RU2469785C2 - Реактор-теплообменник с байонетными трубами, конструкция которого позволяет ему работать с перепадами давления порядка 100 бар между трубой и каландром - Google Patents

Реактор-теплообменник с байонетными трубами, конструкция которого позволяет ему работать с перепадами давления порядка 100 бар между трубой и каландром Download PDF

Info

Publication number
RU2469785C2
RU2469785C2 RU2010106107/02A RU2010106107A RU2469785C2 RU 2469785 C2 RU2469785 C2 RU 2469785C2 RU 2010106107/02 A RU2010106107/02 A RU 2010106107/02A RU 2010106107 A RU2010106107 A RU 2010106107A RU 2469785 C2 RU2469785 C2 RU 2469785C2
Authority
RU
Russia
Prior art keywords
reactor
pipe
bayonet
heat exchanger
pipes
Prior art date
Application number
RU2010106107/02A
Other languages
English (en)
Other versions
RU2010106107A (ru
Inventor
Фабрис ЖИРУДЬЕР
Жан Кристиан ТРИКАР
Бернар ЛАНГЛО
Original Assignee
Ифп
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ифп filed Critical Ифп
Publication of RU2010106107A publication Critical patent/RU2010106107A/ru
Application granted granted Critical
Publication of RU2469785C2 publication Critical patent/RU2469785C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • B01J8/062Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes being installed in a furnace
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2415Tubular reactors
    • B01J19/2425Tubular reactors in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • B01J8/067Heating or cooling the reactor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/12Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically the surrounding tube being closed at one end, e.g. return type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00176Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles outside the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00212Plates; Jackets; Cylinders
    • B01J2208/00221Plates; Jackets; Cylinders comprising baffles for guiding the flow of the heat exchange medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00504Controlling the temperature by means of a burner
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00743Feeding or discharging of solids
    • B01J2208/00769Details of feeding or discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • B01J2219/00099Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor the reactor being immersed in the heat exchange medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00157Controlling the temperature by means of a burner

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

В изобретении представлен предназначенный для выполнения эндотермических реакций реактор-теплообменник, в состав которого входит каландр, внутри которого циркулирует текучий теплоноситель (11). Внутри каландра расположено множество параллельных труб (4). Внутри труб циркулирует среда, участвующая в технологическом процессе (5, 6). Трубы относятся к типу байонетных. Реактор не имеет трубчатой пластины. Техническим результатом изобретения является возможность работы реактора с перепадом давлений во внутритрубном пространстве и в каландровом пространстве, достигающим 100 бар. 5 н. и 4 з.п. ф-лы, 4 ил., 1 табл., 1 пр.

Description

ОБЛАСТЬ ПРИМЕНЕНИЯ
Настоящее изобретение относится к реактору-теплообменнику, состоящему из каландра с расположенным внутри него множеством труб, имеющего конструкцию, которую специалист в данной области техники квалифицирует как конструкцию класса трубы/каландр, причем указанный реактор-теплообменник позволяет проводить в нем процессы, носящие ярко выраженный эндотермический характер, то есть такие, к которым можно отнести паровой реформинг природного газа, при котором использующаяся в технологическом процессе среда циркулирует внутри труб, а теплоноситель - снаружи этих труб (это пространство у специалистов носит также название каландрового). Конструкция реактора-теплообменника согласно предлагаемому изобретению позволяет создавать реакторы с диаметром, превышающим 4 метров, и даже превышающим 10 метров и с перепадом давлений во внутритрубном и внетрубном пространствах, способным достигать от 30 бар до 100 бар (1 бар=0,1 МПа), причем без использования трубчатой пластины для распределения среды, участвующей в технологическом процессе, по всем трубам. При всем том реактор согласно предлагаемому изобретению может изготавливаться и с диаметром, меньшим 4 метров.
В нижеприведенном тексте термин "внутритрубное пространство" используется для обозначениях всего того, что относится к химической реакции и циркуляции участвующих в реакции сред внутри указанных труб, а термин "каландровое пространство" используется для обозначениях всего того, что относится к переносу тепла от теплоносителя к участвующей в реакции среде и циркуляции указанного теплоносителя.
ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ
В ранее применявшихся реакторах-теплообменниках при реализации процессов, носящих явный эндотермический характер, то есть таких, к которым можно отнести паровой реформинг смеси углеводородов, использовался реактор, представленный на фиг.1.
Этот тип реактора-теплообменника снабжен системой распределения среды, участвующей в технологическом процессе, посредством первой трубчатой пластины, а также системой сбора эффлюентов посредством второй трубчатой пластины.
Байонетная труба (4) состоит из внутренней трубы (5), расположенной внутри наружной трубы (6), причем внутренняя труба (5) и наружная труба (6) установлены практически коаксиально друг относительно друга.
Необходимый теплоноситель получали, как правило, в процессе сжигания топлива, проводимого вне реактора-теплообменника посредством любой системы сжигания, например, печи или парового котла, в котором топливо сжигается с помощью горелок. В качестве теплоносителя могут использоваться также и утилизируемые дымовые газы или же какая-либо другая высокотемпературная среда, которую можно найти непосредственно на рабочей площадке, например пар.
Циркуляция теплоносителя может осуществляться внутри дымоходов (10), окружающих, по меньшей мере на некотором протяжении, байонетные трубы (4) и ограничивающих собой кольцеобразное пространство (10), пригодное для циркуляции теплоносителя внутри указанной кольцеобразного пространства.
Для лучшего понимания сути изобретения необходимо напомнить о недостатках, связанных с применением трубчатой пластины.
В известных технических решениях трубчатая пластина, установленная в реакторах-теплообменниках, выполняется, как правило, в виде перфорированной пластины, проходящей по существу в плоскости сечения реактора, причем каждое отверстие этой плиты предназначено для установки в нем соответствующей трубы реактора. Входные (или выходные) торцы совокупности труб реактора расположены таким образом на входной (соответственно на выходной) трубчатой пластине.
Входная трубчатая пластина (i) разделяет таким образом объем реактора на первое пространство (20), расположенное над указанной трубчатой пластиной, причем это первое пространство содержит участвующую в реакции среду и позволяет обеспечить ее распределение по всем трубам реактора, и второе пространство (21), расположенное под указанной трубчатой пластиной, причем это второе пространство окружает трубы и содержит только теплоноситель.
Точно так же выходная трубчатая пластина (выходные трубчатые пластины) выделяет в объеме реактора третье пространство (22), расположенное над указанной трубчатой пластиной, причем это третье пространство содержит исключительно образующиеся в ходе технологического процесса эффлюенты, выходящие из каждой трубы реактора.
Первое пространство (20) располагается таким образом между входной трубчатой пластиной (i) и выходной трубчатой пластиной (выходными трубчатыми пластинами) и содержит исключительно участвующую в реакции среду, попадающую в указанное пространство (20) через патрубок, обозначенный на фиг.1 буквой А.
В случае реактора-теплообменника известной конструкции, содержащего байонетные трубы, реактор, как это представлено на фиг.1, имеет две трубчатые пластины, причем в верхней (верхних) пластине размещен выходной торец центральных труб (5), а в нижней пластине (i) размещен входной торец кольцеобразной зоны, расположенной между центральной трубой (5) и наружной трубой (6). Распределение по трубам участвующей в реакции среды происходит в пространстве (20), заключенном между нижней трубчатой пластиной (i) и верхней трубчатой пластиной (верхними трубчатыми пластинами), посредством входного патрубка (A).
Каландровое пространство соответствует в случае фиг.1 пространству (21), расположенному снаружи от труб реактора и под нижней трубчатой пластиной (i).
Фиг.1 предоставляет возможность ясно увидеть, что в реакторе-теплообменнике известной конструкции, содержащем байонетные трубы, входной и выходной торцы каждой байонетной трубы (4) располагаются на уровне входной и выходной трубчатых пластин, а следовательно, внутри реактора.
Но перепад давлений между внутренним пространством труб (5) и наружным пространством труб (21) или, что то же самое, каландровым пространством, в котором содержится теплоноситель, может достигать нескольких сотен бар. В особом случае реализации процесса парового реформинга величина указанного перепада давлений может достигать от 25 бар до 40 бар (1 бар=0,1 MПa).
Верхняя плоскость нижней трубчатой пластины (i) может таким образом прилегать к зоне ввода сред (20), а ее нижняя плоскость прилегать к зоне циркуляции теплоносителя (21), которые подвергаются воздействию перепада давлений от 25 до 50 бар.
Специалистам в данной области техники хорошо известно, что для того, чтобы трубчатая пластина была способна выдерживать подобные перепады давлений, ее толщина должна достигать очень значительных величин, которые на практике для реакторов с диаметром начиная с десяти метров, увы, невозможно обеспечить.
В качестве примера на приведенной ниже таблице приведены толщины трубчатой пластины, в мм (10-3 метра), для реакторов диаметром от 2 до 10 метров, и для перепадов давлений по обе стороны трубчатой пластины, равных 25, 30 и 35 бар (отложены по ординате).
Диаметр реактора
2 метра 5 метров 10 метров
Дельта давления 25 бар 193 мм 483 мм 967 мм
30 бар 212 мм 530 мм 1059 мм
35 бар 229 мм 572 мм 1144 мм
Если принять, что максимальная толщина трубчатой пластины составляет порядка 400 мм, то из этого следует, что предельный диаметр реактора будет составлять порядка 5 метров при перепаде давлений по обе стороны трубчатой пластины, равном 25 барам. Указанный предельный размер будет еще ниже при более значительном перепаде давлений по обе стороны трубчатой пластины. Таким образом, если перепад давлений по обе стороны трубчатой пластины достигает 35 бар, то максимальный диаметр реактора будет всего лишь около 3 метров.
С точки зрения механической прочности существует также предельная величина плотности размещения труб по площади трубчатой пластины, причем эта предельная величина зависит от диаметра труб и составляет приблизительно 10 труб/ м2 для труб диаметром 170 мм. Конструкция, соответствующая настоящему изобретению, позволяет превысить предельно допустимые значения размеров реакторов известных конструкций, то есть тех реакторов, которые снабжены трубчатой пластиной, за счет полного устранения трубчатой пластины и осуществления наружного, относительно реактора, распределения используемых в процессе технологических сред и сбора эффлюентов.
Реактор-теплообменник согласно настоящему изобретению предоставляет возможность решения второй проблемы, связанной с заполнением катализатором байонетных труб. В самом деле в реакторах известных конструкций заполнение катализатором байонетных труб происходит через пространство (20), ограниченное двумя трубчатыми пластинами. А указанное пространство является ограниченным и мало приспособленным для этих целей ввиду наличия в нем большого количества труб, прикрепленных к верхней трубчатой пластине.
В реакторе согласно настоящему изобретению заполнение байонетных труб катализатором производится через их торцы, расположенные снаружи реактора, пространство вокруг которого не так сильно перегружено другими устройствами.
Другим преимуществом реактора согласно предлагаемому изобретению является то, что в нем применяется теплоноситель, производство которого осуществляется непосредственно на месте эксплуатации самого реактора, то есть непосредственно внутри реактора-теплообменника, а именно в его каландровом пространстве. Подобное сжигание "на месте" может выполняться с помощью горелок, описанных во французской заявке на изобретение 06/10.999, причем указанные горелки имеют обычно удлиненную форму и устанавливаются в промежутках между байонетными трубами.
ОБЩЕЕ ОПИСАНИЕ ФИГУР
На фиг.1 представлен реактор-теплообменник с байонетными трубами известной конструкции, оснащенный нижней трубчатой пластиной для распределения используемых в процессе технологических сред, и верхней трубчатой пластиной для сбора эффлюентов.
На фиг.2 представлен реактор-теплообменник согласно предлагаемому изобретению, то есть реактор-теплообменник без трубчатой пластины, с торцами байонетных труб, расположенными снаружи реактора, причем используемый в рассматриваемом аппарате теплоноситель получается в процессе сжигания, осуществляемого внутри самого ректора посредством горелок удлиненной формы, установленных в промежутках между байонетными трубами.
На фиг.3 представлен пример устройства распределения и сбора в реакторе согласно предлагаемому изобретению сред, участвующих в технологическом процессе.
На фиг.4 представлен пример конструкции горелки, пригодной для производства теплоносителя непосредственно внутри реактора-теплообменника согласно предлагаемому изобретению.
Раскрытие сущности изобретения
Реактор-теплообменник согласно настоящему изобретению состоит из каландра цилиндрической формы, внутри которого циркулирует теплоноситель и который закрыт сверху колпаком и имеет нижнее днище, причем указанный каландр содержит внутри себя множество труб с осями, ориентированными практически в вертикальном направлении, внутри которых циркулирует участвующая в технологическом процессе среда, причем трубы реактора относятся к типу байонетных и имеют плотность размещения по площади трубчатой пластины в пределах от 2 до 12 штук на каждый м2 сечения реактора, причем интервал установки байонетных труб или их межосевое расстояние превышает в 2-5 раз внутренний диаметр наружной трубы (6), а входной и выходной торцы каждой байонетной трубы выходят за пределы реактора, что же касается теплоносителя, то он получается в процессе сжигания, осуществляемого внутри самого ректора посредством горелок (8) удлиненной формы, установленных в промежутках между байонетными трубами (4) с трехсторонним шагом, причем межосевое расстояние установки горелок превышает в 2-5 раз диаметр наружной трубы (6) байонетной трубы.
Реактор согласно предлагаемому изобретению не содержит трубчатой пластины.
В реакторе-теплообменнике согласно настоящему изобретению входной и выходной торцы каждой байонетной трубы выходят, как это и показано на фиг.2, за пределы реактора.
В предпочтительном варианте рассматриваемого реактора-теплообменника каждая байонетная труба (4) окружена дымоходом цилиндрической формы (10), установленным практически коаксиально по отношению к байонетной трубе, а теплоноситель циркулирует внутри кольцеобразного пространства (11), ограниченного наружной стенкой байонетной трубы (4) и указанным дымоходом (10), со скоростью, находящейся в пределах от 20 м/сек до 50 м/сек.
Байонетные трубы следует предпочтительно устанавливать с трехсторонним шагом. Интервал установки байонетных или межосевое расстояние, как правило, превышает в 2-5 раз внутренний диаметр наружной трубы (6).
Вместе с тем интервал установки труб в трубчатой пластине с квадратным шагом также полностью вписывается в рамки настоящего изобретения.
Внутренняя труба (5) каждой байонетной трубы (4) пересекает под углом к вертикали, равным 30°-60°, наружную трубу (6) в точке, расположенной снаружи реактора, на расстоянии, равном, по меньшей мере, 1 метру от верхнего колпака реактора-теплообменника. Как это представлено на фиг.3, указанное расположение предоставляет возможность полностью отделить друг от друга входной и выходной торцы каждой байонетной трубы (4), что позволяет в свою очередь облегчить установку на место устройства распределения участвующих в технологическом процессе сред, также устройства сбора эффлюентов, являющихся продуктами технологического процесса.
В предпочтительном варианте изобретения загрузка внутренней трубы (5) каждой байонетной трубы (4) осуществляется через главный питательный трубопровод, разветвляющийся на N количество ветвей, причем каждая ветвь питает одну внутреннюю трубу, а количество ветвей N находится в диапазоне от 5 до 100 штук, а в предпочтительном варианте изобретения находится в диапазоне от 10 до 50 штук.
В предпочтительном варианте изобретения наружная труба (6) каждой байонетной трубы (4) подключена к первичному коллектору, а сам этот первичный коллектор подключен к вторичному коллектору и так вплоть до конечного коллектора, который соответствует количеству M коллекторов, которое находится в диапазоне от 2 до 10.
В предпочтительном варианте изобретения среда, участвующая в технологическом процессе, вводится через входной торец кольцеобразной зоны (7), расположенной в пространстве между наружной трубой (6) и внутренней трубой (5), причем указанная кольцеобразная зона (7), по меньшей мере, частично заполнена катализатором.
Образующиеся в процессе работы аппарата эффлюэнты улавливаются выходным торцом центральной трубы (5).
Как правило, теплоносителем являются дымовые газы - продукты сгорания, причем образование последних происходит непосредственно в самом рассматриваемом аппарате с помощью горелок, установленных непосредственно в промежутках между байонетными трубами внутри реактора и смонтированных в отдельном от рассматриваемого реактора-теплообменника оборудовании. Что касается дымовых газов, то они покидают реактор через выходной патрубок (G), расположенный в верхней части реактора.
Согласно предлагаемому изобретению теплоноситель, обеспечивающий доставку тепла, необходимого для проведения реакции, образуется в процессе сжигания, осуществляемого непосредственно в самом рассматриваемом аппарате с помощью горелок удлиненной формы (8), установленных в промежутках между байонетными трубами (4).
Указанные горелки удлиненной формы описаны во французском патенте №06/10.999.
В нижеприведенном тексте они представлены с помощью фиг.4 как горелки без предварительного смешивания топлива с воздухом, как горелки цилиндрической формы, длиной Lb и диаметром Db, и с величиной соотношения Lb/Db, находящегося в диапазоне от 10 до 500, а в предпочтительном варианте изобретения, находящегося в диапазоне от 30 до 300.
Указанные горелки имеют центральный распределитель топлива (27) с возможно неоднородной системой распределения отверстий (30) и снабжены пористым элементом (28) кольцеобразной формы, окружающим центральный распределитель топлива (27), по меньшей мере, по всей его длине Lb, причем толщина указанного пористого элемента (28) находится в диапазоне от 0,5 до 5 см, а внутренняя поверхность указанного пористого элемента (28) находится на расстоянии от центрального распределителя топлива (27), находящемся в диапазоне от 0,5 см и 10 см. Речь идет в этом случае о расстоянии, точно соответствующем зоне (29), указанной на фиг.4.
В предпочтительном варианте изобретения горелки удлиненной формы устанавливаются с трехсторонним шагом, причем межосевое расстояние установки горелок превышает в 2-5 раз наружный диаметр байонетных труб.
В рассматриваемом изобретении предлагается также способ парового реформинга смеси углеводородов, реализуемый на базе рассматриваемого реактора-теплообменника.
В соответствии с одним из вариантов предлагаемого способа согласно предлагаемому изобретению в качестве топлива для проведения процесса сжигания непосредственно в самом рассматриваемом аппарате используется газ, содержащий более чем 90% водорода.
Как правило, способ парового реформинга смеси углеводородов на базе реактора-теплообменника согласно предлагаемому изобретению проводится при давлении в каландровом пространстве, находящемся в диапазоне от 1 и 10 бар абс (1 бар =105 паскалей), и при давлении внутри байонетных труб, находящемся в диапазоне от 25 до 50 бар абс. Температура внутри труб реактора находится, как правило, в диапазоне от 700°C и 950°C.
ПОДРОБНОЕ ОПИСАНИЕ ПРЕДЛАГАЕМОГО ИЗОБРЕТЕНИЯ
Реактор-теплообменник согласно настоящему изобретению предназначен для проведения реакций, носящих ярко выраженный эндотермический характер, при температурах, доходящих до 950°C. Как правило, рассматриваемый аппарат может использоваться для проведения парового реформинга смеси углеводородов, в частности нефти или природного газа в целях производства водорода.
Приводимое ниже описание относится к фиг.2.
Реактор-теплообменник согласно предлагаемому изобретению состоит из каландра полностью цилиндрической формы (1), закрытого сверху колпаком (2), практически эллипсоидальной формы, а снизу днищем (3) практически эллипсоидальной формы, причем в указанном каландре (1) размещено множество вертикальных труб (4), имеющих длину (L), проложенных вдоль цилиндрической части каландра (1).
Трубы (4) относятся к типу байонетных, то есть в состав их конструкции входит внутренняя труба (5), помещенная внутрь наружной трубы (6), причем внутренняя и наружная трубы установлены практически коаксиально друг относительно друга. Указанная коаксиальность может быть обеспечена, например, путем использования специальных центрующих крылышек, приваренных с одинаковым шагом к поверхности внутренней трубы (5) и обеспечивающих возможность поддержания постоянного зазора с наружной трубой (6).
Кольцеобразное пространство (7), ограниченное наружной поверхностью внутренней трубы (5) и внутренней поверхностью наружной трубы (6), заполнено, как правило, катализатором, причем указанный катализатор выполнен в виде частиц цилиндрической формы, которые при проведении процесса парового реформинга имеют, как правило, длину в несколько миллиметров и диаметр также в несколько миллиметров.
Форма гранул катализатора не является отличительной особенностью предлагаемого изобретения, согласно которому в предлагаемом аппарате могут использоваться гранулы катализатора любой формы, лишь бы их размер позволял вводить их в кольцеобразную часть (7) вертикальных труб (4).
Участвующая в технологическом процессе среда вводится в предпочтительном варианте изобретения в байонетные трубы (4) через кольцеобразную зону катализа (7), входной торец которой располагается снаружи реактора, при этом процесс парового реформинга протекает в кольцеобразной зоне катализа, а эффлюенты собираются в выходной части центральной трубы (5), которая также расположена снаружи реактора.
Возможны также и другие варианты технических решений, в которых среда, участвующая в технологическом процессе, вводится через центральную трубу (5), а эффлюенты улавливаются на выходе из кольцеобразной зоны (7).
Среды, используемые в технологическом процессе, циркулируют, таким образом, внутри байонетных труб (4), сначала спускаясь вдоль кольцеобразной зоны (7) трубы, затем, поднимаясь вдоль центральной трубы (5), причем входные/выходные торцы указанных труб (4) расположены снаружи реактора-теплообменника, а указанные трубы (4) подогреваются теплоносителем, циркулирующим в каландровом пространстве (8).
Природе теплоносителя в рассматриваемом изобретении не придается особого значения. В качестве теплоносителя используются дымовые газы, образующиеся в результате сжигания топлива непосредственно в самом реакторе-теплообменнике с помощью горелок специальной конструкции, типа тех, которые описаны во французской заявке на патент №06/10.999.
Соотношение H/D между высотой H реактора и его диаметром D находится, как правило, в пределах от 2 до 8, а в предпочтительном варианте изобретения - в пределах от 2,5 до 6.
Байонетные трубы (4) прокладываются, как правило, внутри дымохода (10), который их окружает практически коаксиально, что позволяет обеспечить скорость циркуляции дымовых газов вдоль подлежащей нагреву трубы в диапазоне от 5 м/сек и 50 м/сек, а в предпочтительном варианте изобретения в диапазоне от 20 м/сек и 40 м/сек.
Количество подлежащих нагреву труб на м2 сечения реактора находится, как правило, в пределах от 2 до 12 штук, а в предпочтительном варианте изобретения в пределах от 3 до 8 штук. Под термином сечение реактора понимается его геометрическое сечение, которое предполагается полностью свободным от каких-либо внутренних устройств.
Байонетные трубы (4) устанавливаются чаще всего с трехсторонним шагом, причем межосевое расстояние установки горелок превышает в 2-5 раз внутренний диаметр наружных труб (6).
В тех случаях, когда процесс сжигания с целью производства теплоносителя осуществляется непосредственно в самом рассматриваемом аппарате с помощью горелок удлиненной формы, последние устанавливаются в промежутках между байонетными трубами, с трехсторонним шагом, причем межосевое расстояние установки горелок превышает в 2-5 раз наружный диаметр указанных байонетных труб.
ПРИМЕР РЕАЛИЗАЦИИ ПРЕДЛАГАЕМОГО ИЗОБРЕТЕНИЯ
В нижеприведенном примере даны размеры реактора-теплообменника согласно предлагаемому изобретению, предназначенного для производства 90 000 Нм3/час водорода H2 способом парового реформинга природного газа.
Топливо, применяемое для производства калорий, необходимых для реализации процесса парового реформинга, имеет следующий состав, представленный в молекулярных процентах:
H2: 92,10%
CH4: 5,35%
CO2: 0,78%
CO: 1,5%
N2: 0,25%.
Температура внутри байонетных труб составляет: 900°C.
Температура дымовых газов, циркулирующих в каландровом пространстве, составляет в среднем 1200°C.
Давление внутри байонетных труб составляет: 35 бар
Давление дымовых газов, циркулирующих в каландровом пространстве, составляет: 5 бар.
Перепад давлений в трубе и каландре составляет, таким образом, 30 бар.
Основные размеры реактора согласно предлагаемому изобретению следующие:
Полная высота реактора (с верхним и нижним днищами): 16 м.
Диаметр реактора: 7 м.
Соотношение H/D составляет: 2,3
Трубы относятся к типу байонетных.
Длина труб: 12 м.
Наружный диаметр труб, подлежащих нагреву, составляет: 200 мм.
Диаметр центральной трубы: 50 мм.
Межосевое расстояние труб, подлежащих нагреву: 300 мм.
Количество труб: 235 трубы, распределенные по сечению аппарата с трехсторонним шагом.
Наружный диаметр пористых горелок составляет: 100 мм.
Длина пористых горелок составляет: 5 м.
Количество пористых горелок составляет: 470.
Межосевое расстояние между пористыми горелками: 600 мм.
Кольцеобразная часть байонетных труб заполнена катализатором для проведения парового реформинга на базе никеля, выполненным в виде пастилок цилиндрической формы, причем каждая гранула катализатора имеет следующие размеры:
- диаметр пастилки: 10 мм,
- длина пастилки: 13 мм.
Среда, участвующая в технологическом процессе среды, загружается в каждую трубу реактора через входной торец наружной трубы (6).
Входной распределитель сред, участвующих в технологическом процессе, имеет, как это представлено на фиг.3, 20 ответвлений.
Улавливание образующихся в ходе технологического процесса эффлюентов происходит в выходном торце центральной трубы (5).
Выходной коллектор эффлюентов, образующихся в ходе технологического процесса, имеет 4 ответвления, как это представлено на фиг.3.
Центральная труба (5) отходит над верхним колпаком реактора на расстоянии, равном 2 метрам, от наружной трубы (6) под углом 30° относительно вертикали.
Заполнение катализатором производится через входные торцы наружных труб (6).
Доступ в кольцеобразную зону наружной трубы (6) облегчается за счет демонтажа патрубков в верхней части. Ввиду того что торец центральной трубы (5) отклонен в сторону и наружу относительно наружной трубы (6) байонетного соединения, риск попадания катализатора в центральную трубу (5) в процессе загрузки кольцеобразного пространства отсутствует.
Для создания более благоприятных условий загрузки катализатора на байонетные трубы, например, на их нижние торцы, доступ к которым возможен через смотровой люк, предусмотренный в каландре, могут быть наложены с помощью вибратора, присоединенного на время загрузки к соответствующей трубе, вибрации.

Claims (9)

1. Реактор-теплообменник для парового реформинга смеси углеводородов, состоящий из закрытого сверху колпаком, а снизу днищем каландра цилиндрической формы, внутри которого циркулирует текучий теплоноситель, причем внутри указанного каландра предусмотрено множество параллельных труб, оси которых ориентированы практически в вертикальном направлении, внутри которых циркулирует среда, участвующая в технологическом процессе, причем указанные трубы относятся к типу байонетных, причем между наружной трубой (6) и внутренней трубой (5) байонетной трубы расположена кольцеобразная зона (7), по меньшей мере, частично заполненная катализатором, причем плотность установки байонетных труб находится в диапазоне от 2 и 12 штук на м2 сечения реактора, интервал установки байонетных труб или их межосевое расстояние превышает по величине в 2-5 раз внутренний диаметр наружной трубы (6), причем входной и выходной торцы каждой байонетной трубы выходят за пределы реактора, в промежутках между байонетными трубами установлены горелки (8) удлиненной формы, выполненные для сжигания топлива с получением текучего теплоносителя, межосевое расстояние установки горелок превышает в 2-5 раз диаметр наружной трубы (6) байонетной трубы.
2. Реактор-теплообменник по п.1, в котором каждая байонетная труба окружена дымоходом (10) цилиндрической формы практически коаксиально относительно наружной трубы (6).
3. Реактор-теплообменник по одному из пп.1 и 2, в котором внутренняя труба (5) каждой байонетной трубы пересекает наружную трубу (6) в точке, расположенной снаружи реактора, на расстоянии, равном, по меньшей мере, 1 м, от верхнего колпака реактора-теплообменника и под углом от 30° до 60° к вертикали.
4. Реактор-теплообменник по одному из пп.1-3, в котором питание внутренней трубы (5) каждой байонетной трубы осуществляется через основную питающую трубу, разветвляющуюся на N ответвлений, каждое из которых осуществляет питание одной внутренней трубы (5), причем величина N находится в пределах от 5 до 100 предпочтительно в пределах от 10 до 50.
5. Реактор-теплообменник по одному из пп.1-4, в котором наружная труба (6) каждой байонетной трубы подключена к первичному коллектору, причем сам коллектор подключен ко вторичному коллектору, и так вплоть до конечного коллектора, который соответствует количеству М коллекторов, которое находится в диапазоне от 2 до 10.
6. Способ парового реформинга смеси углеводородов, предусматривающий применение реактора-теплообменника по одному из пп.1-5, в котором давление в каландровом пространстве находится в диапазоне от 1 и 10 бар абс., а давление внутри байонетных труб находится в диапазоне от 25 и 50 бар абс.
7. Способ парового реформинга смеси углеводородов, предусматривающий применение реактора-теплообменника по одному из пп.1-5, в котором в качестве топлива для проведения процесса сжигания непосредственно в самом рассматриваемом аппарате используют часть эффлюэнта парового реформинга.
8. Способ парового реформинга смеси углеводородов, предусматривающий применение реактора-теплообменника по одному из пп.1-5, в котором текучий теплоноситель циркулирует внутри кольцеобразного пространства (11), ограниченного наружной стенкой (6) байонетной трубы и дымоходом (10), окружающим указанную трубу, со скоростью, находящейся в диапазоне от 20 м/с до 50 м/с.
9. Способ парового реформинга смеси углеводородов, предусматривающий применение реактора-теплообменника по одному из пп.1-5, в котором участвующую в технологическом процессе среду вводят через входной торец кольцеобразной зоны (7), а эффлюенты отводят через выходной торец внутренней трубы (5).
RU2010106107/02A 2007-07-20 2008-06-24 Реактор-теплообменник с байонетными трубами, конструкция которого позволяет ему работать с перепадами давления порядка 100 бар между трубой и каландром RU2469785C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0705316A FR2918904B1 (fr) 2007-07-20 2007-07-20 Reacteur echangeur a tube baionnette permettant de fonctionner avec des differences de pression de l'ordre de 100 bars entre le cote tube et le cote calandre.
FR0705316 2007-07-20
PCT/FR2008/000888 WO2009024664A1 (fr) 2007-07-20 2008-06-24 Reacteur echangeur a tube baïonnette permettant de fonctionner avec des differences de pression de l'ordre de 100 bars entre le cote tube et le cote calandre

Publications (2)

Publication Number Publication Date
RU2010106107A RU2010106107A (ru) 2011-08-27
RU2469785C2 true RU2469785C2 (ru) 2012-12-20

Family

ID=39124596

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010106107/02A RU2469785C2 (ru) 2007-07-20 2008-06-24 Реактор-теплообменник с байонетными трубами, конструкция которого позволяет ему работать с перепадами давления порядка 100 бар между трубой и каландром

Country Status (9)

Country Link
US (1) US8512645B2 (ru)
EP (1) EP2170497A1 (ru)
JP (1) JP5520823B2 (ru)
CN (1) CN101754803B (ru)
BR (1) BRPI0814783B1 (ru)
CA (1) CA2692701C (ru)
FR (1) FR2918904B1 (ru)
RU (1) RU2469785C2 (ru)
WO (1) WO2009024664A1 (ru)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2931368B1 (fr) * 2008-05-23 2014-07-25 Inst Francais Du Petrole Nouveau reacteur echangeur a tubes baionnette entourees de cheminees en ciment.
FR2950822B1 (fr) * 2009-10-01 2012-02-24 Inst Francais Du Petrole Dispositif de chargement de particules de catalyseur dans des tubes presentant une zone annulaire
FR2961117B1 (fr) 2010-06-11 2012-06-08 Inst Francais Du Petrole Reacteur echangeur a tubes baionnettes et a tubes de fumees suspendus a la voute superieure du reacteur
WO2012135583A1 (en) * 2011-03-30 2012-10-04 Monsanto Technology Llc Apparatus and methods for reforming ethanol at low temperature using powder catalysts
ITRM20110176A1 (it) * 2011-04-07 2012-10-08 Francesco Giacobbe "perfezionamento nei reattori catalitici per reazioni endotermiche, in particolare per la produzione di idrogeno e gas di sintesi"
FR2979257B1 (fr) * 2011-08-26 2013-08-16 Ifp Energies Now Reacteur echangeur pour la production d'hydrogene avec faisceau de generation vapeur integre
BR112014024351B1 (pt) 2012-03-30 2021-10-26 Monsanto Technology Llc Sistema de reforma de álcool para motor de combustão interna e método de reforma de álcool integrado de um veículo com motor de combustão interna
CN104321272B (zh) 2012-03-30 2018-01-30 孟山都技术公司 用于将醇重整成包括氢的气体的混合物的醇重整器
US9366203B2 (en) * 2013-09-24 2016-06-14 Fca Us Llc Conformable high pressure gaseous fuel storage system having a gas storage vessel with fractal geometry
DE102015212433A1 (de) 2015-07-02 2017-01-05 Arvos Gmbh Wärmeübertrager
DE102016212757A1 (de) * 2016-07-13 2018-01-18 Thyssenkrupp Ag Kompakter Methanolreformer für ein Unterseeboot
WO2018077969A1 (en) * 2016-10-25 2018-05-03 Technip France Catalyst tube for reforming
CN107570088B (zh) * 2017-10-10 2023-11-17 湖南安淳高新技术有限公司 一种管壳式反应器的催化剂卸载***及卸载方法
CN107952400B (zh) * 2017-11-28 2019-12-13 万华化学集团股份有限公司 一种适用于烯烃氧化的列管式反应器
CN108393044B (zh) * 2018-04-09 2023-10-27 南京聚拓化工科技有限公司 复合式换热径向甲醇反应器及甲醇合成工艺
US11754349B2 (en) * 2019-03-08 2023-09-12 Hamilton Sundstrand Corporation Heat exchanger
US20220332656A1 (en) 2019-03-20 2022-10-20 Blue Horizons Innovations,LLC Nano particle agglomerate reduction to primary particle
US11901133B2 (en) 2019-03-20 2024-02-13 Blue Horizons Innovations, Llc Dense energy storage element with multilayer electrodes
CN112892460B (zh) * 2020-12-25 2022-02-01 宁波申江科技股份有限公司 一种自供热的甲醇重整制氢反应器
CN116839391B (zh) * 2023-07-26 2024-06-18 天津华能热力设备集团有限公司 一种立式蒸发器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3119671A (en) * 1960-09-28 1964-01-28 Chemical Coustruction Corp Upright fluid heating furnace with heat recovery system
US3220385A (en) * 1963-02-01 1965-11-30 Sellin Jan Tube furnace for the indirect heating of gases or liquids
RU2117626C1 (ru) * 1991-12-03 1998-08-20 Энститю Франсэ Дю Петроль Реактор для получения синтез-газа и способ получения синтез-газа
US5935531A (en) * 1993-10-29 1999-08-10 Mannesmann Aktiengesellschaft Catalytic reactor for endothermic reactions
RU2301196C2 (ru) * 2000-12-21 2007-06-20 СНАМПРОДЖЕТТИ С.п.А. Способ получения водорода

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR610999A (fr) 1925-09-05 1926-09-17 Pare-boue pour voitures automobiles et autres véhicules analogues
DE2656726A1 (de) * 1976-12-15 1978-06-22 Otto & Co Gmbh Dr C Roehrenreaktor zur durchfuehrung endothermer gasreaktionen
JPS55154303A (en) * 1979-05-18 1980-12-01 Toyo Eng Corp Method and apparatus for steam-reforming hydrocarbon
CS261302B1 (en) * 1985-10-10 1989-01-12 Petr Vesely Furnace for hydrocarbons' thermal cracking
JPH0195290A (ja) * 1987-10-06 1989-04-13 Fuji Electric Co Ltd 熱交換装置
US4972903A (en) * 1990-01-25 1990-11-27 Phillips Petroleum Company Heat exchanger
JP2584550B2 (ja) * 1991-06-18 1997-02-26 東洋エンジニアリング株式会社 熱交換器
JPH11217573A (ja) * 1998-02-02 1999-08-10 Japan Atom Energy Res Inst 水蒸気改質器
GB0002153D0 (en) * 2000-02-01 2000-03-22 Ici Plc Heat exchange reactor
GB2359764A (en) * 2000-03-01 2001-09-05 Geoffrey Gerald Weedon An endothermic tube reactor
FR2900066B1 (fr) * 2006-04-21 2008-05-30 Inst Francais Du Petrole Nouvel echangeur interne pour reacteur en lit fluidise gaz liquide solide, mettant en oeuvre une reaction fortement exothermique.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3119671A (en) * 1960-09-28 1964-01-28 Chemical Coustruction Corp Upright fluid heating furnace with heat recovery system
US3220385A (en) * 1963-02-01 1965-11-30 Sellin Jan Tube furnace for the indirect heating of gases or liquids
RU2117626C1 (ru) * 1991-12-03 1998-08-20 Энститю Франсэ Дю Петроль Реактор для получения синтез-газа и способ получения синтез-газа
US5935531A (en) * 1993-10-29 1999-08-10 Mannesmann Aktiengesellschaft Catalytic reactor for endothermic reactions
RU2301196C2 (ru) * 2000-12-21 2007-06-20 СНАМПРОДЖЕТТИ С.п.А. Способ получения водорода

Also Published As

Publication number Publication date
WO2009024664A1 (fr) 2009-02-26
CN101754803B (zh) 2013-03-06
FR2918904A1 (fr) 2009-01-23
CN101754803A (zh) 2010-06-23
US20100254891A1 (en) 2010-10-07
US8512645B2 (en) 2013-08-20
JP5520823B2 (ja) 2014-06-11
BRPI0814783A2 (pt) 2015-03-03
CA2692701A1 (fr) 2009-02-26
CA2692701C (fr) 2014-05-27
BRPI0814783B1 (pt) 2017-03-07
JP2010534128A (ja) 2010-11-04
FR2918904B1 (fr) 2011-07-15
EP2170497A1 (fr) 2010-04-07
RU2010106107A (ru) 2011-08-27

Similar Documents

Publication Publication Date Title
RU2469785C2 (ru) Реактор-теплообменник с байонетными трубами, конструкция которого позволяет ему работать с перепадами давления порядка 100 бар между трубой и каландром
RU2459172C2 (ru) Компактный реактор-теплообменник, использующий множество пористых горелок
RU2750041C2 (ru) Катализаторная трубка для риформинга
RU2568476C2 (ru) Теплообменный реактор с байонетными трубами и с дымовыми трубами, подвешенными к верхнему своду реактора
US4494485A (en) Fired heater
CA2127742C (en) Gas-fired, porous matrix, surface combustor-fluid heater
CN102782096B (zh) 用于冷却从气化器产生的合成气的***和方法
CN102887481B (zh) 一种低水气比预变串等温co变换工艺
RU2462413C2 (ru) Новая печь для парового риформинга, содержащая пористые горелки
CA2939854A1 (en) Isothermal tubular catalytic reactor
RU2552623C2 (ru) Теплообменник для охлаждения горячих газов и теплообменная система
KR101741757B1 (ko) 복사열 및 폐열을 이용한 고효율 스팀 보일러
KR20130023134A (ko) 병합된 스팀 발생 다발을 갖는 수소 제조용 교환기-반응기
US6395251B1 (en) Steam-hydrocarbon reformer and process
JPS63197534A (ja) 反応装置
CN100458342C (zh) 高温取热炉
RU2615768C1 (ru) Реактор для каталитической паровой и пароуглекислотной конверсии углеводородов
KR101815753B1 (ko) 촉매층 내부에 열원 플레이트가 장착된 자체 열공급 탈수소 반응기
CN115321480B (zh) 一种绝热控温型变换炉及水煤气变换工艺
CN111019691B (zh) 低碳烯烃裂解设备以及裂解方法
JPH11179191A (ja) 触媒改質型反応炉
CN111019690B (zh) 低碳烯烃裂解设备以及裂解方法
CN2545182Y (zh) 列管-浮头式换热转化炉
JPS59102804A (ja) 燃料改質装置
SU1386285A1 (ru) Печь каталитической конверсии углеводородов

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200625