RU2469452C2 - Система и способ индуктивной зарядки аккумулятора - Google Patents

Система и способ индуктивной зарядки аккумулятора Download PDF

Info

Publication number
RU2469452C2
RU2469452C2 RU2009115795/07A RU2009115795A RU2469452C2 RU 2469452 C2 RU2469452 C2 RU 2469452C2 RU 2009115795/07 A RU2009115795/07 A RU 2009115795/07A RU 2009115795 A RU2009115795 A RU 2009115795A RU 2469452 C2 RU2469452 C2 RU 2469452C2
Authority
RU
Russia
Prior art keywords
circuit
frequency
specified
primary winding
battery
Prior art date
Application number
RU2009115795/07A
Other languages
English (en)
Other versions
RU2009115795A (ru
Inventor
Дэвид В. БААРМАН
Джон Джеймс ЛОРД
Натан П. СТИН
Original Assignee
Эксесс Бизнесс Груп Интернэшнл ЛЛС
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Эксесс Бизнесс Груп Интернэшнл ЛЛС filed Critical Эксесс Бизнесс Груп Интернэшнл ЛЛС
Publication of RU2009115795A publication Critical patent/RU2009115795A/ru
Application granted granted Critical
Publication of RU2469452C2 publication Critical patent/RU2469452C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/20Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by the transmission technique; characterised by the transmission medium
    • H04B5/24Inductive coupling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/79Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for data transfer in combination with power transfer

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

Система индуктивной зарядки для аккумулятора включает в себя цепь зарядного устройства и вторичную цепь. Вторичная цепь включает в себя механизм обратной связи для предоставления сигнала обратной связи зарядному устройству через индуктивную связь первичной обмотки и вторичной обмотки. Цепь зарядки включает в себя механизм управления частотой для управления частотой мощности, подаваемой на первичную обмотку, по меньшей мере, частично в ответ на сигнал обратной связи от механизма обратной связи. Технический результат - оптимизация зарядки аккумулятора. 4 н. и 20 з.п. ф-лы, 7 ил.

Description

Зарядка аккумуляторов при помощи индуктивного источника питания известна.
Индуктивная зарядка аккумуляторов для электромобилей, а также зарядка небольших электрических аккумуляторов для бытовых приборов, таких как зубные щетки, имела определенный успех. Поскольку индуктивная зарядка не требует физического соединения между аккумулятором и зарядным устройством, зарядка становится значительно более удобной. Однако не все аккумуляторы легко заряжаются индуктивным образом. Один тип таких аккумуляторов - литий-ионные аккумуляторы (Li-Ion).
Перезарядка литий-ионных аккумуляторов не является столь же прямолинейной, как зарядка других аккумуляторов. Литий-ионные аккумуляторы не способы поглотить избыточный заряд. Если подавать на полностью заряженный литий-ионный аккумулятор постоянный ток, может возникнуть электроосаждение металлическое лития, что может привести к выходу аккумулятора из строя. Таким образом, следует проявлять осторожность, чтобы не допустить избыточной зарядки аккумулятора.
В то же время зарядка литий-ионного аккумулятора до полной емкости представляет некоторую трудность. Максимальное напряжение литий-ионного аккумулятора может быть достигнуто относительно быстро при зарядке посредством подачи к аккумулятору постоянного тока. Однако после достижения на литий-ионном аккумуляторе максимального напряжения, литий-ионный аккумулятор может оказаться неполностью заряженным. Без дальнейшей зарядки аккумулятор будет заряжен лишь приблизительно на 65%. Если непрерывно подавать на аккумулятор постоянный ток после того, как на аккумуляторе установилось максимальное напряжение, то аккумулятор может оказаться избыточно заряженным, что может привести к преждевременному выходу аккумулятора из строя.
Были разработаны обычные зарядные устройства для аккумуляторов для обеспечения полной зарядки литий-ионного аккумулятора. Как правило, в зарядном устройстве для аккумулятора используется схема постоянного тока, постоянного напряжения для зарядки аккумулятора. Разряженный аккумулятор сначала заряжают при постоянном уровне тока в диапазоне от 0,1С до 1С ампер, где С - емкость аккумулятора в ампер-часах, до тех пор пока на аккумулятор не установится требуемое напряжение, равное примерно 4,2 вольта. В этот момент зарядное устройство для аккумулятора переключается в режим постоянного напряжения, обеспечивая достаточную мощность для поддержания аккумулятора при этом окончательном напряжении и при этом обеспечивая дополнительную зарядку аккумулятора.
График зарядки для типичного литий-ионного аккумулятора приведен на Фиг.1. Постоянный ток подается в течение заданного промежутка времени. Во время этой фазы зарядка литий-ионного аккумулятора является в общем постоянной. Для типичного аккумулятора эта фаза длится чуть меньше часа. Литий-ионный аккумулятор в конечном счете показывает постоянное напряжение вблизи предпочтительного значения напряжения еще до получения полного заряда. Затем на литий-ионный аккумулятор подается постоянное напряжение. Приблизительно после часовой зарядки при постоянном напряжении аккумулятор обычно получает полный заряд.
Если зарядка литий-ионного аккумулятора осуществляется не в соответствии с графиком зарядки, приведенным на фиг.1, то существует риск, что аккумулятор будет не полностью заряжен или зарядка повредит аккумулятор.
Зарядка литий-ионного аккумулятора осложняется еще и тем, что аккумулятор зачастую не полностью разряжен перед зарядкой. Если на аккумуляторе остается некоторый остаточный заряд, то оптимальная зарядка может требовать некоторого объема зарядки при постоянном токе, после чего следует зарядка при постоянном напряжении или в альтернативном варианте оптимальная зарядка может требовать лишь зарядки при постоянном напряжении. Для повышения эффективности зарядное устройство для аккумулятора должно обеспечивать механизм компенсации состояния заряда аккумулятора.
Зарядка литий-ионных аккумуляторов является особенно затруднительной при использовании индуктивной зарядки. В индуктивном зарядном устройстве для аккумулятора первичная обмотка, расположенная в зарядном устройстве, подает мощность на индуктивную вторичную обмотку, расположенную в аккумуляторе. Напряжение на вторичной обмотке затем выпрямляется и подается на аккумулятор для подзарядки аккумулятора. Физическое соединение между аккумулятором и зарядным устройством аккумулятора отсутствует. Поскольку между аккумулятором и зарядным устройством для аккумулятора отсутствует физическое соединение, информация о состоянии аккумулятора не является непосредственно доступной для зарядного устройства для аккумулятора.
В то же время переносные устройства должны быть легкими. Таким образом, сложная электрическая схема для контроля зарядового состояния аккумулятора и передачи этой информации индуктивному зарядному устройству повышает стоимость, размеры и вес переносного устройства.
Крайне желательно создать индуктивную систему, выполненную с возможностью заряжать аккумулятор, имеющий уникальный цикл зарядки, при помощи относительно простой схемы, непосредственно соединенной с аккумулятором.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Индуктивная система для подзарядки аккумулятора, такого как литий-ионный аккумулятор, имеющего уникальный цикл заряда, обычно включает в себя цепь зарядного устройства, имеющую первичную обмотку для индуктивной подачи заряжающей мощности, и вторичную цепь для индуктивного приема заряжающей мощности и подачи этой мощности на аккумулятор. Вторичная цепь включает в себя механизм обратной связи для обеспечения обратной связи к цепи зарядного устройства через индуктивную связь первичной обмотки и вторичной обмотки. Цепь зарядного устройства включает в себя механизм управления частотой для управления частотой мощности, подаваемой на первичную обмотку, по меньшей мере, частично в ответ на информацию обратной связи от механизма обратной связи.
В одном варианте выполнения механизм обратной связи включает в себя участок цепи для изменения вносимого полного сопротивления вторичной цепи. В этом варианте выполнения цепь зарядного устройства может включать в себя детектор обратной связи для контроля характеристики мощности в цепи зарядного устройства, которая изменяется, по меньшей мере, частично в ответ на изменение во вносимом полном сопротивлении вторичной цепи. В этом варианте выполнения детектор обратной связи может быть соединен с первичной обмоткой, чтобы контроллер мог контролировать ток через первичную обмотку.
В одном варианте выполнения механизм обратной связи включает в себя детектор перенапряжения или детектор избыточного тока или оба таких детектора. В этом варианте выполнения детекторы могут быть выполнены с возможностью управлять одним или несколькими переключателями, такими как транзисторы. В случае обнаружения во вторичной цепи либо состояния перенапряжения, либо состояния избыточного тока переключатель переводится в положение "включено", и ток с вторичной обмотки шунтируется относительно аккумулятора через резистор. Таким образом, аккумулятор защищен от значительного воздействия состояний перенапряжения или избыточного тока. Механизм обратной связи может быть непосредственно соединен с аккумулятором.
В одном варианте выполнения детектор обратной связи представляет собой датчик тока, соединенный с первичным колебательным контуром. В этом варианте выполнения, когда ток шунтируется через сигнальный резистор обратной связи во вторичной цепи, ток через вторичную обмотку возрастает, что изменяет вносимое полное сопротивление вторичной цепи, что приводит к повышению тока через первичную обмотку. Увеличение тока через первичную обмотку обнаруживается датчиком тока в первичной цепи, который может включать в себя пиковый детектор, и, тем самым, на контроллер подается сигнал обратной связи для того, чтобы обнаружить, что аккумулятор не находится в состоянии перезаряженности или избыточного тока. В одном варианте выполнения механизм управления частотой вносит соответствующие поправки в частоту для коррекции состояния перезаряженности или избыточного тока посредством уменьшения мощности, подаваемой на вторичную обмотку.
В одном варианте выполнения цепь зарядного устройства включает в себя инвертор и колебательный контур. В этом варианте осуществления рабочая частота инвертора уменьшается для смещения частоты мощности, подаваемой на первичную обмотку, ближе к резонансной частоте колебательного контура, тогда как рабочая частота инвертора увеличивается для смещения частоты мощности, подаваемой на первичную обмотку, дальше от резонансной частоты колебательного контура. Было бы в такой же степени возможно выполнить систему так, чтобы повышение частоты инвертора смещало мощность, приложенную к первичной обмотке, ближе к резонансной частоте и, тем самым, повышало передачу мощности, тогда как снижение частоты инвертора смещало бы мощность, приложенную к первичной обмотке, дальше от резонансной частоты колебательного контура и, тем самым, уменьшало бы передачу мощности.
В другом аспекте настоящее изобретение обеспечивает также способ управления индуктивной зарядной системой, имеющей цепь зарядного устройства с первичной обмоткой и вторичную цепь с вторичной обмоткой. Способ, в общем, включает в себя стадии определения, имеется ли во вторичной цепи аккумулятор, и зарядки аккумулятора при помощи одного или циклов заряда. Стадия зарядки обычно включает в себя стадии подачи мощности к первичной обмотке на некоторой частоте, оценки сигнала обратной связи от вторичной обмотки через индуктивную связь между первичной обмоткой и вторичной обмоткой, и коррекции частоты мощности, подаваемой на первичную обмотку, в зависимости от сигнала обратной связи от вторичной обмотки. Таким образом, частота мощности, подаваемой на первичную обмотку, изменяется для оптимизации зарядки аккумулятора. Для полного заряда аккумулятора может потребоваться несколько циклов заряда.
В одном варианте выполнения этот способ используется вместе с цепью зарядного устройства, имеющей колебательный контур. В этом варианте выполнения цикл заряда может включать в себя альтернативные стадии смещения мощности, подаваемой на первичную обмотку, ближе к резонансной частоте колебательного контура, или смещения мощности, подаваемой на первичную обмотку, дальше от резонансной частоты колебательного контура. Цепь зарядного устройства может включать в себя инвертор. В таких вариантах выполнения стадии смещения частоты мощности, подаваемой на первичную обмотку, можно также определить как смещение рабочей частоты инвертора.
В одном варианте выполнения стадия зарядки включает в себя стадии, на которых: подают мощность на первичную обмотку при определенной частоте; определяют, получен ли сигнал обратной связи от цепи зарядного устройства цепью зарядного устройства; и изменяют частоту мощности, подаваемой на первичную обмотку, в зависимости от сигнала обратной связи для повышения или снижения мощности, подаваемой во вторичную цепь. В одном варианте выполнения стадия изменения частоты дополнительно определяется как стадия, включающая стадии, на которых: смещают частоту мощности, подаваемой на первичную обмотку, дальше от резонансной, если принят сигнал обратной связи от механизма обратной связи, или смещают частоту мощности, подаваемой на первичную обмотку, если сигнал обратной связи от механизма обратной связи не принят.
В одном варианте выполнения стадия зарядки, в общем, включает стадии, на которых пошагово смещают частоту мощности, подаваемой на первичную обмотку, ближе к резонансной до тех пор, пока не принят сигнал обратной связи; после получения сигнала обратной связи пошагово смещают частоту мощности, подаваемой на первичную обмотку, дальше от резонанса до тех пор, пока не прекратится прием сигнала обратной связи; и подают мощность на первичную обмотку на этой частоте в течение времени зарядки. Процесс можно повторить. В одном варианте выполнения стадия определения, принят ли сигнал обратной связи, включает в себя стадии, на которых определяют датчиком ток в цепи зарядного устройства и сравнивают определенный ток с заданным порогом.
В одном варианте выполнения способ дополнительно включает в себя стадию, на которой прекращают цикл заряда, когда время для завершения одного цикла заряда меньше минимального времени цикла заряда. Способ может дополнительно включать в себя стадию, на которой прекращают цикл зарядки, когда частота мощности, подаваемой на первичную обмотку, удовлетворяет верхнему и (или) нижнему порогу.
В одном варианте выполнения стадия обнаружения дополнительно включает стадии, на которых: подают импульс мощности на первичную обмотку на заданной частоте зондирования, определяют вносимое полное сопротивление и определяют наличие аккумулятора в зависимости от вносимого полного сопротивления.
Настоящее изобретение обеспечивает простую и эффективную цепь индуктивной зарядки, которая позволяет реализовать нелинейный график зарядки в индуктивной системе при помощи малого числа компонентов. Детекторы избыточного тока и перенапряжения не только обеспечивают обратную связь, используемую для регулирования частоты зарядной мощности, но также защищают аккумулятор от потенциально вредных условий мощности. График зарядки можно легко менять, изменяя число сохраненных значений, которые определяют работу системы. Настоящее изобретение подходит для зарядки переносных электронных устройств, таких как сотовые телефоны, карманные персональные компьютеры, переносные игровые устройства, персональные медиапроигрыватели и другие подобные устройства. В этом контексте вторичную цепь можно включать в состав переносного электронного устройства так, чтобы устройство можно было поместить в непосредственной близости от цепи зарядного устройства для его зарядки, тем самым, устраняя необходимость присоединять устройство к зарядному устройству.
Эти и другие цели, преимущества и признаки изобретения можно будет в полной мере понять и оценить при обращении к описанию текущего варианта выполнения и к чертежам.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Фиг.1 - график зарядки для типичного литий-ионного аккумулятора;
Фиг.2 - система для индуктивной зарядки аккумулятора;
Фиг.3 - кривая передачи мощности между первичной обмоткой и вторичной обмоткой;
Фиг.4 - принципиальная схема цепи, соответствующей блок-схеме на фиг.2, для цепи зарядного устройства;
Фиг.5 - принципиальная схема цепи, соответствующей блок-схеме на фиг.2, для стороны аккумулятора;
Фиг.6 - выходной сигнал пикового детектора, вызванный повышенным током через вторичную обмотку; и
Фиг.7 - блок-схема последовательности операций для способа работы зарядного устройства аккумулятора.
ОПИСАНИЕ НАСТОЯЩЕГО ВАРИАНТА ВЫПОЛНЕНИЯ
На фиг.2 приведена индуктивная зарядная система в соответствии с вариантом выполнения настоящего изобретения. Индуктивная зарядная система 4 выполнена с возможностью индуктивной зарядки аккумулятора, имеющего нелинейный график заряда, такого как литий-ионный аккумулятор. В общем виде система 4 включает в себя цепь 6 зарядного устройства и вторичную цепь 8. Цепь 6 зарядного устройства в общем виде включает в себя первичную обмотку 15, регулятор 80 частоты для подачи мощности на первичную обмотку при желательной частоте, и детектор 82 обратной связи для приема обратной связи от вторичной цепи 8. Вторичная цепь 8 в общем виде включает в себя вторичную обмотку 30 для приема индуктивной мощности от цепи 6 зарядного устройства и механизм обратной связи 84 для обеспечения обратной связи с цепью 6 зарядного устройства 6, характеризующей напряжение или ток во вторичной цепи 8. Регулятор 80 частоты изменяет частоту мощности, подаваемой на первичную обмотку 15 в зависимости от обратной связи, поступающей от вторичной цепи 8. Хотя настоящее изобретение описано в отношении зарядки обычного литий-ионного аккумулятора, оно подходит для зарядки аккумуляторов иного типа, в том числе аккумуляторов, имеющих иные графики зарядки.
Как указано выше, цепь 6 зарядного устройства в общем виде включает в себя регулятор 80 частоты, первичную обмотку 15 и датчик 82 обратной связи. В приведенном варианте выполнения регулятор 80 частоты включает в себя контроллер 20, генератор 18, управляющую схему 16 и инвертор 10. В этом варианте выполнения эти компоненты совместно управляют колебательным контуром 12. Более конкретно инвертор 10 подает на колебательный контур 12 мощность переменного тока от источника мощности 14 постоянного тока. Колебательный контур 12 включает в себя первичную обмотку 15. Колебательный контур 12 может быть последовательным резонансным колебательным контуром или параллельным резонансным колебательным контуром. В этом варианте выполнения управляющая схема 16 выдает сигналы, необходимые для управления ключами в инверторе 10. Управляющая схема 16, в свою очередь, работает на частоте, установленной генератором 18. Генератором 18, в свою очередь, управляет контроллер 20. Контроллер 20 может быть микроконтроллером, таким как PIC 18LF1320, или микропроцессором более общего назначения. Хотя в приведенном варианте выполнения компоненты показаны в виде отдельных устройств, управляющая схема 16, генератор 18 могут альтернативно быть объединены и могут быть реализованы в виде модулей в контроллере 20.
В показанном варианте выполнения детектор 82 обратной связи определяет ток в колебательном контуре 12. В процессе работы контроллер 20 использует сигналы от пикового детектора 22 для помощи в определении частоты работы генератора 18 и, следовательно, частоты инвертора 10. Хотя детектор 82 обратной связи приведенного варианта выполнения определяет ток в колебательном контуре 12, могут определяться и другие характеристики мощности в цепи 6 зарядного устройства для получения зарядовой информации в отношении аккумулятора.
Вторичная цепь 8, в общем, включает в себя вторичную обмотку 30, выпрямитель 32 и механизм 84 обратной связи. Вторичная обмотка 30 индуктивным образом принимает мощности от первичной обмотки 15. Выпрямитель 32 обеспечивает подачу мощности постоянного тока для зарядки аккумулятора 34. В этом варианте выполнения механизм 84 обратной связи выполнен с возможностью обеспечения обратной связи, когда ток, подаваемый на аккумулятор 34, превышает пороговое значение или когда напряжение, подаваемое на аккумулятор 34, превышает пороговое значение. Как показано на чертежах, механизм обратной связи этого варианта выполнения, в общем, включает в себя детектор 36 перенапряжения, детектор 40 избыточного тока, схему ИЛИ 38, ключ 42 и резистор 44. Выходной сигнал детектора 36 перенапряжения указывает, превышает ли напряжение на аккумуляторе 34 заданный уровень. Аналогично выходной сигнал детектора 40 избыточного тока указывает, превышает ли ток на аккумуляторе 34 заданную величину. Выход детектора 40 тока, так же как и выход детектора 36 напряжения, соединены с входами схемы ИЛИ 38. Схема ИЛИ 38 может быть отдельной схемой, или она может быть соединительной схемой между выходами датчиков. Выход схемы ИЛИ 38 соединен с ключом 42. Ключ 42 управляется выходным сигналом со схемы ИЛИ 38 и включен последовательно между выпрямителем 32 и резистором 44. Ключ 42 может быть любым подходящим ключом, таким как биполярный транзистор, полевой транзистор или биполярный транзистор с изолированным затвором. Резистор 44 соединен последовательно между ключом 42 и землей.
В процессе работы, если выходной сигнал детектора 36 перенапряжения или детектора 40 избыточного тока указывает на ситуацию перенапряжения или избыточного тока, то выходной сигнал схемы ИЛИ 38 включает ключ 42. Когда ключ 42 включен, ток от выпрямителя 32 течет через резистор 44 на землю.
Поскольку полное сопротивление резистора 44 намного меньше полного сопротивления аккумулятора 34, в резисторе 44 возникает выброс тока, что вызывает выброс тока, текущего по вторичной обмотке 30. Диод 64 не позволяет аккумулятору 34 подавать какой-либо ток, когда ключ 42 включен. Выброс тока через вторичную обмотку 30 создает аналогичный выброс тока в цепи зарядного устройства 6 через первичную обмотку 15. Пиковый детектор 22 обнаруживает выброс тока. Контроллер 20 затем изменяет частоту генератора 18.
В приведенном варианте выполнения первичная обмотка 15 и вторичная обмотка 30 являются слабосвязанными. Поскольку эти две обмотки являются в этом варианте выполнения слабосвязанными, наклон кривой передачи мощности вокруг резонансной частоты является не столь крутым, как если бы обмотки 15, 30 были сильно связаны. Пример кривой передачи мощности для обмоток 15, 30 приведен на фиг.3. В этом варианте выполнения передача мощности максимальна, когда инвертор 10 работает на резонансной частоте. Однако даже если инвертор 10 работает не на резонансной частоте, может иметь место значительная передача мощности, когда инвертор смещен относительно резонанса. Как правило, инвертор 10 работает между частотой А и частотой В. Частота В несколько меньше резонансной частоты. Между частотой А и частотой В кривая передачи мощности может быть кусочно линеаризована при помощи программной таблицы соответствия, расположенной в контроллере 20. Так, уменьшение рабочей частоты инвертора 10 приводит к предсказуемому, в общем, повышению мощности, передаваемой от первичной обмотки 15 к вторичной обмотке 30. Как может быть видно на графике, было бы в равной степени эффективно использовать рабочую частоту меньшей резонансной частоты. В этом случае увеличение рабочей частоты привело бы к повышению передаваемой мощности и наоборот.
На фиг.4 приведена принципиальная схема, соответствующая блок-схеме на фиг.2, для цепи 6 зарядного устройства системы. Пиковый детектор 22 (состоящий из 22А и 22В) последовательно соединен с первичной обмоткой 15 и при помощи трансформатора 50 выдает сигнал, пропорциональный току через первичную обмотку 15. Сигнал выпрямляется диодом 52 и затем используется для зарядки конденсатора 54. Операционные усилители 56, 58 используются для сглаживания сигнала для его дискретизации контроллером 20. Эта частная принципиальная схема является примерной и не предназначена для того, чтобы ограничивать объем изобретения какой-либо определенной конструкцией схемы.
На фиг.5 приведена принципиальная схема для вторичной цепи 8 системы. Как и в случае с принципиальной схемой зарядного устройства на фиг.4, принципиальная схема вторичной цепи на фиг.5 является примерной и не предназначена для того, чтобы ограничивать объем изобретения какой-либо определенной конструкцией схемы. Мощность со вторичной обмотки 30 используется для зарядки конденсатора 60, который, в свою очередь, используется в качестве источника питания для схемы, соединенной с аккумулятором 34. Выпрямитель 32 создает постоянный ток из переменного тока, подаваемого вторичной обмоткой 30. Конденсатор 62 заряжается и служит источником питания постоянного тока для зарядки аккумулятора 34. Блокировочный диод 64 не позволяет аккумулятору 34 разряжаться, когда вторичная обмотка 30 не принимает мощность или когда механизм обратной связи сигнализирует о наличии состояния перенапряжения или избыточного тока.
Если детектор 36 перенапряжения или детектор 40 избыточного тока определяет, что на аккумулятор 34 подается слишком большое напряжение или слишком большой ток, то открывается транзистор 42, тем самым, разряжая конденсатор 62 через резистор 44, что приводит к снижению напряжения на аккумуляторе 34. В этом варианте выполнения вторичная цепь 8 включает в себя блокировочный диод 64, который препятствует току из аккумулятора 34 в конденсатор 62.
Когда ток течет через резистор 44, из вторичной обмотки 30 оттягивается дополнительный ток, что, в свою очередь, приводит к увеличению тока через первичную обмотку 15.
Из-за падения напряжения на конденсаторе 62 напряжение на аккумуляторе 34 падает, как и ток, протекающий через аккумулятор 34. Таким образом, снимается состояние перенапряжения или состояние избыточного тока. Детекторы 36, 40 перестают фиксировать эти состояния, что приводит к закрытию транзистора 42. Промежуток времени между открытием транзистора 42 из-за избыточного тока или перенапряжения и закрытием транзистора вследствие снятия состояния избыточного тока или перенапряжения называется сигнальным временем.
В этом приведенном варианте схемы цепи продолжительностью сигнального времени управляют две RC-цепочки 66, 68, расположенные в цепях детекторов 36, 40. В этом варианте выполнения детектор 36 напряжения выполнен с возможностью наличия гистерезиса приблизительно 80 мВ для уменьшения колебаний, когда напряжение аккумулятора 34 находится вблизи состояния перенапряжения.
Как указано выше, когда транзистор 42 открывается, через вторичную обмотку 30 течет увеличенный ток, что вызывает увеличение тока через первичную обмотку 15. Это увеличение тока обнаруживает пиковый детектор 22. Выходной сигнал пикового детектора, вызванный увеличением тока через первичную обмотку, приведен на фиг.6. Выходной сигнал пикового детектора в приведенных вариантах выполнения возрастает примерно на 1,55 В примерно на 10 мс. Характеристики этого сигнала могут меняться от области применения к области применения в зависимости от характеристик компонентов цепи. Например, можно по своему усмотрению управлять величиной возрастания и длительностью повышенного сигнала.
Контроллер 20 непрерывно снимает отсчеты выходного сигнала пикового детектора 22. При обнаружении внезапного роста выставляется внутренний флажок, называемый FB_флажок. При обнаружении падения FВ_флажок снимается. Однако выставляется также копия FВ_флажка, называемая далее FВ_защелкой. При обнаружении падения FВ_защелка не снимается. Ее может снять только контроллер 20. Поэтому контроллер может периодически проверять FВ_защелку, чтобы определить, возникало ли состояние перенапряжения или состояние избыточного тока за данный промежуток времени. Таким образом, система обеспечивает механизм обратной связи с контроллером.
Пользователь мобильного устройства может убрать устройство от цепи 6 зарядного устройства до того, как оно полностью зарядится. Кроме того, пользователь может поместить устройство в зарядное устройство до того, как аккумулятор полностью разрядится. Для оптимального заряда аккумулятора индуктивное зарядное устройство для аккумуляторов может обнаруживать наличие аккумулятора, а также компенсировать уникальный график зарядки аккумулятора.
На фиг.7 приведена блок-схема последовательности операций для одного варианта выполнения процесса определения, находится ли вторичная цепь 8 вблизи цепи 6 зарядного устройства и оптимальной зарядки аккумулятора, если вторичная цепь 8 наличествует.
Процесс запускается. Стадия 100. Начинается процесс 99 зондирования. Контроллер 20 ждет в течение заданного промежутка времени ИНТЕРВАЛ_ЗОНДИРОВАНИЯ. Стадия 102. По истечении ИНТЕРВАЛА_ЗОНДИРОВАНИЯ контроллер 20 обеспечивает создание инвертором 10 низкочастотного тока на ЧАСТОТЕ_ЗОНДИРОВАНЯ через первичную обмотку 15. Стадия 104. Обнаруживается ток через первичную обмотку 15.
Стадия 106.
При наличии вторичной цепи 8 зондирование, выполняемое цепью 6 зарядного устройства 6, вызовет ток зондирования во вторичной обмотке 30. В процессе зондирования аккумулятор 34 не будет поврежден, даже если он будет полностью заряжен. В этом варианте выполнения зондирование сначала осуществляется на короткой длительности порядка 10-20 миллисекунд, тогда как пауза обычно длится несколько секунд. Кроме того, детектор 36 перенапряжения и детектор 40 избыточного тока направляют при помощи транзистора 42 избыточный ток зондирования через резистор 44, а не через аккумулятор 34.
В этом варианте выполнения величина тока через первичную обмотку на ЧАСТОТЕ_ЗОНДИРОВАНИЯ была заранее экспериментально определена и сохранена в памяти контроллера. Если ток через первичную обмотку 15 приблизительно равен заранее определенному первичному току без нагрузки (стадия 108), то вторичная цепь 8 отсутствует во вторичной цепи 8. ФЛАЖОК_ЗАРЯЖЕНО снимается. Стадия 109. Система ожидает истечения следующего ИНТЕРВАЛА_ЗОНДИРОВАНИЯ, прежде чем начать процесс заново.
Если ток, текущий через первичную обмотку 15, не равен приблизительно заранее определенному первичному току без нагрузки, то вторичная цепь 8 присутствует.
Затем проверяется ФЛАЖОК_ЗАРЯЖЕНО. Стадия 111. ФЛАЖОК_ЗАРЯЖНО показывает, заряжен ли аккумулятор полностью. Если ФЛАЖОК_ЗАРЯЖЕНО не выставлен, то начинается процесс зарядки.
Частота инвертора установлена контроллером 20 в значение НАЧАЛЬНАЯ_ЧАСТОТА. Стадия 110. Затем система выполняет задержку на заданный промежуток времени для устранения переходных процессов. Стадия 112.
Затем контроллер 20 определяет, был ли принят рассмотренный выше сигнал обратной связи. Если не был, то частота уменьшается на величину ΔЧАСТОТА. Стадия 116. В этом варианте выполнения снижение частоты сдвигает систему в направлении резонанса и, тем самым, увеличивает мощность, передаваемую от цепи 6 зарядного устройства к аккумулятору 34.
Значение ΔЧАСТОТА может быть константой или его можно определить из таблицы соответствия, проиндексированной по рабочей частоте инвертора, имеющей место в тот момент, когда применяется ΔЧАСТОТА. Значения, выбранные для ΔЧАСТОТА, могут зависеть от частоты и выбираться таким образом, чтобы при уменьшении или увеличении рабочей частоты на величину ΔЧАСТОТА соответствующее увеличение или уменьшение тока было примерно одинаковым при всех значениях ΔЧАСТОТА для всех рабочих частот. Например, если цепь 6 зарядного устройства работает вблизи резонансной частоты колебательного контура 12, то уменьшение рабочей частоты на 100 Гц существенно увеличит ток через колебательный контур 12. Если же цепь 6 зарядного устройства работает относительно далеко от резонанса, то изменение на 100 Гц не приведет к существенному увеличению тока через первичную цепь. Поэтому значение ΔЧАСТОТА можно выбрать так, чтобы создать приблизительно одинаковое изменение первичного тока при низкой частоте или при высокой частоте.
Затем частота сравнивается со значением Мин_ЧАСТОТА. Стадия 118. Мин_ЧАСТОТА - это заданная минимальная рабочая частота для инвертора. Вообще говоря, Мин_ЧАСТОТА несколько больше резонансной частоты колебательного контура 12. Если частота меньше или равна значению Мин_ЧАСТОТА, то контроллер 20 возвращается к зондированию. В противном случае контроллер 20 ждет в течение заданного промежутка времени (Стадия 112) и затем проверяет наличие сигнала обратной связи. Стадия 114.
Таким образом, пока сигнал обратной связи не обнаружен контроллером 20, частота инвертора 10 постоянно уменьшается, чтобы сделать максимальной передачу мощности аккумулятору 34.
Если сигнал обратной связи обнаружен, то передачу мощности к аккумулятору 34 нужно уменьшить. Поэтому частота увеличивается на величину, равную двойному значению ΔЧАСТОТА, которое вновь можно получить из таблицы соответствия. Стадия 122. Частота сравнивается со значением Макс_ЧАСТОТА. Стадия 124. Макс_ЧАСТОТА - это заданное значение, указывающее максимальную частоту работы инвертора. Если частота превысит заданную максимальную частоту Макс_ЧАСТОТА, то цепь 6 зарядного устройства возвращается к процессу 99 зондирования. В противном случае контроллер 20 ждет (стадия 126) и затем проверяет наличие сигнала обратной связи. Стадия 128.
Если сигнал обратной связи был обнаружен, то частота инвертора вновь уменьшается на двойное значение ΔЧАСТОТА. Стадия 122. Затем процесс продолжается. С другой стороны, если сигнал обратной связи не обнаружен, то система ждет, и при этом на первичную обмотку 15 подается текущая частота. Стадия 130. Долгая задержка зарядки 130 обычно намного больше задержек на стадии 112 или стадии 126. Долгая задержка зарядки позволяет передать аккумулятору 34 значительное количество энергии.
Таким образом, поскольку заряд на аккумуляторе 34 возрос и обнаружен сигнал обратной связи, то система постепенно увеличивает рабочую частоту инвертора 10, тем самым, снижая передачу энергии аккумулятору 34. Увеличение рабочей частоты продолжается до тех пор, пока не перестанут приниматься сигналы обратной связи, и тогда мощность подается на аккумулятор 34 в течение длительного промежутка времени, давая возможность аккумулятору зарядиться до максимума.
Вернемся к стадии 124. Если рабочая частота больше значения Макс_ЧАСТОТА, то контроллер 20 сравнивает ВРЕМЯ_ЗАРЯДКИ с МИН_ВРЕМЯ_ЗАРЯДКИ. Стадия 132. ВРЕМЯ_ЗАРЯДКИ - это длительность предыдущего цикла зарядки, тогда как МИН_ВРЕМЯ_ЗАРЯДКИ - минимальное желательное время для цикла зарядки. Если ВРЕМЯ_ЗАРЯДКИ меньше МИН_ВРЕМЯ_ЗАРЯДКИ, то аккумулятор 34 считается полностью заряженным, и выставляется ФЛАЖОК_ЗАРЯЖЕНО. Стадия 134. Дополнительно может включиться светодиод, чтобы сообщить пользователю о полной зарядке аккумулятора 34.
Система может быть выполнена с возможностью реагирования на сбои. В одном варианте выполнения контроллер 20 может включать в себя счетчик, который возрастает на единицу всякий раз, когда случается полный цикл зарядки без генерации сигнала обратной связи. Когда значение счетчика превысит заданное максимальное число сбоев, система входит в состояние неотменяемого сбоя. В этом случае контроллер 20 может отключить управляющий сигнал или может вызывать быстрое мигание красного светодиода. В этом варианте выполнения цепь 6 зарядного устройства может только быть возвращена в рабочее состояние повторной подачей питания на зарядное устройство. А именно цепь 6 зарядного устройства 6 необходимо отключить от внешнего источника питания.
Кроме того, если обратная связь уводит частоты выше заданной безопасной частоты, обозначаемой БЕЗОПАСНАЯ_ЧАСТОТА_ЗАПУСКА, то устанавливается минимальная частота БЕЗОПАСНАЯ_МИНИМАЛЬНАЯ_ЧАСТОТА. Если же алгоритм уводит ее ниже этого уровня, система продолжает зондирование обычным образом. Если в системе возникает сбой, то наступает состояние сбоя, и цепь 6 зарядного устройства будет заблокирована до тех пор, пока цепь 6 зарядного устройства не будет отключена от питания и повторно подключена.
Хотя настоящее изобретение описано в отношении варианта выполнения, в котором для генерации сигнала обратной связи используются изменения полного сопротивления вторичной цепи (например, в результате изменений активного сопротивления) для генерации сигнала обратной связи, настоящее изобретение не ограничивается методикой обратной связи приведенного варианта выполнения. Настоящее изобретение может для генерации сигнала обратной связи использовать, в частности, изменения активного, емкостного и (или) индуктивного сопротивления в последовательных или параллельных конфигурациях.
Вышеприведенное описание является описанием существующих вариантов выполнения изобретения. Могут быть внесены различные модификации и изменения без отхода от сущности и объектов изобретения в их широком понимании.

Claims (24)

1. Система индуктивной зарядки, содержащая:
первичную цепь, включающую источник мощности, контроллер, электрически связанный с указанным источником мощности, и первичную обмотку, электрически связанную с указанным контроллером, причем указанный контроллер подает мощности с частотой на указанную первичную обмотку от указанного источника мощности;
вторичную цепь, включающуюся вторичную обмотку, индуктивно связанную с указанной первичной обмоткой, цепь обратной связи, электрически связанную с указанной вторичной обмоткой, и аккумулятор, электрически связанный с указанной вторичной обмоткой и подзаряжаемый питанием от нее;
причем указанная цепь обратной связи включает в себя детектор перенапряжения и детектор избыточного тока, выполненные с возможностью управления ключом, причем в ответ на состояние перенапряжения или состояние избыточного тока указанная цепь обратной связи передает сигнал обратной связи указанной первичной цепи через указанную индуктивную связь, путем приведения в действие указанного ключа для направления тока от указанной вторичной обмотки через резистивный элемент для изменения вносимого полного сопротивления указанной вторичной цепи, и
при этом указанный контроллер управляет характеристикой указанной мощности, подаваемой на указанную первичную обмотку, для корректирования указанного состояния перенапряжения или состояния избыточного тока по меньшей мере частично, в ответ на указанный сигнал обратной связи.
2. Система индуктивной зарядки по п.1, включающая в себя детектор обратной связи, электрически связанный с указанной первичной обмоткой, которая генерирует сигнал обнаружения в ответ на обнаружение изменения вносимого полного сопротивления указанной вторичной цепи.
3. Система индуктивной зарядки по п.1, отличающаяся тем, что указанная первичная цепь включает в себя датчик тока, причем в ответ на направление указанного тока через указанный резистивный элемент указанный ток через указанную вторичную обмотку возрастает, вносимое полное сопротивление указанной вторичной цепи изменяется и ток через указанную первичную обмотку возрастает; при этом указанный датчик тока обнаруживает указанный возросший ток в указанной первичной цепи.
4. Система индуктивной зарядки по п.1, в которой указанная характеристика указанной мощности представляет собой частоту.
5. Система индуктивной зарядки, содержащая:
первичную цепь, включающую источник мощности, контроллер, электрически связанный с указанным источником мощности, и первичную обмотку, электрически связанную с указанным контроллером, причем указанный контроллер подает мощности с частотой на указанную первичную обмотку от указанного источника мощности;
вторичную цепь, включающуюся вторичную обмотку, индуктивно связанную с указанной первичной обмоткой, цепь обратной связи, электрически связанную с указанной вторичной обмоткой, и аккумулятор, электрически связанный с указанной вторичной обмоткой и подзаряжаемый питанием от нее;
причем указанная цепь обратной связи передает сигнал обратной связи указанной первичной цепи через указанную индуктивную связь, путем приведения в действие указанного ключа для направления тока от указанной вторичной обмотки через резистивный элемент для изменения вносимого полного сопротивления указанной вторичной цепи, и
при этом указанная первичная цепь включает пиковый детектор, который выдает сигнал обнаружения указанному контроллеру в ответ на обнаружение состояния перенапряжения или состояния избыточного тока; и
при этом указанный контроллер управляет характеристикой указанной мощности, подаваемой на указанную первичную обмотку, для корректирования указанного состояния перенапряжения по меньшей мере частично, в ответ на указанный сигнал обратной связи от цепи обратной связи.
6. Система индуктивной зарядки по п.5, отличающаяся тем, что контроллер регулирует указанную частоту указанной мощности, подаваемой на указанную первичную обмотку, для корректировки указанного состояния перенапряжения или указанного состояния избыточного тока.
7. Система индуктивной зарядки по п.5, отличающаяся тем, что контроллер включает в себя инвертор, причем рабочая частота указанного инвертора уменьшается для сдвига указанной частоты указанной мощности, подаваемой на указанную первичную обмотку, ближе к резонансной частоте указанной первичной цепи, и указанная рабочая частота повышается для сдвига указанной частоты указанной мощности, подаваемой на первичную обмотку, от указанной резонансной частоты указанной первичной цепи.
8. Система индуктивной зарядки по п.7, в которой указанная цепь обратной связи включает участок цепи для изменения вносимого полного сопротивления указанной вторичной цепи.
9. Система индуктивной зарядки по п.7, включающая детектор обратной связи, электрически соединенный с указанной первичной обмоткой, которая генерирует сигнал обнаружения в ответ на обнаружение изменения вносимого полного сопротивления указанной вторичной цепи.
10. Система индуктивной зарядки по п.7, в которой указанной характеристикой указанной мощности является частота.
11. Система индуктивной зарядки по п.5, в которой указанная цепь обратной связи включает участок цепи для изменения вносимого полного сопротивления указанной вторичной цепи.
12. Система индуктивной зарядки по п.5, включающая детектор обратной связи, электрически соединенный с указанной первичной обмоткой, которая генерирует сигнал обнаружения в ответ на обнаружение изменения вносимого полного сопротивления указанной вторичной цепи.
13. Система индуктивной зарядки по п.5, в которой указанной характеристикой указанной мощности является частота.
14. Способ работы системы индуктивной зарядки в соответствии с графиком зарядки, указанная система индуктивной зарядки имеет цепь зарядного устройства с первичной обмоткой, вторичную цепь с вторичной обмоткой и аккумулятором, способ содержит стадии, на которых:
определяют состояние перенапряжения и состояние избыточного тока согласно графику зарядки;
подают мощность на первичную обмотку при некоторой частоте;
получают питание на вторичной обмотке;
заряжают аккумулятор полученным питанием;
генерируют сигнал обратной связи путем приведения в действие ключа для направления тока от указанной вторичной обмотки через резистивный элемент для изменения вносимого полного сопротивления указанной вторичной цепи в ответ на возникшее состояние перенапряжения или состояние избыточного тока;
оценивают сигнал обратной связи от вторичной цепи, поступающий через первичную обмотку и индуктивную связь вторичной обмотки; и
регулируют частоту мощности, поданной на первичную обмотку для корректировки указанного состояния перенапряжения или указанного состояния избыточного тока, в зависимости от сигнала обратной связи от вторичной цепи.
15. Способ работы системы индуктивной зарядки по п.14, отличающийся тем, что цепь зарядного устройства включает в себя колебательный контур с резонансной частотой, и указанная регулировка содержит стадию, на которой:
сдвигают частоту мощности, поданной на первичную обмотку, ближе к резонансной частоте колебательного контура, или сдвигают частоту мощности, поданную на первичную обмотку, дальше от резонансной частоты колебательного контура.
16. Способ работы системы индуктивной зарядки по п.14, отличающийся тем,
что
оценка содержит определение, принят ли сигнал обратной связи от цепи зарядного устройства цепью зарядного устройства; и
регулировка содержит сдвиг частоты мощности, поданной на первичную обмотку, дальше от резонанса в ответ на получение сигнала обратной связи, и
сдвиг частоты мощности, поданной на первичную обмотку, ближе к резонансу в ответ на неполучение сигнала обратной связи по истечении заданного времени.
17. Способ работы системы индуктивной зарядки по п.14, отличающийся тем, что регулировка содержит:
пошаговое перемещение частоты мощности, поданной на первичную обмотку, ближе к резонансу до тех пор, пока не получен сигнал обратной связи;
в ответ на сигнал обратной связи пошаговый сдвиг частоты мощности, приложенной к первичной обмотке, дальше от резонанса до тех пор, пока не перестанет поступать сигнал обратной связи; и подачу мощности на первичную обмотку на отрегулированной частоте в течение времени зарядки.
18. Способ работы системы индуктивной зарядки по п.14, отличающийся тем, что указанная оценка содержит определение тока в цепи зарядного устройства и сравнение определенного тока с заданным порогом.
19. Способ работы системы индуктивной зарядки по п.14, дополнительно содержащий стадии, на которых заряжают аккумулятор за один или несколько циклов зарядки и прекращают зарядку аккумулятора, когда время для завершения одного цикла зарядки меньше минимального времени цикла зарядки.
20. Способ работы системы индуктивной зарядки по п.14, дополнительно содержащий стадии, на которых заряжают аккумулятор за один или несколько циклов зарядки и прекращают цикл зарядки, когда частота мощности, поданной на первичную обмотку, удовлетворяет верхнему или нижнему порогу.
21. Способ работы системы индуктивной зарядки по п.14, отличающийся тем, что оценка содержит стадии, на которых:
подают импульс мощности на первичную обмотку на заданной частоте зондирования;
определяют вносимое полное сопротивление; и
определяют, имеется ли аккумулятор, в зависимости от определенного вносимого полного сопротивления.
22. Переносное электронное устройство с вторичной цепью, имеющей вносимое полное сопротивление, для приема питания от индуктивного зарядного устройства, имеющего первичную обмотку, причем указанное переносное электронное устройство содержит:
вторичную обмотку;
аккумулятор, электрически связанный с указанной вторичной обмоткой и подзаряжаемый питанием от нее; и
цепь обратной связи, электрически связанную с указанной вторичной обмоткой, при этом указанная цепь обратной связи изменяет вносимое полное сопротивление указанной вторичной цепи, для генерации сигнала обратной связи в указанной вторичной обмотке в ответ на состояние перенапряжения или избыточного тока, путем приведения в действие ключа для направления тока от указанной вторичной обмотки через резистивный элемент, при этом сигнал обратной связи обеспечивает характеристику мощности, подаваемой к указанной первичной обмотке для изменения указанного состояния перенапряжения или указанного состояния избыточного тока.
23. Переносное электронное устройство по п.22, отличающееся тем, что указанная цепь обратной связи включает в себя детектор перенапряжения и датчик избыточного тока, выполненные с возможностью управлять ключом;
причем в ответ на состояние перенапряжения или избыточного тока указанный ключ приводится в действие, и ток от вторичной обмотки отводится от указанного аккумулятора через резистивный элемент.
24. Переносное электронное устройство по п.22, в котором указанное состояние перенапряжения и состояние избыточного тока определяются в соответствии с графиком зарядки аккумулятора.
RU2009115795/07A 2006-09-29 2007-09-20 Система и способ индуктивной зарядки аккумулятора RU2469452C2 (ru)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US82758606P 2006-09-29 2006-09-29
US60/827,586 2006-09-29
US11/855,710 US8004235B2 (en) 2006-09-29 2007-09-14 System and method for inductively charging a battery
US11/855,710 2007-09-14
PCT/IB2007/053834 WO2008038203A2 (en) 2006-09-29 2007-09-20 System and method for inductively charging a battery

Publications (2)

Publication Number Publication Date
RU2009115795A RU2009115795A (ru) 2010-11-20
RU2469452C2 true RU2469452C2 (ru) 2012-12-10

Family

ID=39111855

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009115795/07A RU2469452C2 (ru) 2006-09-29 2007-09-20 Система и способ индуктивной зарядки аккумулятора

Country Status (13)

Country Link
US (3) US8004235B2 (ru)
EP (1) EP2067233A2 (ru)
JP (3) JP2010505379A (ru)
KR (4) KR101540549B1 (ru)
CN (2) CN101573851B (ru)
AU (1) AU2007301585B2 (ru)
CA (1) CA2663251A1 (ru)
HK (1) HK1138118A1 (ru)
MY (1) MY151405A (ru)
NZ (1) NZ575393A (ru)
RU (1) RU2469452C2 (ru)
TW (2) TWI367617B (ru)
WO (1) WO2008038203A2 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2534029C1 (ru) * 2013-07-26 2014-11-27 Александр Георгиевич Семенов Способ зарядки литий-ионного аккумулятора, разряженного ниже допустимого уровня
RU2666773C2 (ru) * 2013-06-26 2018-09-12 Ниссан Мотор Ко., Лтд. Зарядное устройство и устройство бесконтактной подачи питания
RU2667506C1 (ru) * 2014-09-16 2018-09-21 Конинклейке Филипс Н.В. Беспроводная индуктивная передача мощности
RU2761495C1 (ru) * 2020-09-08 2021-12-08 Акционерное общество "Научно-производственное объединение "Государственный институт прикладной оптики" (АО "НПО ГИПО") Зарядное устройство

Families Citing this family (197)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8004235B2 (en) * 2006-09-29 2011-08-23 Access Business Group International Llc System and method for inductively charging a battery
JP2008211951A (ja) * 2007-02-28 2008-09-11 Brother Ind Ltd 非接触型充電器と非接触型充電装置
EP2195716A1 (en) * 2007-09-26 2010-06-16 Governing Dynamics, LLC. Self-charging electric vehicles and aircraft, and wireless energy distribution system
TW200934032A (en) * 2008-01-30 2009-08-01 Tsann Kuen Entpr Co Ltd Induction type electrical power supply
TW200935704A (en) * 2008-02-01 2009-08-16 Tsann Kuen Entpr Co Ltd Induction type electrical power structure and system
KR100976161B1 (ko) * 2008-02-20 2010-08-16 정춘길 무접점충전시스템 및 그의 충전제어방법
JP5612489B2 (ja) 2008-03-13 2014-10-22 アクセス ビジネス グループ インターナショナル リミテッド ライアビリティ カンパニー 複数のコイル1次を有する誘導充電システム
EP2266123B1 (en) 2008-03-17 2018-10-10 Powermat Technologies Ltd. Inductive transmission system
US8981598B2 (en) 2008-07-02 2015-03-17 Powermat Technologies Ltd. Energy efficient inductive power transmission system and method
US11979201B2 (en) 2008-07-02 2024-05-07 Powermat Technologies Ltd. System and method for coded communication signals regulating inductive power transmissions
US8531153B2 (en) 2008-07-09 2013-09-10 Access Business Group International Llc Wireless charging system
US8111042B2 (en) * 2008-08-05 2012-02-07 Broadcom Corporation Integrated wireless resonant power charging and communication channel
US9090170B2 (en) * 2008-08-26 2015-07-28 Alex Mashinsky Self-charging electric vehicle and aircraft and wireless energy distribution system
CN102165667B (zh) * 2008-09-26 2014-09-03 株式会社村田制作所 无接点充电***
US20100164437A1 (en) * 2008-10-24 2010-07-01 Mckinley Joseph P Battery formation and charging system and method
US8069100B2 (en) * 2009-01-06 2011-11-29 Access Business Group International Llc Metered delivery of wireless power
EP2374193A1 (en) * 2009-01-06 2011-10-12 Access Business Group International LLC Communication across an inductive link with a dynamic load
US8427100B2 (en) 2009-02-06 2013-04-23 Broadcom Corporation Increasing efficiency of wireless power transfer
US20100201310A1 (en) * 2009-02-06 2010-08-12 Broadcom Corporation Wireless power transfer system
US8427330B2 (en) * 2009-02-06 2013-04-23 Broadcom Corporation Efficiency indicator for increasing efficiency of wireless power transfer
JP5621203B2 (ja) * 2009-03-30 2014-11-12 富士通株式会社 無線電力供給システム、無線電力供給方法
JP5353376B2 (ja) * 2009-03-31 2013-11-27 富士通株式会社 無線電力装置、無線電力受信方法
JP2010288431A (ja) * 2009-06-15 2010-12-24 Sanyo Electric Co Ltd 電池内蔵機器と充電台
US8922329B2 (en) * 2009-07-23 2014-12-30 Qualcomm Incorporated Battery charging to extend battery life and improve efficiency
AU2010275527A1 (en) * 2009-07-24 2012-02-09 Access Business Group International Llc A wireless power supply
US9312728B2 (en) 2009-08-24 2016-04-12 Access Business Group International Llc Physical and virtual identification in a wireless power network
CA2715706C (en) * 2009-09-24 2017-07-11 Byrne Electrical Specialists, Inc. Worksurface power transfer
WO2011057149A2 (en) 2009-11-05 2011-05-12 Devon Works, LLC Watch assembly having a plurality of time-coordinated belts
KR20110077128A (ko) * 2009-12-30 2011-07-07 삼성전자주식회사 에너지 충전모듈을 구비한 무선 전력 전송 장치
CN102695629B (zh) * 2010-01-05 2015-03-25 捷通国际有限公司 用于电动车辆的感应充电***
US8421408B2 (en) * 2010-01-23 2013-04-16 Sotoudeh Hamedi-Hagh Extended range wireless charging and powering system
WO2011091343A2 (en) * 2010-01-25 2011-07-28 Access Business Group International Llc Systems and methods for detecting data communication over a wireless power link
DE102010012884A1 (de) * 2010-03-26 2011-09-29 Li-Tec Battery Gmbh Verfahren und Anordnung elektrischer Leiter zum Laden einer Fahrzeugbatterie
EP2564403B1 (en) 2010-04-30 2016-09-21 Powermat Technologies Ltd. System and method for transfering power inductively over an extended region
US20110278943A1 (en) * 2010-05-11 2011-11-17 Searete Llc, A Limited Liability Corporation Of The State Of Delaware System including wearable power receiver and wearable power-output device
US20110278942A1 (en) * 2010-05-11 2011-11-17 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Wearable power source carryable by a health care provider
US8427014B2 (en) 2010-05-11 2013-04-23 The Invention Science Fund I, Llc System including wearable power receiver and wearable power-output device
JP5307073B2 (ja) * 2010-05-14 2013-10-02 株式会社豊田自動織機 非接触受電システム及び非接触電力伝送システム
EP2571140B1 (en) 2010-05-14 2018-04-25 Kabushiki Kaisha Toyota Jidoshokki Resonance-type non-contact power supply system, and adjustment method for matching unit during charging of resonance-type non-contact power supply system
TWI429165B (zh) * 2011-02-01 2014-03-01 Fu Da Tong Technology Co Ltd Method of data transmission in high power induction power supply
US8772979B2 (en) * 2011-02-01 2014-07-08 Fu Da Tong Technology Co., Ltd. Method for power self-regulation in a high-power induction type power source
US9413197B2 (en) 2010-05-31 2016-08-09 Fu Da Tong Technology Co., Ltd. Inductive power supply system and intruding metal detection method thereof
IT1400748B1 (it) * 2010-06-30 2013-07-02 St Microelectronics Srl Apparato per il trasferimento wireless di energia fra due dispositivi e contemporaneo trasferimento di dati.
DE102011050342A1 (de) * 2011-05-13 2012-11-15 Dr. Hahn Gmbh & Co. Kg Verfahren und Vorrichtung zur kontaktlosen Übertragung von elektrischer Energie zwischen einer Wand und einem an dieser Wand befestigten Flügel
DE102010061471A1 (de) * 2010-12-22 2012-06-28 Dr. Hahn Gmbh & Co. Kg Verfahren und Vorrichtung zur kontaktlosen Übertragung von elektrischer Energie zwischen einer Wand und einem an dieser Wand befestigten Flügel
CN102457091A (zh) * 2010-10-29 2012-05-16 南京萨特科技发展有限公司 抗干扰的感应式无线充电器及抗干扰方法
US9219378B2 (en) 2010-11-01 2015-12-22 Qualcomm Incorporated Wireless charging of devices
TW201236301A (en) 2010-12-08 2012-09-01 Access Business Group Int Llc System and method for providing communications in a wireless power supply
DE102010054472A1 (de) * 2010-12-14 2012-06-14 Conductix-Wampfler Ag Vorrichtung zur induktiven Übertragung elektrischer Energie
US9166440B2 (en) 2011-01-10 2015-10-20 Powermat Technologies Ltd. System for transferring power inductively to items within a container
US9671444B2 (en) 2011-02-01 2017-06-06 Fu Da Tong Technology Co., Ltd. Current signal sensing method for supplying-end module of induction type power supply system
US9075587B2 (en) 2012-07-03 2015-07-07 Fu Da Tong Technology Co., Ltd. Induction type power supply system with synchronous rectification control for data transmission
US9831687B2 (en) 2011-02-01 2017-11-28 Fu Da Tong Technology Co., Ltd. Supplying-end module for induction-type power supply system and signal analysis circuit therein
US9048881B2 (en) 2011-06-07 2015-06-02 Fu Da Tong Technology Co., Ltd. Method of time-synchronized data transmission in induction type power supply system
US10038338B2 (en) 2011-02-01 2018-07-31 Fu Da Tong Technology Co., Ltd. Signal modulation method and signal rectification and modulation device
US8941267B2 (en) 2011-06-07 2015-01-27 Fu Da Tong Technology Co., Ltd. High-power induction-type power supply system and its bi-phase decoding method
US9600021B2 (en) 2011-02-01 2017-03-21 Fu Da Tong Technology Co., Ltd. Operating clock synchronization adjusting method for induction type power supply system
US10056944B2 (en) 2011-02-01 2018-08-21 Fu Da Tong Technology Co., Ltd. Data determination method for supplying-end module of induction type power supply system and related supplying-end module
US9628147B2 (en) 2011-02-01 2017-04-18 Fu Da Tong Technology Co., Ltd. Method of automatically adjusting determination voltage and voltage adjusting device thereof
DE102011003516A1 (de) 2011-02-02 2012-08-02 Osram Ag Energiebox mit induktivem Ladegerät sowie Verfahren zum Laden einer Energiebox
TWI542174B (zh) 2011-02-07 2016-07-11 通路實業集團國際公司 於無線電力傳輸系統中提供通訊之系統與方法
CN102157988B (zh) * 2011-03-15 2013-07-31 东南大学 一种无线传感器网络节点的无线充供电方法
KR101768723B1 (ko) * 2011-03-30 2017-08-17 삼성전자주식회사 휴대단말기의 무선 충전 방법 및 시스템
JP5403288B2 (ja) * 2011-03-30 2014-01-29 株式会社エクォス・リサーチ 電力伝送システム
KR101896979B1 (ko) 2011-05-12 2018-09-11 삼성전자주식회사 무선 전력 전송 및 충전 시스템, 무선전력 전송 및 충전 시스템의 공진 주파수 제어 방법
US10326309B2 (en) 2011-05-13 2019-06-18 Samsung Electronics Co., Ltd Wireless power system comprising power transmitter and power receiver and method for receiving and transmitting power of the apparatuses
KR101813262B1 (ko) * 2011-05-17 2018-01-02 삼성전자주식회사 히스테리시스를 사용하여 과전압, 과전류 및 과온도로부터 무선-커플된 전력 장치들을 보호하는 장치 및 방법
DE102011077085A1 (de) * 2011-06-07 2012-12-13 Siemens Aktiengesellschaft Steuerung einer kontaktlosen Energieübertragung mittels einer Kennlinie eines Schwingkreises
CN103959597A (zh) * 2011-08-26 2014-07-30 Lg伊诺特有限公司 无线电力发射器和无线电力发射方法
JP6106991B2 (ja) 2011-09-09 2017-04-05 株式会社Gsユアサ 状態管理装置、蓄電素子の均等化方法
JP6032473B2 (ja) * 2011-09-09 2016-11-30 株式会社Gsユアサ 状態管理装置、蓄電素子の均等化方法
EP2573900A1 (en) * 2011-09-22 2013-03-27 Da Ros, Daniele Portable charger for electronic devices and corresponding charging method
US8880055B1 (en) 2011-10-06 2014-11-04 Marvell International Ltd. Method and apparatus for using near field communication (NFC) to perform transactions on a mobile device
KR20130039031A (ko) * 2011-10-11 2013-04-19 한국전자통신연구원 무선 전력 송신 장치, 무선 전력 수신 장치 그리고 무선 전력 송수신 장치
US9508487B2 (en) 2011-10-21 2016-11-29 Qualcomm Incorporated Systems and methods for limiting voltage in wireless power receivers
US9496741B2 (en) * 2011-10-24 2016-11-15 Samsung Electronics Co., Ltd Wireless power transmitter and method of controlling the same
TWI442669B (zh) * 2011-11-17 2014-06-21 Wistron Corp 可傳送資料之無線充電系統及資料傳送方法
CN107276447B (zh) 2011-11-28 2019-07-26 飞利浦知识产权企业有限公司 多桥拓扑
BR112014012763A8 (pt) 2011-11-30 2017-06-20 Koninklijke Philips Nv dispositivo transmissor de potência indutiva, e sistema transmissor de potência indutiva
US9385786B2 (en) * 2011-12-14 2016-07-05 Marvell World Trade Ltd. Method and apparatus for charging a battery in a mobile device through a near field communication (NFC) antenna
US9847675B2 (en) * 2011-12-16 2017-12-19 Semiconductor Energy Laboratory Co., Ltd. Power receiving device and power feeding system
WO2013096956A1 (en) * 2011-12-23 2013-06-27 University Of Florida Research Foundation, Inc. Method and apparatus for providing power
US9344155B2 (en) 2012-01-08 2016-05-17 Access Business Group International Llc Interference mitigation for multiple inductive systems
KR101848097B1 (ko) 2012-01-11 2018-04-11 삼성전자주식회사 공진 방식 무선 전력 송신 장치용 과전압 보호 장치 및 그 제어 방법
KR102042498B1 (ko) * 2012-01-11 2019-11-11 삼성전자주식회사 공진 방식 무선 전력 수신 장치용 과전압 보호 장치 및 그 제어 방법
TWI464995B (zh) * 2012-03-15 2014-12-11 Wistron Corp 無線充電系統及其無線充電系統控制之方法
KR101844422B1 (ko) * 2012-04-19 2018-04-03 삼성전자주식회사 무선 에너지 전송 장치 및 방법, 무선 에너지 수신 장치
RU2496205C1 (ru) * 2012-05-30 2013-10-20 Нина Николаевна Баранова Способ зарядки автомобильного аккумулятора
KR102074475B1 (ko) 2012-07-10 2020-02-06 지이 하이브리드 테크놀로지스, 엘엘씨 무선 전력 전송 시스템에서 이물질 감지 장치 및 방법
US10122203B2 (en) * 2012-07-18 2018-11-06 WIPQTUS Inc. Wireless power system
US9385557B2 (en) 2012-08-23 2016-07-05 At&T Mobility Ii Llc Methods, systems, and products for charging of devices
US9130369B2 (en) 2012-08-29 2015-09-08 Qualcomm Incorporated Wireless power overvoltage protection circuit with reduced power dissipation
US10173539B2 (en) * 2012-08-31 2019-01-08 Siemens Aktiengesellschaft Battery charging system and method for cableless charging of a battery with voltage and current sensors on both the primary and secondary sides and a DC-DC converter on the primary side involved in an efficiency calibration power loop
US9472338B2 (en) * 2012-09-11 2016-10-18 Qualcomm Incorporated Wireless power transfer system coil arrangements and method of operation
US9305700B2 (en) 2012-10-04 2016-04-05 Linear Technology Corporation Auto resonant driver for wireless power transmitter sensing required transmit power for optimum efficiency
JP6696771B2 (ja) * 2012-11-05 2020-05-20 アップル インコーポレイテッドApple Inc. 誘導結合型の電力伝送方法及びシステム
US11616520B2 (en) 2012-11-09 2023-03-28 California Institute Of Technology RF receiver
US11843260B2 (en) 2012-11-09 2023-12-12 California Institute Of Technology Generator unit for wireless power transfer
US10367380B2 (en) 2012-11-09 2019-07-30 California Institute Of Technology Smart RF lensing: efficient, dynamic and mobile wireless power transfer
US9209676B2 (en) * 2012-12-07 2015-12-08 Motorola Solutions, Inc. Method and apparatus for charging batteries having different voltage ranges with a single conversion charger
JP6157878B2 (ja) * 2013-03-01 2017-07-05 株式会社トーキン 非接触電力伝送システム
US9819228B2 (en) * 2013-03-01 2017-11-14 Qualcomm Incorporated Active and adaptive field cancellation for wireless power systems
US9522224B2 (en) * 2013-03-14 2016-12-20 Carefusion 303, Inc. Inductively powered modular medical device system
US9968739B2 (en) 2013-03-14 2018-05-15 Carefusion 303, Inc. Rotary valve for a disposable infusion set
US20140265611A1 (en) * 2013-03-14 2014-09-18 Carefusion 303, Inc. Intelligent Inductive Power System For Medical Device and System
US9468714B2 (en) 2013-03-14 2016-10-18 Carefusion 303, Inc. Memory and identification associated with IV set
US10226571B2 (en) 2013-03-14 2019-03-12 Carefusion 303, Inc. Pump segment placement
US10753979B2 (en) * 2013-04-04 2020-08-25 The Boeing Company In-situ battery monitoring system
JP6127668B2 (ja) * 2013-04-08 2017-05-17 ソニー株式会社 電子機器および給電システム
CN105122589A (zh) * 2013-04-23 2015-12-02 松下知识产权经营株式会社 无线电力输送装置
KR102187962B1 (ko) * 2013-05-10 2020-12-08 삼성전자주식회사 무선 충전에서 수신기 검출을 위한 로드 변화 감지 방법 및 무선 전력 송신기
CN103312016B (zh) * 2013-05-23 2015-12-02 东南大学 一种蓄电池无线充电最小接入装置
WO2014199691A1 (ja) * 2013-06-14 2014-12-18 株式会社Ihi 給電装置、および非接触給電システム
JP6103061B2 (ja) * 2013-07-19 2017-03-29 株式会社Ihi 給電装置及び非接触給電システム
US9509154B2 (en) * 2013-07-25 2016-11-29 Green Cubes Technology Corporation Algorithmic battery charging system and method
US9847666B2 (en) 2013-09-03 2017-12-19 Apple Inc. Power management for inductive charging systems
WO2015045084A1 (ja) * 2013-09-27 2015-04-02 株式会社日立製作所 電力系統制御装置、電力系統システムおよび電力系統制御方法
CA2865457C (en) 2013-09-30 2019-01-22 Norman R. Byrne Articles with electrical charging surfaces
CA2865739C (en) 2013-09-30 2018-12-04 Norman R. Byrne Wireless power for portable articles
JP6604708B2 (ja) * 2013-10-02 2019-11-13 日東電工株式会社 補聴器
US9837866B2 (en) 2013-10-09 2017-12-05 Apple Inc. Reducing power dissipation in inductive energy transfer systems
US20190089183A9 (en) * 2013-10-23 2019-03-21 Apple Inc. Transmitter and receiver communication for inductive power transfer systems
US9673784B2 (en) 2013-11-21 2017-06-06 Apple Inc. Using pulsed biases to represent DC bias for charging
WO2015077730A1 (en) 2013-11-22 2015-05-28 California Institute Of Technology Generator unit for wireless power transfer
CA2905361C (en) * 2013-12-20 2016-03-22 Vizimax Inc. Controlled switching devices and method of using the same
EP3108487B1 (en) * 2014-01-22 2019-02-27 Apple Inc. Coupled-coil power control for inductive power transfer systems
KR101943082B1 (ko) * 2014-01-23 2019-04-18 한국전자통신연구원 무선 전력 송신 장치, 무선 전력 수신 장치, 및 무선 전력 전송 시스템
CN105940590B (zh) * 2014-01-31 2018-11-02 日产自动车株式会社 非接触供电***以及送电装置
FR3018110B1 (fr) * 2014-02-28 2019-08-23 Seb S.A. Table de cuisson a induction communicante et procede de recherche et de suivi d'un article culinaire communicant sur ladite table
US10664772B1 (en) 2014-03-07 2020-05-26 Steelcase Inc. Method and system for facilitating collaboration sessions
US9716861B1 (en) 2014-03-07 2017-07-25 Steelcase Inc. Method and system for facilitating collaboration sessions
US9680331B2 (en) * 2014-03-20 2017-06-13 Qualcomm Incorporated System and method for frequency protection in wireless charging
US10027172B2 (en) * 2014-03-24 2018-07-17 L&P Property Management Company Maintaining continuous power charge in an inductive-coupling system
JP6205308B2 (ja) * 2014-05-29 2017-09-27 日東電工株式会社 無線電力伝送装置
US9955318B1 (en) 2014-06-05 2018-04-24 Steelcase Inc. Space guidance and management system and method
US9380682B2 (en) 2014-06-05 2016-06-28 Steelcase Inc. Environment optimization for space based on presence and activities
US9766079B1 (en) 2014-10-03 2017-09-19 Steelcase Inc. Method and system for locating resources and communicating within an enterprise
US10433646B1 (en) 2014-06-06 2019-10-08 Steelcaase Inc. Microclimate control systems and methods
US11744376B2 (en) 2014-06-06 2023-09-05 Steelcase Inc. Microclimate control systems and methods
US10614694B1 (en) 2014-06-06 2020-04-07 Steelcase Inc. Powered furniture assembly
WO2016002839A1 (ja) * 2014-07-03 2016-01-07 株式会社Ihi 受電装置、非接触給電システム及び送電装置
JP2016119759A (ja) * 2014-12-19 2016-06-30 株式会社Ihi 非接触給電システム及び送電装置
US9570926B2 (en) * 2014-07-23 2017-02-14 Visteon Global Technologies, Inc. Determining a re-configuration of a wireless surface with a multi-coil system
US9595833B2 (en) 2014-07-24 2017-03-14 Seabed Geosolutions B.V. Inductive power for seismic sensor node
KR102288706B1 (ko) 2014-08-19 2021-08-10 캘리포니아 인스티튜트 오브 테크놀로지 무선 전력 전달
WO2016049550A1 (en) * 2014-09-25 2016-03-31 Alpine Media Methods and device for providing energy to systems on mobile units
US9852388B1 (en) 2014-10-03 2017-12-26 Steelcase, Inc. Method and system for locating resources and communicating within an enterprise
JP6347736B2 (ja) 2014-12-18 2018-06-27 株式会社マーレ フィルターシステムズ オイルミストセパレータ
US10181735B2 (en) 2015-03-11 2019-01-15 Norman R. Byrne Portable electrical power unit
US10733371B1 (en) 2015-06-02 2020-08-04 Steelcase Inc. Template based content preparation system for use with a plurality of space types
US10112495B2 (en) 2015-07-27 2018-10-30 Ford Global Technologies, Llc Vehicle wireless charging system including an inverter to control a voltage input to a vehicle power converter
KR20170025069A (ko) * 2015-08-27 2017-03-08 삼성전자주식회사 생체 신호 취득 방법 및 이를 지원하는 전자 장치
US10122217B2 (en) 2015-09-28 2018-11-06 Apple Inc. In-band signaling within wireless power transfer systems
US10498171B2 (en) * 2015-10-12 2019-12-03 Avago Technologies International Sales Pte. Limited Wireless power receiver voltage control enabling simultaneous communications to transmitter in over-voltage state
US11689856B2 (en) 2015-11-19 2023-06-27 The Lovesac Company Electronic furniture systems with integrated induction charger
US11303156B2 (en) * 2015-12-18 2022-04-12 General Electric Company Contactless power transfer system and method for controlling the same
SG10201700633QA (en) 2016-02-03 2017-09-28 Gen Electric System and method for protecting a wireless power transfer system
EP3748812A1 (en) 2016-02-03 2020-12-09 General Electric Company Method and system for protecting a wireless power transfer system
CN105553046B (zh) * 2016-02-22 2018-07-06 深圳市本特利科技有限公司 室内自动激光充电***及方法
US20170264984A1 (en) * 2016-03-10 2017-09-14 Princeton Audio, LLC Headphone System And Components Thereof
CA2960239A1 (en) 2016-03-11 2017-09-11 Norman R. Byrne Furniture-mounted charging station
US9921726B1 (en) 2016-06-03 2018-03-20 Steelcase Inc. Smart workstation method and system
CA2969439C (en) 2016-06-03 2022-11-01 Norman R. Byrne Surface-mounted resonators for wireless power
DE102016216939A1 (de) * 2016-09-07 2018-03-22 Audi Ag Ladestation, Kraftfahrzeug und Verfahren zum induktiven Laden einer Batterie eines Kraftfahrzeugs
US10601250B1 (en) 2016-09-22 2020-03-24 Apple Inc. Asymmetric duty control of a half bridge power converter
SG10201708314TA (en) 2016-10-28 2018-05-30 Gen Electric System and method for actively controlling output voltage of a wireless power transfer system
CN106532977B (zh) * 2016-11-18 2019-03-26 许继电源有限公司 基于无线电能传输***的控制装置及无线电能传输***
US10264213B1 (en) 2016-12-15 2019-04-16 Steelcase Inc. Content amplification system and method
US10978899B2 (en) 2017-02-02 2021-04-13 Apple Inc. Wireless charging system with duty cycle control
US10416742B2 (en) * 2017-02-17 2019-09-17 Microsoft Technology Licensing, Llc Smart battery for ultrafast charging
CN111033940B (zh) 2017-03-07 2023-11-14 鲍尔马特技术有限公司 用于无线电力充电的***
EP4277084A3 (en) 2017-03-07 2024-04-10 Powermat Technologies Ltd. System for wireless power charging
KR102548384B1 (ko) 2017-03-07 2023-06-27 파워매트 테크놀로지스 엘티디. 무선 전력 충전 시스템
CN110771005B (zh) * 2017-03-07 2023-11-14 鲍尔马特技术有限公司 用于无线电力充电的***
US10421368B2 (en) * 2017-04-26 2019-09-24 Witricity Corporation Static power derating for dynamic charging
US10720797B2 (en) * 2017-05-26 2020-07-21 California Institute Of Technology Method and apparatus for dynamic RF lens focusing and tracking of wireless power recovery unit
US10680392B2 (en) 2017-07-24 2020-06-09 Norman R. Byrne Furniture-mounted electrical charging station
US20190052102A1 (en) * 2017-08-11 2019-02-14 Apple Inc. Overvoltage Protection in Wireless Power Transfer
US10727693B2 (en) * 2017-09-21 2020-07-28 Utah State University Dynamic inductive wireless power transmitter system with a power transmitter module
DE102018201030A1 (de) 2018-01-24 2019-07-25 Kardion Gmbh Magnetkuppelelement mit magnetischer Lagerungsfunktion
US11462943B2 (en) * 2018-01-30 2022-10-04 Wireless Advanced Vehicle Electrification, Llc DC link charging of capacitor in a wireless power transfer pad
US11437854B2 (en) 2018-02-12 2022-09-06 Wireless Advanced Vehicle Electrification, Llc Variable wireless power transfer system
CN112203890B (zh) * 2018-04-23 2024-03-22 Abb电动交通有限公司 电动车辆的功率传输***及其控制方法
DE102018206725A1 (de) 2018-05-02 2019-11-07 Kardion Gmbh Empfangseinheit, Sendeeinheit, Energieübertragungssystem und Verfahren zur drahtlosen Energieübertragung
DE102018206724A1 (de) * 2018-05-02 2019-11-07 Kardion Gmbh Energieübertragungssystem und Verfahren zur drahtlosen Energieübertragung
CN109050299A (zh) * 2018-08-07 2018-12-21 佛山市甜慕链客科技有限公司 一种用于车辆的充电***及其充电控制方法
JP6805214B2 (ja) * 2018-09-21 2020-12-23 株式会社Subaru 車両用充電システム
CN110970985A (zh) * 2018-09-30 2020-04-07 郑州宇通客车股份有限公司 一种车辆及其无线充电***
AU2018247282A1 (en) * 2018-10-11 2020-04-30 Aristocrat Technologies Australia Pty Limited System and method for determining wireless charging status
US11171522B2 (en) * 2019-04-24 2021-11-09 Google Llc Wireless charging efficiency
CN110146927B (zh) * 2019-05-16 2022-02-15 京东方科技集团股份有限公司 充电***、异物检测方法及组件、充电控制方法及装置
JP7477347B2 (ja) * 2020-03-31 2024-05-01 Tdk株式会社 ワイヤレス送電装置及びワイヤレス電力伝送システム
CN111361436B (zh) * 2020-04-16 2023-04-07 吉林大学 一种电动汽车全自动无线充电***
US11984739B1 (en) 2020-07-31 2024-05-14 Steelcase Inc. Remote power systems, apparatus and methods
US20220052565A1 (en) * 2020-08-15 2022-02-17 Aira, Inc. Resonant Reflection Device Detection
US11699551B2 (en) 2020-11-05 2023-07-11 Kardion Gmbh Device for inductive energy transmission in a human body and use of the device
TWI789783B (zh) * 2021-06-09 2023-01-11 崑山科技大學 電動運具高效率雙側llc共振無線充電器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1557630A2 (ru) * 1988-05-23 1990-04-15 Всесоюзный научно-исследовательский аккумуляторный институт Устройство дл ускоренного зар да аккумул торной батареи
EP1022840A2 (en) * 1999-01-20 2000-07-26 Perdix Oy Controller for an inductive battery charger
WO2000054387A1 (en) * 1999-03-10 2000-09-14 Ea Technology Limited Battery chargers
US6184651B1 (en) * 2000-03-20 2001-02-06 Motorola, Inc. Contactless battery charger with wireless control link
EP1096638A1 (en) * 1999-03-18 2001-05-02 Seiko Epson Corporation Electronic device and method of controlling electronic devices

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1542662A (en) * 1975-09-12 1979-03-21 Matsushita Electric Ind Co Ltd Power supply
JPS59219865A (ja) * 1983-05-28 1984-12-11 Hokuriku Electric Power Co Inc:The 燃料電池
GB2197107B (en) 1986-11-03 1990-12-12 Mars Inc Data-storing devices
NL9101590A (nl) * 1991-09-20 1993-04-16 Ericsson Radio Systems Bv Stelsel voor het laden van een oplaadbare accu van een draagbare eenheid in een rek.
GB9310545D0 (en) 1993-05-21 1993-07-07 Era Patents Ltd Power coupling
US5455466A (en) * 1993-07-29 1995-10-03 Dell Usa, L.P. Inductive coupling system for power and data transfer
JP2671809B2 (ja) * 1994-06-30 1997-11-05 日本電気株式会社 非接触型充電装置
US5686887A (en) * 1994-12-07 1997-11-11 Schoeferisch Aeusserung Anstalt Electronic locating device
US5596567A (en) * 1995-03-31 1997-01-21 Motorola, Inc. Wireless battery charging system
JPH0910307A (ja) 1995-06-30 1997-01-14 Pentel Kk 注射器用ホルダ−
JPH09103037A (ja) 1995-10-05 1997-04-15 Nippon Ido Tsushin Kk 給電装置、被給電装置および給電システム
JP2000504559A (ja) * 1996-11-20 2000-04-11 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 誘導充電装置及び電子装置
US5734254A (en) * 1996-12-06 1998-03-31 Hewlett-Packard Company Battery pack and charging system for a portable electronic device
JP3363341B2 (ja) * 1997-03-26 2003-01-08 松下電工株式会社 非接触電力伝達装置
JPH11283854A (ja) * 1998-03-30 1999-10-15 Harness Syst Tech Res Ltd コネクタおよびこれを用いた電力供給回路
FR2778196B1 (fr) * 1998-04-30 2000-06-23 Valeo Securite Habitacle Serrure de porte de vehicule automobile
JP3717032B2 (ja) * 1998-06-24 2005-11-16 株式会社ルネサステクノロジ Icカード
US5963012A (en) * 1998-07-13 1999-10-05 Motorola, Inc. Wireless battery charging system having adaptive parameter sensing
DE19837675A1 (de) * 1998-08-19 2000-02-24 Nokia Technology Gmbh Ladevorrichtung für Akkumulatoren in einem mobilen elektrischen Gerät mit induktiver Energieübertragung
DE29816725U1 (de) * 1998-09-17 1999-01-14 Chao, Wen-Chung, Yungho, Taipeh Ladungsvorrichtung für mobile Telefone
JP3067306U (ja) * 1999-09-09 2000-03-31 陳 世明 携帯電話の充電装置
US6442434B1 (en) 1999-10-19 2002-08-27 Abiomed, Inc. Methods and apparatus for providing a sufficiently stable power to a load in an energy transfer system
JP2001225129A (ja) 2000-02-10 2001-08-21 Fuji Heavy Ind Ltd プレス装置
DE10119283A1 (de) * 2001-04-20 2002-10-24 Philips Corp Intellectual Pty System zur drahtlosen Übertragung elektrischer Leistung, ein Kleidungsstück, ein System von Kleidungsstücken und Verfahren zum Übertragen von Signalen und/oder elektrischer Leistung
DE10158794B4 (de) * 2001-11-30 2008-05-29 Friwo Gerätebau Gmbh Induktiver kontaktloser Leistungsübertrager
US6844702B2 (en) * 2002-05-16 2005-01-18 Koninklijke Philips Electronics N.V. System, method and apparatus for contact-less battery charging with dynamic control
AU2003282214A1 (en) 2002-10-28 2004-05-13 Splashpower Limited Unit and system for contactless power transfer
GB2394843A (en) 2002-10-28 2004-05-05 Zap Wireless Technologies Ltd Charge and data transfer by the same means
US6934167B2 (en) * 2003-05-01 2005-08-23 Delta Electronics, Inc. Contactless electrical energy transmission system having a primary side current feedback control and soft-switched secondary side rectifier
US7233137B2 (en) * 2003-09-30 2007-06-19 Sharp Kabushiki Kaisha Power supply system
DE102004013177B4 (de) * 2004-03-17 2006-05-18 Infineon Technologies Ag Datenübertragungseinheit mit einer Datenübertragungsschnittstelle und ein Verfahren zum Betreiben der Datenübertragungseinheit
JP4415254B2 (ja) * 2004-04-30 2010-02-17 ソニー株式会社 受信回路及び通信装置
US7605496B2 (en) * 2004-05-11 2009-10-20 Access Business Group International Llc Controlling inductive power transfer systems
GB2414120B (en) 2004-05-11 2008-04-02 Splashpower Ltd Controlling inductive power transfer systems
JP2006074848A (ja) * 2004-08-31 2006-03-16 Hokushin Denki Kk 非接触電力伝送装置
US7408324B2 (en) * 2004-10-27 2008-08-05 Access Business Group International Llc Implement rack and system for energizing implements
US7262700B2 (en) 2005-03-10 2007-08-28 Microsoft Corporation Inductive powering surface for powering portable devices
KR100554889B1 (ko) * 2005-03-21 2006-03-03 주식회사 한림포스텍 무접점 충전 시스템
US20070042729A1 (en) * 2005-08-16 2007-02-22 Baaman David W Inductive power supply, remote device powered by inductive power supply and method for operating same
US7521890B2 (en) * 2005-12-27 2009-04-21 Power Science Inc. System and method for selective transfer of radio frequency power
KR100792308B1 (ko) * 2006-01-31 2008-01-07 엘에스전선 주식회사 코일 어레이를 구비한 무접점 충전장치, 무접점 충전시스템 및 충전 방법
US8004235B2 (en) * 2006-09-29 2011-08-23 Access Business Group International Llc System and method for inductively charging a battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1557630A2 (ru) * 1988-05-23 1990-04-15 Всесоюзный научно-исследовательский аккумуляторный институт Устройство дл ускоренного зар да аккумул торной батареи
EP1022840A2 (en) * 1999-01-20 2000-07-26 Perdix Oy Controller for an inductive battery charger
WO2000054387A1 (en) * 1999-03-10 2000-09-14 Ea Technology Limited Battery chargers
EP1096638A1 (en) * 1999-03-18 2001-05-02 Seiko Epson Corporation Electronic device and method of controlling electronic devices
US6184651B1 (en) * 2000-03-20 2001-02-06 Motorola, Inc. Contactless battery charger with wireless control link

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2666773C2 (ru) * 2013-06-26 2018-09-12 Ниссан Мотор Ко., Лтд. Зарядное устройство и устройство бесконтактной подачи питания
RU2534029C1 (ru) * 2013-07-26 2014-11-27 Александр Георгиевич Семенов Способ зарядки литий-ионного аккумулятора, разряженного ниже допустимого уровня
RU2667506C1 (ru) * 2014-09-16 2018-09-21 Конинклейке Филипс Н.В. Беспроводная индуктивная передача мощности
RU2761495C1 (ru) * 2020-09-08 2021-12-08 Акционерное общество "Научно-производственное объединение "Государственный институт прикладной оптики" (АО "НПО ГИПО") Зарядное устройство

Also Published As

Publication number Publication date
JP5571820B2 (ja) 2014-08-13
CN103107585A (zh) 2013-05-15
JP2013179829A (ja) 2013-09-09
JP2014135890A (ja) 2014-07-24
US20140021911A1 (en) 2014-01-23
TW201206015A (en) 2012-02-01
NZ575393A (en) 2011-12-22
KR101399688B1 (ko) 2014-05-27
RU2009115795A (ru) 2010-11-20
HK1138118A1 (en) 2010-08-13
KR20140012189A (ko) 2014-01-29
KR101581103B1 (ko) 2015-12-30
EP2067233A2 (en) 2009-06-10
MY151405A (en) 2014-05-30
US8593105B2 (en) 2013-11-26
JP2010505379A (ja) 2010-02-18
KR20090065521A (ko) 2009-06-22
US20080079392A1 (en) 2008-04-03
CN101573851B (zh) 2013-03-27
KR20140145635A (ko) 2014-12-23
CN101573851A (zh) 2009-11-04
AU2007301585B2 (en) 2011-02-17
TW200836449A (en) 2008-09-01
CN103107585B (zh) 2015-11-04
KR101540549B1 (ko) 2015-07-29
AU2007301585A1 (en) 2008-04-03
US20110267002A1 (en) 2011-11-03
TWI481149B (zh) 2015-04-11
WO2008038203A2 (en) 2008-04-03
CA2663251A1 (en) 2008-04-03
WO2008038203A3 (en) 2008-05-29
TWI367617B (en) 2012-07-01
US8004235B2 (en) 2011-08-23
US8872472B2 (en) 2014-10-28
KR20140071503A (ko) 2014-06-11

Similar Documents

Publication Publication Date Title
RU2469452C2 (ru) Система и способ индуктивной зарядки аккумулятора
US9444285B2 (en) Charge controller for vehicle
US9231412B2 (en) Resonant system for wireless power transmission to multiple receivers
JP6071638B2 (ja) 非接触充電装置を備える小形電気機器、および非接触式の充電システム
KR101328990B1 (ko) 배터리 팩 및 이를 포함하는 전자기기
JP2014132828A (ja) デューティサイクル制御を有する誘導電源装置
KR20170087019A (ko) 비접촉 급전 시스템 및 수전장치
JP4479910B2 (ja) 充電装置
KR100820308B1 (ko) 배터리 충전 장치
US20050037256A1 (en) Rechargeable implantable battery pack with battery management circuit
CA2764685A1 (en) Circuit arrangement and method for inductive energy transfer
JP2007236125A (ja) 充電装置
JP3002934B2 (ja) 太陽電池電源システム制御回路
KR100537676B1 (ko) 무접점 충전 방식을 이용한 전자도어락 충전 시스템
JPH0787677A (ja) 二次電池の充電装置

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170921