RU2466928C2 - Способ выделения водорода из газовой смеси - Google Patents

Способ выделения водорода из газовой смеси Download PDF

Info

Publication number
RU2466928C2
RU2466928C2 RU2009147914/05A RU2009147914A RU2466928C2 RU 2466928 C2 RU2466928 C2 RU 2466928C2 RU 2009147914/05 A RU2009147914/05 A RU 2009147914/05A RU 2009147914 A RU2009147914 A RU 2009147914A RU 2466928 C2 RU2466928 C2 RU 2466928C2
Authority
RU
Russia
Prior art keywords
hydrogen
methane
pressure
mixture
mpa
Prior art date
Application number
RU2009147914/05A
Other languages
English (en)
Other versions
RU2009147914A (ru
Inventor
Юрий Исаакович Шумяцкий (RU)
Юрий Исаакович Шумяцкий
Александр Константинович Аветисов (RU)
Александр Константинович Аветисов
Юлий Кивович Байчток (RU)
Юлий Кивович Байчток
Сергей Вячеславович Суворкин (RU)
Сергей Вячеславович Суворкин
Геннадий Владимирович Косарев (RU)
Геннадий Владимирович Косарев
Николай Анатольевич Костиков (RU)
Николай Анатольевич Костиков
Владимир Иванович Сорокин (RU)
Владимир Иванович Сорокин
Наталия Владимировна Дудакова (RU)
Наталия Владимировна Дудакова
Original Assignee
Федеральное государственное унитарное предприятие "Научно-исследовательский физико-химический институт им. Л.Я. Карпова"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие "Научно-исследовательский физико-химический институт им. Л.Я. Карпова" filed Critical Федеральное государственное унитарное предприятие "Научно-исследовательский физико-химический институт им. Л.Я. Карпова"
Priority to RU2009147914/05A priority Critical patent/RU2466928C2/ru
Publication of RU2009147914A publication Critical patent/RU2009147914A/ru
Application granted granted Critical
Publication of RU2466928C2 publication Critical patent/RU2466928C2/ru

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

Изобретение относится к области химии. Из водород-метановой смеси, полученной при пиролизе метана, на стадии адсорбции при давлении 0,5-2,0 МПа извлекают чистый водород. На стадии десорбции давление понижают сначала до 0,1 МПа и выделяют некондиционную фракцию водорода, которую возвращают на вход адсорбера, а затем для завершения стадии десорбции давление понижают до нижнего уровня 0,1-0,005 МПа и выделяют фракцию, содержащую преимущественно метан, которую возвращают на стадию пиролиза метана. Изобретение позволяет эффективно разделить метан-водородную смесь и получить дополнительное количество водорода. 2 ил., 1 пр.

Description

Настоящее изобретение относится к способам выделения водорода из газовой смеси. Более конкретно, оно относится к выделению водорода из смеси его с метаном (очищенным природным газом), которая получена в результате пиролиза метана. Потребность в выделении водорода из смеси с метаном возникла в последние годы в связи с переработкой природного газа в экологически чистое топливо - водород с одновременным получением углеродных нанотрубок, нановолокон.
Газовые смеси, в состав которых входят водород и метан, широко представлены в промышленной практике. К ним относятся нефтезаводские газы, газы конверсии и пиролиза углеводородного сырья и другие газы. Выделение водорода из них проводят с помощью низкотемпературного, мембранного методов и адсорбции. В настоящем изобретении рассмотрено выделение водорода из смеси с метаном с помощью адсорбции. Самым распространенным вариантом ее является промышленный процесс, который носит название короткоцикловой безнагревной адсорбции, КБА. (Зарубежное название метода Pressure Swing Adsorption, PSA). В этом методе разделяемую смесь под давлением пропускают через адсорбер, заполненный адсорбентом (активным углем или цеолитом), в котором происходит поглощение (адсорбция) компонентов смеси, сопутствующих водороду. Чистый водород выводят из адсорбера в качестве целевого продукта и направляют на использование. Поглощенные адсорбентом сопутствующие компоненты десорбируют из адсорбента при давлении более низком, чем давление при их поглощении. Продукты десорбции утилизируют или сбрасывают в атмосферу. После десорбции в адсорбере вновь поднимают давление и вновь проводят поглощение сопутствующих компонентов и выделение водорода. При низком давлении вновь осуществляют десорбцию сопутствующих компонентов. Операции повторяют многократно.
Непрерывность процесса выделения водорода и переработки газовой смеси обеспечивают путем использования нескольких адсорберов, работающих в разных фазах адсорбционно-десорбционного цикла. Количество адсорберов обычно составляет от двух до четырех. В одном из них поглощают сопутствующие компоненты и выделяют водород; в другом (других) осуществляют переходные стадии изменения давления и десорбируют сопутствующие компоненты. Эти процессы широко представлены в промышленной практике и отражены в большом количестве патентов и статей.
Известны методы разделения водородсодержащих смесей, в которых, наряду с переработкой исходной водородсодержащей смеси, перерабатывают фракцию сопутствующих компонентов. В известных способах фракцию сопутствующих компонентов образуют на основе монооксида углерода, паровая конверсия которого позволяет получить дополнительное количество водорода. Разделение водородсодержащих смесей с выделением фракции чистого водорода и фракции сопутствующих компонентов (монооксида углерода) рассмотрено в патентах (1. Couche, Michael Robert. Hydrogen generation process. US Patent № 5669960, U.S. Cl. 95/96; 423/359; 423/651; 95/121; 95/139; 95/143. 2. Kumar, Ravi; Kratz, Wilbur C. Separation of multicomponent gas mixtures by selective adsorption. US Patent № 5133785, U.S. Cl. 95/101; 95/130; 95/139; 95/140; 95/143/, которые являются аналогами настоящего изобретения. Разделение исходной смеси с выделением чистого водорода и фракции сопутствующих компонентов, согласно этим патентам, проводят в нескольких сериях многокорпусных адсорбционных установок, связанных друг с другом внутренними рециклами. Большое количество адсорберов, сложные связи между ними ограничивают сферу применения методов-аналогов.
Прототипом настоящего изобретения является способ разделения метан-водородной смеси, изложенный в патенте /З. Sebastian С.Reyes; Jose G. Santiesteban. Separation of Hydrogen from hydrocarbons utilizing zeolitic imidazolate framework materials. US Patent № 2009/0211440, U.S. Cl. 95/55; 95/114; 95/106/. Авторы данного изобретения предлагают для разделения различных газовых смесей, включающих водород и один или несколько углеводородов от метана до бутана, в том числе и олефины от С2 до С4, использовать те или иные марки цеолитов типа ZIF. Источниками таких газовых смесей являются процессы: риформинга, нефтехимии, нефтепереработки, крекинга, очистки и т.д., а также «топливные газы» из заводских коллекторов.
При безусловности наличия двух стадий, а именно адсорбции и десорбции, для разделения упомянутых газовых смесей авторы известного изобретения не исключают использования дополнительных стадий при реализации PSA-процессов с целью повышения чистоты и степени извлечения нескольких продукционных потоков. Однако в этом случае требуются многокорпусные адсорбционные установки, что, как уже отмечалось, ограничивает сферу их применения.
Предполагаемое изобретение относится к выделению чистого водорода из смеси водорода и метана, образующейся при пиролизе очищенного природного газа. Целевым компонентом смеси является чистый водород. Наряду с ним, в процессе разделения получают две фракции компонентов. Одна из них - некондиционная смесь водорода и метана, другая - остаточный метан. Эти потоки используют для увеличения выхода водорода.
Согласно предлагаемому изобретению, выделение водорода из метан-водородной смеси, образующейся при пиролизе метана, проводят в установке, адсорберы которой заполнены адсорбентом - активным углем. Исходную газовую смесь водорода и метана пропускают через адсорбер и на верхнем уровне давления 0,5-2,0 МПа, в стадии адсорбции, выделяют чистый водород в качестве целевого компонента. При понижении давления в стадии десорбции до 0,1 МПа выделяют некондиционную смесь водорода и метана, которую присоединяют к исходной смеси и перерабатывают вместе с ней. При дальнейшем понижении давления до нижнего уровня 0,01÷0,005 МПа выделяют фракцию, содержащую преимущественно метан, возвращаемую в поток исходного сырья, поступающего на пиролиз, что позволяет получить дополнительное количество водорода.
Пример
Сущность изобретения иллюстрируют фиг.1, на которой приведена принципиальная схема двухадсорберной установки, и фиг.2 - циклограмма переключения клапанов в ней.
На фиг.1 цифрами обозначены следующие элементы: 101 и 102 - адсорберы, заполненные активным углем, 103 - компрессор, 104 - вакуум-насос, 150-153 - управляемые клапаны адсорбера 101, 160-163 - управляемые клапаны адсорбера 102, 200 - трубопровод исходной смеси, вводимой в установку, 201 - трубопровод водорода, выводимого из установки, 202 - трубопровод возврата остаточного метана на пиролиз.
На фиг.2 цифрами обозначены номера клапанов и в виде чередования черных и белых полей указаны положения клапанов. Черное поле - клапан открыт, белое поле - клапан закрыт.
Установка работает следующим образом. Исходную смесь водорода и метана, образовавшуюся в ходе пиролиза метана, охлаждают и при температуре 20-40°С по трубопроводу 200 подают во всасывающий патрубок компрессора 103. Сжатую до давления P1, отвечающего верхнему уровню давления, смесь вновь охлаждают и подводят либо к коллектору клапанов 150-153, либо к коллектору клапанов 160-163. Выбор коллектора определяет компьютер, управляющий работой установки (на фигуре условно не показан).
Предположим, что исходную смесь подают на коллектор клапанов 150-153. При открытом клапане 150 давление в адсорбере 101 поднимается до верхнего уровня P1; метан адсорбируется активным углем; водород, адсорбирующийся в меньшей степени, чем метан, собирается в верхней части адсорбера. Чистый водород выводят из адсорбера через клапан 151 и по трубопроводу 201 направляют на использование в качестве целевого продукта. Подачу исходной смеси в адсорбер 101 и выделение водорода продолжают до исчерпывания адсорбционной емкости угля, заполняющего адсорбер 101, по метану. (Обычно несколько минут). После этого компьютер закрывает клапаны 150 и 151.
В той фазе процесса, которая протекала в адсорбере 101 и описана выше, управляющий компьютер открывает клапана 162. Через этот клапан из адсорбера 102 выводят некондиционную смесь водорода и метана. Ее отбор проводят при падении давления в адсорбере 102 от P1 до некоторого промежуточного давления Р2. Через клапан 162 некондиционную смесь направляют в трубопровод 200, в котором ее смешивают с исходной смесью и вместе с ней через клапан 150 вводят в адсорбер 101.
После достижения промежуточного давления Р2 в адсорбере 102 управляющий компьютер закрывает клапан 162 и открывает клапан 163. Через этот клапан адсорбент в адсорбере 102 сообщают с вакуум-насосом 104. Давление в адсорбере 102 падает до нижнего уровня Р3, что сопровождается выведением из адсорбера 102 остаточного метана. Из вакуум-насоса 104 остаточный метан по трубопроводу 202 возвращают на пиролиз.
После завершения описанных операций управляющий компьютер переключает адсорберы. Эта операция отвечает закрытию клапанов 150, 151, 163, но открытию клапанов160, 161 и 152.
Испытания способа провели на двухадсорберной лабораторной установке, схема и циклограмма работы которой соответствуют фиг.1 и фиг.2. В каждом адсорбере установки находился 1 л микропористого активного угля. Смесь водорода и метана пропускали через адсорбер в направлении снизу-вверх под давлением P1, равным 0,5÷2,0 МПа. Источником смеси служила смесь водорода и метана в баллоне. Расход смеси составлял примерно 10-20 л/мин. Исходная смесь содержала 15 или 30% водорода, остальное - метан. Продолжительность пропускания исходной смеси варьировали так, чтобы чистота водорода, выходящего из установки, была не ниже 99,5% об. Чистоту контролировали хроматографически. Обычно проскок метана наступал на четвертой - шестой минутах опыта. После этого давление в адсорбере, в стадии десорбции, противоточно понижали сначала до 0,1 МПа с одновременным отбором некондиционной фракции водорода и метана. После достижения давления Р2=0,1 МПа отбор этой фракции прекращали, подключали вакуум-насос и в интервале давлений P2-P3=0,1-(0,01÷0,005) МПа отбирали остаточный метан, который в промышленных условиях может быть направлен на пиролиз. Продолжительности отбора фракции некондиционной смеси и остаточного метана соответственно составляли 1 и 3 мин.
Содержание водорода во фракции чистого водорода было не менее 99,5%. Содержание водорода в некондиционной фракции составляло от 7 до 16%; содержание водорода во фракции остаточного метана составляло от 0,5 до 2%. Прочие результаты испытаний приведены в таблице.
Приведенные в таблице данные свидетельствуют об осуществимости и эффективности предлагаемого способа выделения водорода из смеси водорода и метана. Его следует осуществлять при давлении на стадии адсорбции 0,5<P1<2,0 МПа. При давлении меньше 0,5 МПа процесс выделения практически не идет, при давлении больше 2 МПа эффективность степени извлечения водорода несколько падает. Интервал давлений отбора некондиционной смеси лежит между давлением на стадии адсорбции P1 и атмосферным давлением Р2. Минимальное давление отбора фракции остаточного метана Р3 определяется возможностями вакуум-насосов и составляет 0,01÷0,005 МПа.
Таким образом, предлагаемое изобретение отличается от прототипа следующими особенностями: выделение чистого водорода проводят из смеси с метаном, фракцию некондиционной смеси возвращают в адсорберы установки, а фракцию остаточного метана направляют на пиролиз.
Таблица
Содержание Н2 в исх. смеси % об. Давление адсорбции, МПа W0, нм3/ст. W1, нм3/ст. W2, W3, нм3/ст. А, % В,%
нм3/ст. % об.
Н2 СН4
15 0,5 41,54 3,98 29,5 7,05 92,95 8,06 63,89 77,65
1,0 45,83 4,20 31,86 7,81 92,19 9,77 61,12 75,39
2,0 64,52 5,13 49,19 8,75 91,25 10,20 53,05 81,84
30 0,5 46,96 11,54 26,31 8,96 91,04 9,11 81,94 72,86
1,0 52,40 11,47 30,88 13,16 86,84 10,05 72,97 73,11
2,0 72,24 13,52 48,42 16,35 83,65 10,30 62,36 80,11
Условные обозначения:
Давление - абсолютное давление поступающего на разделение газа, W1 - объем водорода, выведенного из адсорбера с рабочим объемом адсорбента 1 л за стадию адсорбции; W2 - то же для некондиционной смеси, W3 - то же для метана, W0 - объем смеси, поступающей на разделение в адсорбер с рабочим объемом адсорбента 1 л в расчете на стадию адсорбции, А - степень извлечения водорода в стадии отбора чистого водорода, %, В - степень извлечения метана в стадии отбора остаточного метана, %.

Claims (1)

  1. Способ выделения водорода из газовой смеси, содержащей водород и метан, полученной в результате термического разложения метана, заключающийся в пропускании этой смеси в стадии адсорбции при повышенном давлении через слой адсорбента, выделении при этом чистого водорода для последующего внешнего использования, в понижении давления в стадии десорбции и выделении адсорбированных компонентов, таких как водород и метан, отличающийся тем, что водород-метановую смесь получают при пиролизе метана, из которой в стадии адсорбции при давлении 0,5-2,0 МПа извлекают чистый водород, а в стадии десорбции понижают давление сначала до 0,1 МПа и выделяют некондиционную фракцию водорода, которую возвращают на вход в адсорбер, а затем для завершения стадии десорбции давление понижают до нижнего уровня 0,1-0,005 МПа и выделяют фракцию, содержащую преимущественно метан, возвращаемую в поток исходного сырья, поступающего на пиролиз, что позволяет получить дополнительное количество водорода.
RU2009147914/05A 2009-12-24 2009-12-24 Способ выделения водорода из газовой смеси RU2466928C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2009147914/05A RU2466928C2 (ru) 2009-12-24 2009-12-24 Способ выделения водорода из газовой смеси

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009147914/05A RU2466928C2 (ru) 2009-12-24 2009-12-24 Способ выделения водорода из газовой смеси

Publications (2)

Publication Number Publication Date
RU2009147914A RU2009147914A (ru) 2011-06-27
RU2466928C2 true RU2466928C2 (ru) 2012-11-20

Family

ID=44738763

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009147914/05A RU2466928C2 (ru) 2009-12-24 2009-12-24 Способ выделения водорода из газовой смеси

Country Status (1)

Country Link
RU (1) RU2466928C2 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2520482C1 (ru) * 2012-11-13 2014-06-27 Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" Способ получения водорода и водород-метановой смеси
RU2720813C1 (ru) * 2019-12-10 2020-05-13 Игорь Анатольевич Мнушкин Газоперерабатывающий кластер
RU2795121C1 (ru) * 2019-09-04 2023-04-28 Юоп Ллк Процесс рециркуляции мембранного пермеата для применения в процессах адсорбции при переменном давлении

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU146286A1 (ru) * 1960-06-04 1961-11-30 З.А. Жукова Способ очистки водорода в колонне гиперсорбционного типа
GB2155805A (en) * 1984-03-07 1985-10-02 Osaka Oxygen Ind Gas separation process and apparatus
RU2085476C1 (ru) * 1993-04-22 1997-07-27 Совместное предприятие Уральский научно-инженерный центр "Водород" Способ получения особо чистого водорода и установка для его осуществления
US5669960A (en) * 1995-11-02 1997-09-23 Praxair Technology, Inc. Hydrogen generation process

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU146286A1 (ru) * 1960-06-04 1961-11-30 З.А. Жукова Способ очистки водорода в колонне гиперсорбционного типа
GB2155805A (en) * 1984-03-07 1985-10-02 Osaka Oxygen Ind Gas separation process and apparatus
RU2085476C1 (ru) * 1993-04-22 1997-07-27 Совместное предприятие Уральский научно-инженерный центр "Водород" Способ получения особо чистого водорода и установка для его осуществления
US5669960A (en) * 1995-11-02 1997-09-23 Praxair Technology, Inc. Hydrogen generation process

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2520482C1 (ru) * 2012-11-13 2014-06-27 Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" Способ получения водорода и водород-метановой смеси
RU2795121C1 (ru) * 2019-09-04 2023-04-28 Юоп Ллк Процесс рециркуляции мембранного пермеата для применения в процессах адсорбции при переменном давлении
RU2797676C1 (ru) * 2019-09-04 2023-06-07 Юоп Ллк Система рециркуляции мембранного пермеата для применения с устройством адсорбции при переменном давлении
RU2720813C1 (ru) * 2019-12-10 2020-05-13 Игорь Анатольевич Мнушкин Газоперерабатывающий кластер

Also Published As

Publication number Publication date
RU2009147914A (ru) 2011-06-27

Similar Documents

Publication Publication Date Title
US8192527B2 (en) Purification method by hydrogen adsorbtion with cogeneration of CO2 stream pressure
CN106693608B (zh) 一种炼厂干气的分离回收工艺
US20110123878A1 (en) Dual Purpose Gas Purification by Using Pressure Swing Adsorption Columns for Chromatographic Gas Separation
JP2009532565A (ja) Lpgを回収するための膜方法
JP6697014B2 (ja) 圧力スイング吸着(psa)装置及び圧力スイング吸着方法
JP2014088366A (ja) C4オレフィン/パラフィン混合気体から高純度ブテン−1を生成する方法
CN107433107B (zh) 从炼厂干气中回收c2+的二段分浓度psa方法
JP2010532316A5 (ru)
CN103068779B (zh) 分离轻烯烃的置换解吸方法
CN103068778B (zh) 用于从流化催化裂化废气中回收乙烯的装置和方法
CN104986735B (zh) 一种提高氢气回收率的方法
CN104891439A (zh) 一种重整气提高氢气回收率的方法
US11083990B2 (en) Gas separation and recovery method and facility
CN108236829B (zh) 从含co2原料气中分离高纯度co2的方法及装置
RU2466928C2 (ru) Способ выделения водорода из газовой смеси
US9630138B2 (en) Pressure swing adsorption processes and systems for recovery of hydrogen and C2+ hydrocarbons
US20150376092A1 (en) Recovering h2 and c2+ from fuel gas via use of a single-stage psa and sending psa tail gas to gas recovery unit to improve steam cracker feed quality
CN102659104B (zh) 中变气脱碳-变压吸附联合提取二氧化碳和氢气的工艺
CN109276973B (zh) 从炼化放空气中分离提纯氢气的方法
CN213101492U (zh) 从石化排放尾气中同时回收氢气和甲烷气的装置
CN216038664U (zh) 一种基于串联变压吸附分离技术的氩气提纯装置
CN108329962B (zh) 天然气中氮气脱除的方法和装置
CN109276972B (zh) 从炼化气柜干气中分离提纯氢气的方法
CN1618729A (zh) 中变气脱碳-变压吸附联合提取二氧化碳和氢气工艺
CN220424946U (zh) 一种二氧化碳提纯装置

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20161225