова можно использовать лимонную кислоту с последующей обработкой двуокисью кремния для адсорбции оловоцитратного комплекса. Предпочтительным является использование смеси лимонной кислоты и диоксида кремния. Более предпочтительным является использование силикатного гидрогеля, обработанного лимонной кислотой, доступного под торговым наименованием Sorbsil R(R) производства компании Ineos Silicas и используемого в производстве пищевых масел для удаления примесных металлов и других полярных примесей. Данный материал описывается как силикатный гидрогель, обработанный лимонной кислотой. Лимонная кислота является известным хелатирующим реагентом, а при образовании ковалентной связи с диоксидом кремния повышается ее эффективность при хелатировании металлов, например соединений олова, которые плохо гидрируются. Кроме того, полиэфир-полиолы имеют высокую аффинность к катализатору из олова, поскольку концентрации олова в полимере до 700 промилле являются чистыми и не содержащими осадков, что не является типичным. Для эффективного удаления нежелательных примесей в масле можно использовать указанный реактив в количестве 0,01-1,00% от массы масла. Данная смесь двуокиси кремния и лимонной кислоты может применяться для удаления олова II и IV, оба из которых являются часто используемыми катализаторами реакции этерификации. При обработке неочищенного полиэфир-полиола, катализированного оловом, смесью двуокиси кремния и лимонной кислоты олово может быть адсорбировано и отфильтровано с получением полиола без примеси металла. Для фильтрации необходим органический растворитель, например толуол, так как комплекс двуокись кремния/лимонная кислота/олово частично растворим в полиэфир-полиоле. Поскольку смесь двуокиси кремния и лимонной кислоты является гидрофильной, необходимо добавить гидрофобный растворитель, который растворит полиэфир-полиол и осадит гидрогель двуокиси кремния/лимонной кислоты. К гидрофобным растворителям относятся, помимо прочего, бензол, толуол, ксилол, хлористый метилен и хлороформ. Добавление такого растворителя приведет к осаждению комплекса, что упростит фильтрацию. В ходе обработки можно добавлять и другие материалы, например угольный порошок и диатомитовую землю, для улучшения цвета и ускорения фильтрации. Применение данного метода удаления олова приводит к получению полиэфир-полиола, не содержащего олова, без существенного увеличения кислотности, являющейся признаком гидролиза. Типичные полимеры, созданные таким способом, содержат менее 5 промилле олова (600 промилле олова до обработки), ~99,5% превращения кислотных групп в эфирные группы (~99,8% превращения перед обработкой) и без существенных признаков карбонильных групп при анализе протонным ЯМР.
Например, неочищенный полиэфир-полиол обрабатывается силикатом в количестве 1-10% по массе, углем в количестве 0,05-1,00% по массе и диатомитовой землей в количестве 0-1% по массе. Масса перемешивается в течение 30-90 минут в инертной атмосфере при температуре 60-85°C. Полимер разбавляется подходящим органическим растворителем в количестве 40-60% по массе, а затем фильтруется. Растворитель выпаривается и получается требуемый полиэфир-полиол с низким содержанием олова.
Альтернативный вариант с разветвленным мономером показан ниже в формуле III. Такие мономеры получают путем объединения избытка линейного макромера с изоцианатными концевыми группами формулы I с многофункциональным соединением с активным водородом в концевых группах, таким как соединение с гидроксильными концевыми группами, например, показанным в R6:
Figure 00000023
где промежуточный полиол содержит g+1 гидроксильных концевых групп.
Молекулярная масса и степень разветвленности макромера являются важными факторами, определяющими его биомеханические свойства, такие как эластичность, адгезионная и когезионная прочность, вязкость, адсорбция и захват воды (набухание).
Таблица 1
Желательный диапазон свойств для предполагаемой области применения состава
Свойство Диапазон Предпочтительный диапазон для уплотнителя Предпочтительный диапазон для клея
эластичность1 10-2000% 50-500% 10-50%
адгезионная прочность2 разрывное давление: >0,0267 МПа (200 мм рт. ст.) >0,0267 МПа (200 мм рт. ст.) сдвиговая прочность на разрыв для соединения внахлест >1 МПа
когезионная прочность3 0,1-30 МПа 0,1-5 МПа 5-25 МПа
2Адгезионная прочность определяет способность клея/уплотнителя прикрепляться к биологической ткани. Она измеряется путем испытания давлением жидкости до разрыва по стандарту ASTM 2392-04. Для испытания на разрыв в субстрате (перикарде, твердой мозговой оболочке или коллагене) делается разрез длиной 0,5 см, после чего субстрат помещается в испытательный стенд. Уплотнитель наносится на разрез, после чего ему дается время на затвердевание. Повышенное давление применяется к обратной стороне субстрата с помощью шприцевого насоса, заполненного жидкостью. Регистрируется максимальное давление при разрыве уплотнителя.
1, 3 Когезионная прочность связана с конструктивной способностью клея/уплотнителя выдерживать растягивающие нагрузки. Когезионная прочность оценивается по растяжимости и модулю. Образцы затвердевшего уплотнителя готовятся путем отливки в форме пленки. Образцы испытываются при растяжении со скоростью 0,000423 м/с (1 дюйм/мин.) до разрыва. Регистрируются максимальная нагрузка и растяжение при разрыве.
Диапазон молекулярных масс макромеров, описываемых в настоящем изобретении, может составлять приблизительно от 500 до 20000 г/моль, предпочтительно - приблизительно от 500 до 4000 г/моль.
Макромерсодержащий состав
Приемлемый с медицинской точки зрения состав может включать полиизоцианатный макромер, растворитель, катализатор, поверхностно-активное вещество, стабилизатор или антиоксидант, а также краситель.
Как правило, растворитель представляет собой гидрофильный растворитель, включая, помимо прочего, диметилсульфоксид (DMSO), ацетон, диметокси-полиэтиленгликоли, глицерин, Tween 80, диметилизосорбид, пропилен карбонат и 1-метил-2-пирролидинон (NMP). Также можно рассмотреть применение менее гидрофильных растворителей, таких как этил-лактат, триацетин, бензиловый спирт, бензил-бензоат, различные эфирные растворители, например: триэтил-цитрат, ацетилтриэтил-цитрат, три-н-бутил-цитрат, ацетилтри-н-бутил-цитрат, этил-ацетат и аналогичные. Например, растворитель может использоваться в количестве до приблизительно 50% по массе от совокупной массы растворителя и макромера.
Растворитель выполняет в макромерсодержащем составе несколько функций: (1) контроль вязкости, (2) контроль образования пузырей/пены и отделения пузырей, (3) улучшение проникновения состава в ткани и (4) улучшение смачивания ткани. Вязкость состава находится в диапазоне от 10 до 100 Па*с (100000 сп), предпочтительно - от 0,5 до 500 до 50 Па*с (50000 сП).
Кроме того, желательно включать в макромерсодержащий состав абсорбируемый осушитель в количестве приблизительно от 10 до 20% по массе, например окисленную регенерированную целлюлозу, чтобы улучшить адгезионную прочность полимера, получающегося при полимеризации полиизоцианатного макромера. Для того чтобы уменьшить влияние абсорбируемого осушителя на характеристики нанесения макромерсодержащего состава, рекомендуется использовать частицы/волокна осушителя как можно меньшего размера в диапазоне от 0,1 до 1,3 мм. К абсорбируемым регенерированным целлюлозам относится, помимо прочего, абсорбируемый противоспаечный барьер Interceed®, абсорбируемое кровоостанавливающее средство Surgicel®, абсорбируемое кровоостанавливающее средство Surgicel Nu-Knit® и абсорбируемое кровоостанавливающее средство Surgicel® Fibrillar. Все указанные средства производятся компанией Johnson & Johnson Wound Management Worldwide или компанией Gynecare Worldwide - обе компании являются подразделениями Ethicon, Inc., Сомервилл, Нью-Джерси. В частности, считается, что абсорбируемый осушитель помогает повысить адгезионную прочность полученного полимера.
В состав также могут добавляться поверхностно-активные вещества для контроля пенообразования: неионные поверхностно-активные вещества, такие как Tween, Brij и силоксаны, а также ионные поверхностно-активные вещества, такие как лецитин (фосфатидил холин), додецилсульфат натрия, известные специалистам наряду с другими средствами.
Также в состав могут добавляться катализаторы для увеличения скорости реакции, например, триэтилендиамин (DABCO), пиридин, этил-2-пиридил ацетат и октоат олова.
К окрашивающим добавкам, которые могут использоваться в макромерсодержащем составе, относятся, помимо прочего, метиленовый синий, FD&C Синий № 1 или № 2, и традиционные окрашивающие добавки, применяемые в абсорбируемых медицинских приспособлениях, таких как хирургические нити.
В макромерсодержащий состав могут вводиться антиоксиданты, такие как бутилированный гидроксил-толуол (BHT), для увеличения срока хранения продукта.
Клеящая система
Одним из вариантов клеящей системы является, помимо прочего, система, в которой макромер и растворитель хранятся отдельно до момента использования. Например, макромер может храниться в одном цилиндре двухцилиндрового шприца, а растворитель - в другом цилиндре. Как вариант, макромер и растворитель могут смешиваться перед использованием любым традиционным способом.
Биосовместимый эластичный гель
Полимер, образующийся после полимеризации макромера in vivo, представляет собой биологически разлагаемый эластичный гель, и продукты его распада должны быть биосовместимы и растворимы в воде, следовательно, эти продукты распада полностью выводятся из организма в качестве продуктов жизнедеятельности.
В частности, макромер или состав на его основе полимеризуется с образованием биосовместимого эластичного геля при контакте с водой или жидкостями организма по следующей схеме реакции:
Figure 00000024
где X представляет собой структурный элемент, находящийся между двумя функциональными группами. Х зависит от типа используемого макромера. Указанная выше реакция легко протекает в условиях организма, приводя к спонтанному распаду дикарбамата на диамин и двуокись углерода.
При дальнейшей реакции образовавшийся ранее диамин реагирует с изоцианатной группой с образованием эластичного геля по следующей схеме:
Figure 00000025
Продукты распада
Эластичный гель, образовавшийся из макромера, описанного в настоящем документе, является биологически разлагаемым и подвергается гидролизу in vivo с образованием биосовместимых и водорастворимых продуктов распада, включая ароматические продукты. Для обеспечения водорастворимости всех ароматических продуктов распада эластичный гель имеет такое строение, чтобы при расщеплении концевые группы на ароматических продуктах распада представляли собой остатки водорастворимых полимеров. Например, после того как состав клея или уплотнителя на основе макромера полимеризуется в организме, образовавшийся эластичный гель будет иметь повторяющийся фрагмент, показанный формулой IV.
Figure 00000026
Образовавшийся биосовместимый эластичный гель (IV) содержит разнообразные гидролизуемые связи, включая, помимо прочего, связи алифатических и ароматических эфиров, уретановые связи и мочевинные связи. Связи алифатических эфиров в эластичном геле более склонны к распаду в условиях in vivo, чем другие типы связей, следовательно, образуется исходный ароматический продукт распада V.
Figure 00000027
Хотя в ароматическом продукте распада V имеются и другие связи, способные к гидролитическому расщеплению (например, уретаны и ароматические эфиры), с практической точки зрения они не распадаются в достаточно существенной мере in vivo до выведения ароматического продукта распада из организма. Например, быстро гидролизуемые алифатические эфирные связи между R3 и R4 в эластичном геле распадаются в период от 0 до 6 месяцев; более медленно гидролизуемые связи ароматических эфиров в ароматическом продукте распада разлагаются в течение 4-24 месяцев; уретановые связи в ароматическом продукте распада разлагаются в течение 4-24 месяцев; а очень медленно гидролизуемые мочевинные связи в ароматическом продукте распада разлагаются в период от 24 месяцев до бесконечности. В промежуток времени от введения макромерсодержащего клея или уплотнителя и до выделения ароматического продукта распада V из организма, не происходит существенного распада связей ароматических эфиров, уретановых и мочевинных связей в ароматическом продукте распада V.
Указанный состав имеет множество вариантов применения в медицине. Например, он может использоваться в качестве хирургического клея для внутреннего применения, клея, соединяющего ткани друг с другом, ткани с медицинскими приспособлениями и медицинские приспособления друг с другом. В качестве уплотнителя состав может наноситься на ткань, на медицинское приспособление или на поверхность контакта медицинского приспособления и ткани с целью предотвращения подтекания. Данный состав может применяться для создания пленок in situ, что может быть полезным для предотвращения образования хирургических спаек. Состав может использоваться для создания in situ пенного материала, который может служить заполнителем (например, для устранения мертвых пространств, при реконструктивной и косметической хирургии), реагентом-наполнителем, материалом для тканевой инженерии (например, скаффолдом), а также в других ситуациях, в которых необходимо применение пенообразных и губчатых материалов. Данный состав может быть приготовлен так, чтобы его можно было вводить методом инъекции и использовать для создания in situ локализованных гелей, крепящихся к ткани и остающихся на том месте, в которое они были введены. Такие составы могут использоваться в качестве матриксов доставки клеток и других биологических объектов, биологически активных реагентов, фармацевтических препаратов и нутрицевтиков, реагентов, применяемых при эмболизации, а также способов локализации контрастных веществ. Данные составы также могут использоваться для крепления медицинских приспособлений (например, сеток, зажимов и пленок) к тканям. Данный состав может применяться внутри организма при многих видах хирургии, включая, помимо прочего, сердечно-сосудистую хирургию, хирургию периферических сосудов, кардиоторакальную, гинекологическую и неврологическую хирургию, а также общую хирургию брюшной полости.
В качестве хирургического уплотнителя/клея состав может применяться в дополнение к первичным средствам закрытия ран, таким как скобы и нити, для изоляции возможных утечек газов, жидкостей или твердых компонентов. Более конкретно, хирургический клей/уплотнитель может накладываться в ходе хирургической операции на ткань в разнообразных формах, например в форме жидкости, порошка, пленки, губки или пены, пропитанной ткани, пропитанной губки или пены или в форме спрея.
В качестве заполнителя макромер или состав на его основе может применяться в лицевой хирургии, для устранения дефектов или заполнения полостей. Например, состав можно ввести во внутренние полости и дать ему полимеризоваться, чтобы полимер заполнял внутренние пустоты, проникал внутрь и прилегал к полостям и порам ткани. Данный состав может применяться после большого числа операций, при которых существует потенциальная опасность образования мертвых пространств, включая, помимо прочего, такие операции, как радикальная маммэктомия (то есть удаление молочной железы и региональных лимфоузлов для лечения рака), процедура пластики и увеличения молочных желез, реконструктивная или косметическая абдоминопластика и липосакция, подтяжка лица, кесарево сечение, удаление матки у пациенток с ожирением, ортопедические операции на бедре, лечение постоперационной грыжи, удаление липомы, удаление липом и лечение травматических повреждений, например закрытых травм.
Хотя в нижеследующих примерах демонстрируются некоторые варианты осуществления настоящего изобретения, их следует интерпретировать не как ограничение области изобретения, а как дополнительное средство для полного описания изобретения.
Пример 1
Часть A: Получение изоцианатного мономера Id (фиг.1)
В сухую чистую трехгорлую колбу емкостью 250 мл, оснащенную входом для подачи азота, температурным датчиком и насадкой Дина-Старка был помещен глицерин Glycerin USP, 8,72 г (0,0947 моль). Содержимое колбы было нагрето до 120°C при перемешивании в азотной атмосфере. После достижения нужной температуры на 2 часа был подведен вакуум. Вакуум был убран, после чего был добавлен глутаровый ангидрид, 32,46 г (0,2845 моль). Раствор перемешивался в азотной атмосфере при 120°C в течение 2 часов, пока ИК-исследование не показало отсутствие ангидрида. Раствор был охлажден, после чего были добавлены ПЭГ 600 NF, 167,09 г (0,2784 моль) и оксалат олова II, 0,20 г (0,0009 моль). Колба была нагрета до 180°C и выдерживалась в течение 2 часов при барботировании азотом. Далее был подведен вакуум еще на 17 часов, после чего превращение кислотных групп в эфирные составило 99,98%, что определялось по кислотности. Полиол был охлажден до 80°C, и были добавлены следующие компоненты: 6,13 г диоксида кремния с лимонной кислотой и 2,38 г диатомитовой земли. Масса перемешивалась в азотной атмосфере при 80°C в течение 1 часа. Указанная масса была разведена до 50% массы в объеме толуолом и перемешивалась в течение еще 15 минут, после чего была профильтрована через целлюлозную бумагу с размером пор 2 микрона. Растворитель был выпарен, и была получена вязкая жидкость бледно-желтого цвета. Выход = 91%, превращение эфира = 99,73%, содержание олова = менее 5 промилле.
Часть B: Получение макромера Ic (фиг.2)
В сухую чистую четырехгорлую колбу емкостью 1 л, оснащенную механической мешалкой, входом для подачи азота, температурным датчиком и насадкой Дина-Старка, был помещен полиэтиленгликоль 400 NF, 149,79 г (0,3744 моль). Содержимое колбы было нагрето до 120°C при перемешивании в азотной атмосфере. После достижения нужной температуры на 1,5 часа был подведен вакуум. Вакуум был убран, после чего был добавлен глутаровый ангидрид в количестве 85,56 г (0,7499 моль). Раствор перемешивался в азотной атмосфере при 120°C в течение 2,5 часов, пока ИК-анализ не показал отсутствие ангидрида. Раствор был охлажден, после чего были добавлены ПЭГ 600 NF, 436,06 г (0,7268 моль), и оксалат олова II, 0,67 г (0,0032 моль). Колба была нагрета до 180°C и выдерживалась в течение 2 часов при барботировании азотом. Далее был подведен вакуум еще на 16 часов, после чего превращение кислотных групп в эфирные составило 99,96%, что определялось по кислотности. Полиол был охлажден до 80°C, и были добавлены следующие компоненты: 6,97 г диоксида кремния с лимонной кислотой, 7,11 г диатомитовой земли и 3,39 г активированного угля. Масса перемешивалась в азотной атмосфере при 80°C в течение 1 часа. Указанная масса была разведена до 50% массы в объеме толуолом и перемешивалась в течение еще 15 минут, после чего была профильтрована через целлюлозную бумагу с размером пор 2 микрона. Растворитель был выпарен, и была получена вязкая жидкость бледно-желтого цвета. Выход = 95%, превращение эфира = 99,88%, содержание олова = менее 5 промилле.
Часть C: Получение смеси макромеров Ic: и Id (в соотношении 1:1)
В чистую, высушенную в печи двугорлую колбу емкостью 250 мл, оснащенную механической мешалкой, был добавлен полиэфир-полиол, описанный в примере 1В, 28,18 г (0,0154 моль), и полиэфир-полиол, описанный в примере 1А, 33,90 г (0,0152 моль). Смесь полиолов была высушена под вакуумом на масляной бане при температуре 120°C при перемешивании в течение 8 часов. Высушенный полиол был охлажден, после чего был добавлен описанный в примере 2 преполимер В1, 59,38 г (0,01224 моль), в азотной атмосфере. Перемешивание в азотной атмосфере продолжалось в течение 20 часов при температуре 70°C. Преполимер был охлажден и разведен до 75% сухого вещества в ацетоне, в результате чего была получена вязкая жидкость янтарного цвета, вязкость ~12000 сСт (25°C).
Пример 2
Рассасывающееся кровоостанавливающее средство SURGICEL* Fibrillar, 15% по массе, было введено в смесь макромеров, описанную в части С, путем перемешивания абсорбируемого осушающего средства с непрореагировавшей смесью макромеров. Данный состав был нанесен на гидратированный коллагеновый субстрат в присутствии и в отсутствие свободной воды (добавление 10 мкл солевого раствора). Среднее давление разрыва составило 0,0247 МПа (185 мм рт. ст.) и 0,0301 МПа (226 мм рт. ст.), соответственно. Для сравнения, на гидратированный коллагеновый субстрат была нанесена только смесь макромеров, описанная в части С, в присутствии и в отсутствие свободной воды (добавление 10 мкл солевого раствора). Среднее давление разрыва составило 0,00493 МПа (37 мм рт. ст.) и 0,0372 МПа (279 мм рт. ст.), соответственно. Считается, что абсорбируемое осушающее вещество служит для улучшения адгезии полимера к субстрату, когда избыток свободной воды в месте проведения операции ограничивает эффективность клея.

Claims (6)

1. Пригодный для медицинского применения состав, содержащий (i) полиизоцианатный макромер или смесь макромеров с формулой (ii) и окисленную целлюлозу
Figure 00000028

где f равно 2 или более; значение «а» находится в диапазоне от 1 до 5, a R1 представляет собой
Figure 00000029

где этиленоксидная часть R1 может быть линейной или разветвленной, d представляет собой действительное число от 0 до 5, и с находится в диапазоне от 1 до 100;
R2 представляет собой
Figure 00000030

где R3 представляет собой линейный или разветвленный остаток водорастворимого полимера, способный образовывать эфирные связи с R4 и уретановые связи с R1, если «а» равно 1 или более; и
R4 представляет собой линейный или разветвленный органический остаток, имеющий «x» карбоксилатных концевых групп, где x находится в диапазоне 2≤x≤6.
2. Пригодный для медицинского применения состав по п.1, в котором f равно 2, а макромер описывается формулой:
Figure 00000031
3. Пригодный для медицинского применения состав по п.2, в котором R1' описывается формулой:
Figure 00000032
4. Пригодный для медицинского применения состав по п.1, в котором R2 выбирается из группы, состоящей из
Figure 00000033

Figure 00000034

Figure 00000035

Figure 00000036

Figure 00000037

Figure 00000038

Figure 00000039

Figure 00000040

Figure 00000041

Figure 00000042

Figure 00000043

и
Figure 00000044

где n находится в диапазоне от 2 до 250, a m находится в диапазоне от 1 до 10.
5. Пригодный для медицинского применения состав по п.1, в котором R3 представляет собой остаток соединения, выбираемого из группы, состоящей из полиалкиленгликоля, полиалкиленоксида, поливинилпирролидона, поли(винилового спирта), поли(винил-метилового эфира), полигидроксиметилметакрилата, полимера и сополимера полиакриловой кислоты, полиоксазолина, полифосфазина, полиакриламида, полипептида и их водорастворимых производных; a R4 представляет собой остаток соединения, выбираемого из группы, состоящей из дигликолевой кислоты, малоновой кислоты, янтарной кислоты, глутаровой кислоты, адипиновой кислоты, винной кислоты, лимонной кислоты, трикарбаллиловой кислоты, триглутарата глицерина, тетраглутарата пентаэритритола и эритритола.
6. Пригодный для медицинского применения состав по п.1, в котором абсорбируемым осушителем является окисленная регенерированная целлюлоза.
RU2010139854/15A 2008-02-29 2009-02-25 Пригодный для медицинского применения препарат, состоящий из макромера с концевыми диизоцианатными группами, используемый в качестве клея или уплотнителя для внутреннего применения RU2480247C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/040,211 2008-02-29
US12/040,211 US8324292B2 (en) 2008-02-29 2008-02-29 Medically acceptable formulation of a diisocyanate terminated macromer for use as an internal adhesive or sealant
PCT/US2009/035052 WO2009111230A2 (en) 2008-02-29 2009-02-25 A medically acceptable formulation of a diisocyanate terminated macromer for use as an internal adhesive or sealant

Publications (2)

Publication Number Publication Date
RU2010139854A RU2010139854A (ru) 2012-04-10
RU2480247C2 true RU2480247C2 (ru) 2013-04-27

Family

ID=40636846

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010139854/15A RU2480247C2 (ru) 2008-02-29 2009-02-25 Пригодный для медицинского применения препарат, состоящий из макромера с концевыми диизоцианатными группами, используемый в качестве клея или уплотнителя для внутреннего применения

Country Status (10)

Country Link
US (1) US8324292B2 (ru)
EP (1) EP2244750B1 (ru)
JP (1) JP5512555B2 (ru)
CN (1) CN101959540B (ru)
AU (1) AU2009222189B2 (ru)
BR (1) BRPI0908333A2 (ru)
CA (1) CA2716946C (ru)
ES (1) ES2390748T3 (ru)
RU (1) RU2480247C2 (ru)
WO (1) WO2009111230A2 (ru)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101443926B1 (ko) 2006-06-15 2014-10-02 마이크로벤션, 인코포레이티드 팽창성 중합체로 제조된 색전술용 장치
WO2009086208A2 (en) 2007-12-21 2009-07-09 Microvention, Inc. Hydrogel filaments for biomedical uses
KR101745748B1 (ko) 2009-10-26 2017-06-12 마이크로벤션, 인코포레이티드 팽창성 중합체로부터 제작된 색전술 장치
WO2012145431A2 (en) 2011-04-18 2012-10-26 Microvention, Inc. Embolic devices
WO2013158781A1 (en) 2012-04-18 2013-10-24 Microvention, Inc. Embolic devices
CA2876474C (en) 2012-06-14 2021-06-22 Microvention, Inc. Polymeric treatment compositions
WO2014062696A1 (en) 2012-10-15 2014-04-24 Microvention, Inc. Polymeric treatment compositions
WO2015153996A1 (en) 2014-04-03 2015-10-08 Micro Vention, Inc. Embolic devices
US10092663B2 (en) 2014-04-29 2018-10-09 Terumo Corporation Polymers
EP3137124B1 (en) 2014-04-29 2019-01-09 Microvention, Inc. Polymers including active agents
WO2016201250A1 (en) 2015-06-11 2016-12-15 Microvention, Inc. Expansile device for implantation
US10368874B2 (en) 2016-08-26 2019-08-06 Microvention, Inc. Embolic compositions
US10576182B2 (en) 2017-10-09 2020-03-03 Microvention, Inc. Radioactive liquid embolic
CN110331162B (zh) * 2019-06-12 2021-02-19 温州医科大学 一种主动脉夹层特异性诱导多能干细胞及疾病模型应用
CN113908326A (zh) * 2021-09-22 2022-01-11 华南理工大学 一种用于皮肤创伤修复的医用粘合剂及其使用方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0390481A2 (en) * 1989-03-23 1990-10-03 Sanyo Chemical Industries Ltd. Surgical adhesive sheet
WO1999007417A1 (en) * 1997-08-06 1999-02-18 Focal, Inc. Hemostatic tissue sealants
WO2004039323A2 (en) * 2002-10-28 2004-05-13 Tyco Healthcare Group Lp Fast curing compositions
RU2283668C1 (ru) * 2005-02-21 2006-09-20 Общество С Ограниченной Ответственностью "Технологии Медицинских Полимеров" (Ооо "Тмп") Хирургический полимерный клей
WO2007089430A1 (en) * 2006-01-17 2007-08-09 Ethicon, Inc. Diisocyanate terminated macromer and method of making

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE505703C2 (sv) * 1995-12-15 1997-09-29 Polyrand Ab Linjär blockpolymer innefattande urea- och uretangrupper, förfarande för framställning av linjära blockpolymerer samt användning av blockpolymererna som implantat
US4740534A (en) * 1985-08-30 1988-04-26 Sanyo Chemical Industries, Ltd. Surgical adhesive
US5175229A (en) * 1986-11-18 1992-12-29 W. R. Grace & Co.-Conn. Biocompatible polyurea-urethane hydrated polymers
US4829099A (en) * 1987-07-17 1989-05-09 Bioresearch, Inc. Metabolically acceptable polyisocyanate adhesives
US4804691A (en) * 1987-08-28 1989-02-14 Richards Medical Company Method for making a biodegradable adhesive for soft living tissue
JP2691722B2 (ja) * 1988-03-07 1997-12-17 旭硝子株式会社 外科用接着剤
US4938763B1 (en) * 1988-10-03 1995-07-04 Atrix Lab Inc Biodegradable in-situ forming implants and method of producing the same
JPH06104116B2 (ja) * 1988-11-29 1994-12-21 三菱化成株式会社 創傷被覆材
US5118779A (en) * 1989-10-10 1992-06-02 Polymedica Industries, Inc. Hydrophilic polyurethane elastomers
US5270358A (en) * 1989-12-28 1993-12-14 Minnesota Mining And Manufacturing Company Composite of a disperesed gel in an adhesive matrix
US5192536A (en) * 1990-10-26 1993-03-09 Huprich Carl A Method and composition for coating a wound with polyether polyurethane
JP2928892B2 (ja) * 1990-11-27 1999-08-03 三洋化成工業株式会社 外科用接着剤
GB9102660D0 (en) * 1991-02-07 1991-03-27 Ultra Lab Ltd Wound dressing materials
WO1992019194A1 (en) * 1991-05-07 1992-11-12 Kotec Limited Wound covering material
US5804213A (en) * 1991-10-09 1998-09-08 Lectec Corporation Biologically active aqueous gel wound dressing
JP3541948B2 (ja) * 1992-10-02 2004-07-14 バイヤースドルフ・アクチエンゲゼルシヤフト 特に深傷を治療するための親水性ポリウレタンゲルフォーム、親水性ポリウレタンゲルフォームを基とする創傷用包帯および製造方法
AU1999995A (en) * 1994-04-08 1995-11-10 Atrix Laboratories, Inc. An adjunctive polymer system for use with medical device
GB2314842B (en) * 1996-06-28 2001-01-17 Johnson & Johnson Medical Collagen-oxidized regenerated cellulose complexes
AU1923199A (en) * 1997-12-17 1999-07-05 Hemodynamics, Inc. Sealing media for surgery and wound closure
US6375966B1 (en) * 2000-05-26 2002-04-23 Scented Technologies, Llc Polyurethane/polyurea matrices for the delivery of active agents
US6296607B1 (en) * 2000-10-20 2001-10-02 Praxis, Llc. In situ bulking device
US6524327B1 (en) * 2000-09-29 2003-02-25 Praxis, Llc In-situ bonds
US7264823B2 (en) * 2002-02-08 2007-09-04 University Of Pittsburgh Medical adhesive and methods of tissue adhesion
GB2393120A (en) * 2002-09-18 2004-03-24 Johnson & Johnson Medical Ltd Compositions for wound treatment
US20040078090A1 (en) * 2002-10-18 2004-04-22 Francois Binette Biocompatible scaffolds with tissue fragments
WO2004103432A2 (en) * 2003-05-20 2004-12-02 Avery Dennison Corporation Facial masks for managing skin wounds
CA2539751C (en) * 2003-09-05 2016-04-26 Norian Corporation Bone cement compositions having fiber-reinforcement and/or increased flowability
JP2007516740A (ja) * 2003-11-10 2007-06-28 アンジオテック インターナショナル アーゲー 医療移植片(implants)および瘢痕化抑制剤
US20050129733A1 (en) * 2003-12-09 2005-06-16 Milbocker Michael T. Surgical adhesive and uses therefore
US7160457B2 (en) * 2004-10-07 2007-01-09 Black & Veatch Holding Corp. Digester cover
EP1804685B1 (en) * 2004-10-18 2016-07-27 Covidien LP Extraluminal sealant applicator
US20070167617A1 (en) * 2006-01-17 2007-07-19 Fitz Benjamin D Method of making a diisocyanate terminated macromer
US8470954B2 (en) * 2005-01-10 2013-06-25 Ethicon, Inc. Diisocyanate terminated macromer and formulation thereof for use as an internal adhesive or sealant
US20060153796A1 (en) 2005-01-10 2006-07-13 Fitz Benjamin D Diisocyanate terminated macromer and formulation thereof for use as an internal adhesive or sealant
US7728097B2 (en) * 2005-01-10 2010-06-01 Ethicon, Inc. Method of making a diisocyanate terminated macromer
GB2433029A (en) * 2005-12-09 2007-06-13 Ethicon Inc Wound dressings comprising oxidized cellulose and human recombinant collagen
US7947758B2 (en) 2006-08-09 2011-05-24 Ethicon, Inc. Moisture activated latent curing adhesive or sealant

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0390481A2 (en) * 1989-03-23 1990-10-03 Sanyo Chemical Industries Ltd. Surgical adhesive sheet
WO1999007417A1 (en) * 1997-08-06 1999-02-18 Focal, Inc. Hemostatic tissue sealants
WO2004039323A2 (en) * 2002-10-28 2004-05-13 Tyco Healthcare Group Lp Fast curing compositions
RU2283668C1 (ru) * 2005-02-21 2006-09-20 Общество С Ограниченной Ответственностью "Технологии Медицинских Полимеров" (Ооо "Тмп") Хирургический полимерный клей
WO2007089430A1 (en) * 2006-01-17 2007-08-09 Ethicon, Inc. Diisocyanate terminated macromer and method of making

Also Published As

Publication number Publication date
CA2716946C (en) 2017-05-30
ES2390748T3 (es) 2012-11-16
AU2009222189A1 (en) 2009-09-11
WO2009111230A2 (en) 2009-09-11
EP2244750A2 (en) 2010-11-03
BRPI0908333A2 (pt) 2015-07-28
US8324292B2 (en) 2012-12-04
EP2244750B1 (en) 2012-08-01
US20090221731A1 (en) 2009-09-03
CN101959540B (zh) 2014-03-05
JP2011512950A (ja) 2011-04-28
AU2009222189B2 (en) 2013-09-05
CN101959540A (zh) 2011-01-26
CA2716946A1 (en) 2009-09-11
RU2010139854A (ru) 2012-04-10
JP5512555B2 (ja) 2014-06-04
WO2009111230A3 (en) 2010-06-17

Similar Documents

Publication Publication Date Title
RU2480247C2 (ru) Пригодный для медицинского применения препарат, состоящий из макромера с концевыми диизоцианатными группами, используемый в качестве клея или уплотнителя для внутреннего применения
US8470954B2 (en) Diisocyanate terminated macromer and formulation thereof for use as an internal adhesive or sealant
US7968668B2 (en) Diisocyanate terminated macromer and formulation thereof for use as an internal adhesive or sealant
EP2009037B1 (en) Foam control for synthetic adhesive/sealant
US7728097B2 (en) Method of making a diisocyanate terminated macromer
AU2009335854B2 (en) Isocyanate terminated macromer and formulation thereof for use as an internal adhesive or sealant
US8071663B2 (en) Medically acceptable formulation of a diisocyanate terminated macromer for use as an internal adhesive or sealant