RU2460815C2 - Способ получения композиционного порошкового материала системы металл - керамика износостойкого класса - Google Patents

Способ получения композиционного порошкового материала системы металл - керамика износостойкого класса Download PDF

Info

Publication number
RU2460815C2
RU2460815C2 RU2010139100/02A RU2010139100A RU2460815C2 RU 2460815 C2 RU2460815 C2 RU 2460815C2 RU 2010139100/02 A RU2010139100/02 A RU 2010139100/02A RU 2010139100 A RU2010139100 A RU 2010139100A RU 2460815 C2 RU2460815 C2 RU 2460815C2
Authority
RU
Russia
Prior art keywords
powder
ceramic
metal
metal matrix
hardener
Prior art date
Application number
RU2010139100/02A
Other languages
English (en)
Other versions
RU2010139100A (ru
Inventor
Маргарита Александровна Коркина (RU)
Маргарита Александровна Коркина
Евгений Александрович Самоделкин (RU)
Евгений Александрович Самоделкин
Борис Владимирович Фармаковский (RU)
Борис Владимирович Фармаковский
Павел Алексеевич Кузнецов (RU)
Павел Алексеевич Кузнецов
Елена Юрьевна Бурканова (RU)
Елена Юрьевна Бурканова
Original Assignee
Федеральное Государственное Унитарное Предприятие "Центральный Научно-Исследовательский Институт Конструкционных Материалов "Прометей" Фгуп "Цнии Км "Прометей"
Российская Федерация в лице Министерства образования и науки Российской Федерации
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное Государственное Унитарное Предприятие "Центральный Научно-Исследовательский Институт Конструкционных Материалов "Прометей" Фгуп "Цнии Км "Прометей", Российская Федерация в лице Министерства образования и науки Российской Федерации filed Critical Федеральное Государственное Унитарное Предприятие "Центральный Научно-Исследовательский Институт Конструкционных Материалов "Прометей" Фгуп "Цнии Км "Прометей"
Priority to RU2010139100/02A priority Critical patent/RU2460815C2/ru
Publication of RU2010139100A publication Critical patent/RU2010139100A/ru
Application granted granted Critical
Publication of RU2460815C2 publication Critical patent/RU2460815C2/ru

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

Изобретение относится к порошковой металлургии, в частности к получению композиционных порошковых материалов с металлической матрицей, армированной тугоплавкими наполнителями методом сверхскоростного механосинтеза. Может использоваться для получения защитных износостойких покрытий с заданными свойствами на различных деталях машин и оборудования. Порошок металлической матрицы получают путем измельчения порошкового материала дисперсностью не более 100 мкм в высокоскоростном дезинтеграторе с помощью двух роторов с измельчающими элементами, изготовленными из плакирующего материала. Плакированный порошок смешивают с порошком керамического упрочнителя и обрабатывают в высокоскоростном дезинтеграторе с помощью двух роторов при скоростях относительного движения ударных элементов 120-220 м/с и частоте ударов 7000-10000 уд./с. Измельчающие элементы роторов изготовлены из материала твердостью ниже твердости обрабатываемого порошка или смеси. Полученные дисперсно-упрочненные частицы системы металл - керамика имеют степень армирования не менее 60% и обеспечивают высокие эксплуатационные свойства покрытия из них. 3 з.п. ф-лы, 2 табл., 2 пр.

Description

Изобретение относится к порошковой металлургии, в частности к способам получения композиционных порошковых материалов с металлической матрицей, армированной тугоплавкими наполнителями, методом сверхскоростного механосинтеза, и может быть использовано для получения защитных износостойких покрытий с заданными свойствами на различных деталях машин и оборудования, подвергающихся интенсивному износу в процессе эксплуатации.
Проблема упрочнения поверхности различных деталей имеет большое значение, поскольку нанесение износостойких, жаропрочных и других защитных покрытий позволяет получать конструкционные материалы с высокими эксплуатационными свойствами, что резко увеличивает срок службы изделий. Как известно наиболее долговечными являются металлические и металлокерамические покрытия. В качестве напыляемого на поверхность материала методом холодного газодинамического или микроплазменного нанесения покрытий часто используются композиционные порошки, свойства которых за счет их состава и структуры обеспечивают достижение высоких механических и специальных защитных свойств наносимых покрытий.
В настоящее время актуальна проблема разработки эффективных технологичных способов получения композитов, в том числе дисперсно-упрочненных композитов с металлической матрицей, материалов, состоящих из непрерывной в объеме металлической матричной фазы, в которой равномерно распределены ультрадисперсные частицы другой фазы, не взаимодействующие активно с матрицей.
Композиционные материалы с керамическими частицами получают, в том числе, методом порошковой металлургии путем смешивания или совместного помола порошка металла и упрочняющей фазы (Al2O3, SiC и другие оксиды, карбиды, бориды и нитриды) в измельчительных установках высокой энергонапряженности (объемная плотность механической энергии, вводимой в зону измельчения), позволяющих осуществлять процесс механического легирования. При этом происходит не только измельчение и пластическая деформация веществ, а также их перемешивание на атомном уровне, когда активируется химическое взаимодействие и массоперенос твердых реагентов.
Известен способ получения композиционного порошка, предусматривающий обработку порошковой смеси, состоящей из металлической матрицы на основе сплава Ni, Fe, Al и тугоплавкого соединения из числа карбидов, нитридов, боридов, оксидов тория и иттрия, вводимого в количестве 0,5-5,0 об.% (пат. №4647304, США, B22F, 03.03.87). Для получения равномерного распределения твердого компонента в металлической матрице обработку проводят в аттриторах в среде N2, СН4, Ar, Kr при криогенных температурах от -240°С до -150°С.
Недостатком известного способа является получение композиционного порошка дисперсность не менее ~50 мкм, низкий уровень значений и стабильности механических свойств из-за неоднородности структуры. Кроме того, данный способ весьма энергоемкий и продолжительный по времени.
Известны способы получения композиционных порошковых материалов с металлической или интерметаллидной матрицей, армированной керамическими частицами, где с целью равномерного распределения керамических частиц в матрице, порошковую смесь обрабатывают, в одном известном патенте, в размольно-смесительных установках (аттриторах, вибромельницах, шаровых или планетарных мельницах) при энергонапряженности 0,02-0,2 кВт/л в течение 0,5-30 часов (RU №2263089, C04B 35/65, B22F 3/23, 25.02.2004). В другом известном патенте, механическое легирование проводят в высокоэнергетической мельнице при энергонапряженности 0,7-1,5 кВт/кг в течение 20-40 часов (RU №2021382, C22B 1/10, B22F 9/04, 14.12.1990).
Известен способ получения металлокерамических порошковых материалов, включающий механическое легирование порошков меди и никеля, и последующее механическое плакирование (нанесение пластичных частиц Cu-Ni на твердые частицы - Al2O3) в планетарной мельнице САНД-1 в течение 20 ч и плакирование в течение 5 часов (RU №2298450, B22F 1/02, B22F 3/12, 07.06.2005).
Все вышеперечисленные изобретения-аналоги получения композиционных порошковых материалов системы металл - керамика характеризуются применением различных измельчительных установок (аттриторов, вибромельниц, шаровых и планетарных мельниц), где возможность передачи механической энергии обрабатываемому веществу в значительной степени зависит от конструкции измельчающей установки и условий измельчения. В известных способах для успешного проведения процесса необходимо разрабатывать сложные технологические приемы и адаптировать оборудование под конкретные задачи, в том числе создавать новые конструкции элементов технологического оборудования. Необходимо экспериментально определять такие параметры процесса, как материал шаров и барабанов, масса и диаметр шаров, отношение массы шаров и порошка, гранулометрический состав исходных компонентов, режим и время обработки. Кроме того, перечисленные выше способы требуют значительных электрозатрат, обладают ограниченной энергонапряженностью и продолжительны по времени. Указанные способы не позволяют добиться достаточно высокой степени армирования и равномерности распределения упрочняющей фазы в металлической матрице.
За прототип выбран способ получения композиционного материала, содержащего металлическую матрицу и керамический упрочнитель (RU №2246379, B22F 3/20, C22C 1/05, 25.02.2004). Известный способ включает приготовление смеси порошка матричного металла с керамическим упрочнителем и механическое легирование приготовленной смеси порошков с целью получения композиционных гранул с более высокими механическими свойствами. Механическое легирование проводят в вибромельнице при энергонапряженности 0,02-0,2 кВт/л в течение 0,5-30 часов. Предлагаемым способом получали композиционный материал из порошка никеля Ni в качестве металлической матрицы и порошка оксида алюминия Al2O3 в качестве керамического упрочнителя, а также композиционный материал на основе интерметаллидной матрицы Ni3Al, содержащей карбид титана TiC в качестве керамического упрочнителя.
Недостатком известного способа является то, что степень армирования не превышает 20% и, следовательно, невозможно получать покрытия с пористостью менее 5%, что существенно снижает износостойкость получаемых покрытий. Оптимальная пористость покрытий не должна превышать 2%. Кроме того, процесс обработки (механическое легирование) в шаровых размольно-смесительных установках продолжительный по времени (составляет 10-30 часов), при этом существенно удорожает процесс получения дисперсно-упрочненного композиционного материала и не удается получать композиционный порошок с требуемым стехиометрическим составом и заданным уровнем свойств.
Техническим результатом данного изобретения является разработка эффективного способа получения композиционного порошкового материала с металлической матрицей, армированной упрочнителем методом сверхскоростного механосинтеза, что обеспечивает получение дисперсно-упрочненных частиц системы металл - керамика со степенью армирования не менее 60% при значительном сокращении времени процесса обработки, предназначенными для создания износостойкого покрытия с высокими эксплуатационными свойствами, а именно с более низкой пористостью (0,2-2,0%) и более высокой прочностью сцепления с основой (80-120 МПа).
Существенной новизной получаемых по предлагаемому способу композиционных порошковых материалов является наличие трех неразрывно связанных компонентов - твердого ядра, плакирующего слоя (пластификатора) и ультрадисперсных элементов.
Указанный технический результат достигается тем, что в предлагаемом способе получения композиционного порошкового материала, содержащего металлическую матрицу и керамический упрочнитель, включающем смешивание порошков металлической матрицы с керамическим упрочнителем и механосинтез, согласно изобретению сначала получают порошок металлической матрицы путем измельчения предварительно отобранного порошкового материала дисперсностью не более 100 мкм в высокоскоростном дезинтеграторе с помощью двух роторов с измельчающими элементами, изготовленными из плакирующего материала твердостью ниже твердости обрабатываемого порошка, для получения плакирующего слоя. Затем полученный плакированный порошок металлической матрицы и порошок керамического упрочнителя подвергают совместной обработке в высокоскоростном дезинтеграторе с помощью двух роторов с измельчающими элементами, изготовленными из материала твердостью выше твердости обрабатываемой порошковой смеси, для получения дисперсно-упрочненных частиц системы металл - керамика износостойкого класса. Причем, совместную обработку порошков металлической матрицы и керамического упрочнителя проводят при скоростях относительного движения ударных элементов 120-220 м/с и частоте ударов 7000-10000 уд./с.
Механический размол в высокоскоростных дезинтеграторах - наиболее производительный способ получения композитов, где основным принципом измельчения является самоизмельчение частиц, то есть их многократное столкновение друг с другом (скорости соударений могут достигать 450 м/с). Дезинтеграторные установки отличает широкий спектр технологических возможностей благодаря ряду качеств: высокая энергонапряженность; высокая степень измельчения, смешивания и механической активации как одного обрабатываемого материала, так и нескольких компонентов, независимо от их количественного и качественного соотношения; широкая область применения, экономичность и многофункциональность. Основные технические возможности дезинтегратора определяются, в основном, конструкцией ротора - основным рабочим измельчающим органом. Поэтому при обработке порошковых материалов размольная мощность дезинтегратора в большей степени определяется скоростью свободного удара и частотой вращения роторов, а не увеличением рядности помольных элементов. Эти факторы, в конечном счете, определяют возможность получения композиционных порошковых материалов с регулируемым стехиометрическим составом и заданным уровнем свойств.
В предлагаемом способе сначала получают металлическую матрицу в виде плакированного порошка, состоящего из твердого ядра окруженного плакирующим слоем из мягкого металла. Для этого в качестве исходного порошкового материала для измельчения с целью получения металлической матрицы использовали порошки на основе металлов из группы, содержащей никель, кобальт, железо, хром или их сплавы. Обработку порошка проводят в рабочей зоне высокоскоростного дезинтегратора при энергонапряженности 0,01 кВт/л с помощью двух роторов со съемными кольцами с рядами измельчающих ударных элементов, которые являются расходуемыми в процессе обработки порошка и могут быть изготовлены, в данном случае, из алюминия, меди, цинка или их сплавов.
Экспериментально установлено, что предлагаемая комбинированная конструкция ротора дезинтегратора, состоящая из твердого износостойкого материала дисков и расходуемого мягкого пластичного материала измельчающих элементов, обеспечивает плакирование основного компонента порошка - твердых частиц (например, сплава никеля Ni) более пластичным металлом (например, алюминием Al). При этом достигается необходимая толщина плакирующего слоя (1,0-2,0 мкм), высокая степень покрытия твердой основы мягким металлом и прочное сцепление твердой и мягкой компонент, необходимое для нанесения покрытия. В процессе напыления плакирующий слой (пластификатор) обеспечивает защиту частиц основного компонента порошка от окисления и необходим для образования под действием экзотермических реакций, проходящих между компонентами порошка, интерметаллического соединения, что способствует повышению прочности сцепления покрытия с основным металлом.
Другим достоинством используемой конструкции ротора дезинтегратора является ее простота, позволяющая быстро и эффективно производить замену измельчающих элементов, отсутствие технологической операции по предварительному смешиванию порошковых компонент, что делает процесс получения плакированных порошков путем измельчения существенно более экономичным и производительным.
Керамический упрочнитлеь берут в виде тонкодисперсного порошка дисперсностью 5-10 мкм в количестве 10-15%. В качестве керамического упрочнителя (армирующего компонента) могут быть выбраны тугоплавкие соединения, такие как, оксиды, карбиды, бориды или нитриды. Экспериментально установлено, что оптимальное соотношение упрочняющего и армирующего компонента в порошковой смеси составляет 10-15% с дисперсностью 5-10 мкм, что обеспечивает получение покрытий с минимальной пористостью и хорошей адгезией. Содержание упрочнителя как в сторону его увеличения (более 15%), так и в сторону уменьшения (менее 10%) приводит к снижению прочности сцепления наносимого покрытия с подложкой и увеличению пористости и, соответственно, снижению износостойкости покрытия.
Сверхскоростной механосинтез полученного плакированного порошка металлической матрицы и тонкодисперсного порошка упрочнителя проводят путем совместной обработки в рабочей зоне высокоскоростного дезинтегратора при энергонапряженности 0,01 кВт/л с помощью двух роторов со съемными кольцами с рядами измельчающих ударных элементов, изготовленными из материала твердостью выше твердости обрабатываемой порошковой смеси. Причем, обработку проводят при скоростях относительного движения ударных элементов 120-220 м/с и частоте ударов 7000-10000 уд./с. Измельчающие элементы, в этом случае, являются не расходуемыми в процессе обработки порошкового материала и могут быть изготовлены из твердосплавных материалов, например, нержавеющей стали 12Х18Н10Т или материала типа ВК.
Особенностью процесса является использование двух автономно работающих дозаторов, предназначенных для равномерной подачи порошков, в одном из которых находится полученный предварительно плакированный порошок металлической матрицы, а во втором - тонкодисперсный порошок упрочнителя указанного количества и фракции. Порошки, поступающие из дозаторов, смешиваются в смесителе и поступают через загрузочный канал в рабочую зону дезинтегратора.
В процессе сверхскоростного механосинтеза происходит поверхностное легирование (армирование) тонкодисперсными частицами упрочнителя металлической матрицы, состоящей из твердого ядра окруженного плакирующим слоем. Достигается равномерное распределение твердой фазы в матрице (степень армирования составляет 60%), исчезает неравномерный характер структуры, происходит образование плотных, хорошо сформированных частиц композиционного материала. Таким образом, получают неразрывно связанную между собой трехкомпонентную систему композита, состоящую из твердого ядра, плакирующего слоя (пластификатора) и ультрадисперсных элементов.
Вариации параметров режима обработки порошковой смеси (скорости относительного движения ударных элементов и частоты соударений) как в сторону их уменьшения, так и в сторону их увеличения приводят к неравномерному распределению твердой фазы в металлической матрице, создаются зоны агломерации и зоны, обедненные упрочнителем, что приводит к неоднородности структуры композиционных гранул, кроме того, не достигается необходимый гранулометрический и химический составы. При уменьшении скорости относительного движения ударных элементов менее 120 м/с и увеличении частоты ударов более 10000 уд./с заданного эффекта образования трехкомпонентной системы не происходит, твердые частицы упрочнителя неравномерно распределяются в металлической матрице. При увеличении скорости относительного движения ударных элементов более 220 м/с и уменьшении частоты ударов менее 7000 уд./с механосинтез между частицами порошковой смеси не происходит, наблюдается разрушение трехкомпонентной системы.
Только выполнение указанных условий обработки в предлагаемом способе обеспечивает равномерное распределение частиц упрочняющей фазы в металлической матрице и получение композиционных гранул трехкомпонентной системы с однородной структурой и заданными свойствами.
Гранулометрический состав полученного композиционного порошка составляет 25-50 мкм, что оптимально соответствует для напыляющих установок. При использовании порошков, в которых содержатся частицы размером выше или ниже указанного предела, происходит ряд негативных явлений в функциональных покрытиях, полученных на их основе. Крупные частицы (более 50 мкм) засоряют сопло напыляющих установок, что приводит к нарушению процесса напыления и вынужденному ремонту установки. Мелкие частицы (менее 25 мкм) склонны в гетерофазном потоке к образованию конгломератов, что создает в покрытиях капельную фазу, которая является центром образования трещин.
Следует особо отметить, что известные ранее модификации дезинтеграторных установок (Дези-15, Дези-1А34) со скоростями вращения роторов до 12000 об/мин и ускорением частиц 250g±20g, не давали возможность провести эффективное упрочнение и механическое легирование композиционного порошка. Только новая конструкция вакуумного универсального дезинтегратора марки В-15 (при оборотах роторов 12000 мин-1), обеспечивающая ускорение частиц до 450g±20g, позволила реализовать механизм легирования и армирования ультрадисперсными частицами металлической матрицы при значительном сокращении времени процесса.
Таким образом, перечисленные признаки и последовательность операций обеспечивают изобретательский уровень заявляемого технического решения.
Предлагаемый способ опробован на специализированном участке ЦНИИ КМ «Прометей».
Примеры осуществления способа
Пример 1
В качестве обрабатываемого материала для получения плакированного порошка использовался порошок марки Х20Н80 - твердый сплав на основе никеля Ni фракцией 80 мкм. Опытная партия составляла 1000 г. Измельчение проводили за один проход в вакуумном дезинтеграторе марки В-15, позволяющем обрабатывать порошковый материал в воздушной среде и в среде инертного газа аргона или азота. Измельчение проводили комплектом роторов с кольцами с рядами ударных элементов из алюминиевого сплава Д14Т. Полученный плакированный порошок представляет собой частицы с твердым ядром из сплава никеля (Ni) равномерно покрытым оболочкой сплава алюминия (Al), толщина плакирующего слоя составляла 1,5 мкм. Подтверждено прочное сцепление твердой и мягкой компонент.
Затем полученный плакированный порошок системы (Ni-Al) загружали в один дозатор, а упрочнитель в виде тонкодисперсного порошка корунда Al2O3 фракцией 5 мкм в количестве 10 мас.% загружали в другой дозатор. Порошковую смесь подвергли сверхскоростному механосинтезу путем совместной обработки в высокоскоростном дезинтеграторе марки В-15 за один проход в воздушной среде при энергонапряженности 0,01 кВт/л. Компоненты порошковой смеси, поступающие из дозаторов, смешиваются в смесителе и через загрузочный канал подаются в рабочую зону дезинтегратора. Обработку порошков проводили комплектом роторов с кольцами с рядами ударных элементов из нержавеющей стали 12Х18Н10Т при скорости вращения роторов 120 м/с и частоте ударов 7000 уд./с. Частоту удара определяют расчетным путем, исходя из скорости вращения роторов, количества ударных элементов и дозированного поступления материала в рабочую зону дезинтегратора. Полученный композиционный порошок, пройдя разгрузочный канал и циклон, собирался в специальный приемный контейнер.
Пример 2
В качестве обрабатываемого материала для получения плакированного порошка использовался порошок марки СТЕЛЛИТ - твердый сплав на основе кобальта Со, фракции 90 мкм. Опытная партия составляла 1000 г. Измельчение проводили за один проход в вакуумном дезинтеграторе марки В-15 комплектом роторов с кольцами с рядами ударных элементов из алюминиевого сплава АМг6. Полученный порошок представляет собой частицы с твердым ядром из сплава кобальта (Со) равномерно покрытым оболочкой сплава алюминия (Al), толщина плакирующего слоя составляет 2,0 мкм.
Затем полученный плакированный порошок системы (Co-Al) загружали в один дозатор, а упрочнитель в виде тонкодисперсного порошка карбида вольфрама WC фракцией 10 мкм в количестве 15 мас.% загружали в другой дозатор. Сверхскоростной механосинтез порошков проводили по примеру 1. Обработку порошков проводили комплектом роторов с кольцами с рядами ударных элементов из твердосплавного материала типа ВК при скорости вращения роторов 220 м/с и частоте ударов 10000 уд./с. Полученный композиционный порошок, пройдя разгрузочный канал и циклон, собирался в специальный приемный контейнер.
Технологический процесс получения композиционных порошков по примеру 1 и 2, включающий получение плакированного порошка и замену измельчающих элементов, составляет 0,5 часа (30 мин), что существенно ниже, чем в известном способе (прототип).
Полученные порошки с размером частиц 25-50 мкм, состав которых контролировался рентгеноструктурным и металлографическим анализами, использовались в качестве композиционных порошков для нанесения покрытий на стальную поверхность методом сверхзвукового холодного газодинамического напыления (ХГДН). Фазовый состав композиционных порошков и напыленных покрытий определяли рентгеновским методом на дифрактометре ДРОН-4М, исследование микроструктуры проводили на атомно-силовом микроскопе (АСМ) типа «Nano Scan». Микротвердость покрытий оценивали на шлифах в соответствии с ГОСТ 9450-76 на приборе ПМТ-3 вдавливанием четырехгранной алмазной пирамиды при нагрузке 100 г. Адгезивную прочность определяли на образцах на разрывной машине МР-100, плотность (пористость) покрытия исследовали на анализаторе удельной поверхности «TriStar-3020». Исследования на износостойкость проводили на машине трения УМТ-2168.
Проведенные исследования показывают, что плакирующий слой (пластификатор), входящий в состав порошка, обеспечивает высокую когезионную прочность напыленного покрытия и хорошее смачивание (адгезию) с подложкой, а необходимую твердость покрытия придает входящий в его состав упрочнитель. Повышенная результирующая износостойкость покрытия (1,1-2,5 мг/ч) является следствием сочетания вязкости и твердости получаемого композиционного покрытия. Полученные результаты проведенных исследований сведены в табл.1.
Таким образом, из табл.1 видно, что предлагаемый способ позволяет получать композиционные порошки со степенью армирования не менее 60% методом сверхскоростного механосинтеза при соблюдении выбранных режимов обработки, которые применяются для создания износостойких покрытий с высокими эксплуатационными свойствами. Покрытие из порошковых материалов, полученных предлагаемым способом, обладает высокой плотностью (0,5-2,0%), высокой прочностью сцепления с основой (80-120 МПа), равномерным распределением твердости по сечению покрытия (600-650 HV).
Технико-экономический результат от применения предлагаемого способа, как видно из табл.2, заключается в значительном сокращении времени обработки порошкового материала (0,2 часа) и существенном в 20-60 раз сокращении времени технологического процесса в целом за счет механообработки в универсальном высокоскоростном дезинтеграторе, позволяющем управлять процессом и получать порошки с заданным уровнем свойств.
Figure 00000001
Figure 00000002

Claims (4)

1. Способ получения композиционного порошкового материала системы металл - керамика износостойкого класса, содержащего металлическую матрицу и керамический упрочнитель, включающий смешивание порошков металлической матрицы с керамическим упрочнителем и механосинтез, отличающийся тем, что сначала получают порошок металлической матрицы путем измельчения предварительно отобранного порошкового материала дисперсностью не более 100 мкм в высокоскоростном дезинтеграторе с помощью двух роторов с измельчающими элементами, изготовленными из плакирующего материала твердостью ниже твердости обрабатываемого порошка, для образования плакирующего слоя, затем полученный плакированный порошок металлической матрицы и порошок керамического упрочнителя подвергают совместной обработке в высокоскоростном дезинтеграторе при скоростях относительного движения ударных элементов 120-220 м/с и частоте ударов 7000-10000 уд./с с помощью двух роторов с измельчающими элементами, изготовленными из материала твердостью выше твердости обрабатываемой порошковой смеси, для получения дисперсно-упрочненных частиц системы металл - керамика износостойкого класса.
2. Способ по п.1, отличающийся тем, что керамический упрочнитель берут в виде тонкодисперсного порошка в количестве 10-15% дисперсностью 5-10 мкм.
3. Способ по п.1, отличающийся тем, что в качестве порошкового материала для получения металлической матрицы выбирают порошок на основе металлов из группы, содержащей никель, кобальт, железо, хром или их сплавы.
4. Способ по п.1, отличающийся тем, что в качестве керамического упрочнителя выбирают порошки из тугоплавких соединений оксидов, карбидов, боридов или нитридов.
RU2010139100/02A 2010-09-22 2010-09-22 Способ получения композиционного порошкового материала системы металл - керамика износостойкого класса RU2460815C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010139100/02A RU2460815C2 (ru) 2010-09-22 2010-09-22 Способ получения композиционного порошкового материала системы металл - керамика износостойкого класса

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010139100/02A RU2460815C2 (ru) 2010-09-22 2010-09-22 Способ получения композиционного порошкового материала системы металл - керамика износостойкого класса

Publications (2)

Publication Number Publication Date
RU2010139100A RU2010139100A (ru) 2012-03-27
RU2460815C2 true RU2460815C2 (ru) 2012-09-10

Family

ID=46030600

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010139100/02A RU2460815C2 (ru) 2010-09-22 2010-09-22 Способ получения композиционного порошкового материала системы металл - керамика износостойкого класса

Country Status (1)

Country Link
RU (1) RU2460815C2 (ru)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2525192C1 (ru) * 2013-05-07 2014-08-10 Федеральное государственное бюджетное учреждение науки Институт физико-технических проблем Севера им. В.П. Ларионова Сибирского отделения Российской академии наук Способ приготовления твердосплавной шихты с упрочняющими частицами наноразмера
RU2561615C1 (ru) * 2014-07-08 2015-08-27 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Способ получения композиционного плакированного порошка для нанесения покрытий
RU2573309C1 (ru) * 2014-07-08 2016-01-20 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Способ получения композиционного армированного порошкового материала
RU2574930C2 (ru) * 2014-05-12 2016-02-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный архитектурно-строительный университет" Способ получения гранулированного присадочного материала для дуговой сварки
RU2595080C1 (ru) * 2015-04-30 2016-08-20 Государственный научный центр Российской Федерации - федеральное государственное унитарное предприятие "Исследовательский Центр имени М.В. Келдыша" Дисперсно-упрочненный композиционный материал на основе алюминиевой матрицы и способ его получения
RU2644834C1 (ru) * 2017-04-18 2018-02-14 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Способ получения металлокерамической порошковой композиции
RU2686831C1 (ru) * 2018-03-22 2019-04-30 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Металлокерамический композиционный материал на основе интерметаллидной матрицы и способ его получения

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0128360A1 (en) * 1983-05-10 1984-12-19 Toyota Jidosha Kabushiki Kaisha Fine composite powder material and method and apparatus for making the same
RU2021382C1 (ru) * 1990-12-14 1994-10-15 Акционерное общество открытого типа "Всероссийский институт легких сплавов" Способ получения порошковых композиционных материалов системы металл-керамика
RU2246379C1 (ru) * 2004-02-25 2005-02-20 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Способ получения композиционного материала

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0128360A1 (en) * 1983-05-10 1984-12-19 Toyota Jidosha Kabushiki Kaisha Fine composite powder material and method and apparatus for making the same
RU2021382C1 (ru) * 1990-12-14 1994-10-15 Акционерное общество открытого типа "Всероссийский институт легких сплавов" Способ получения порошковых композиционных материалов системы металл-керамика
RU2246379C1 (ru) * 2004-02-25 2005-02-20 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Способ получения композиционного материала

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2525192C1 (ru) * 2013-05-07 2014-08-10 Федеральное государственное бюджетное учреждение науки Институт физико-технических проблем Севера им. В.П. Ларионова Сибирского отделения Российской академии наук Способ приготовления твердосплавной шихты с упрочняющими частицами наноразмера
RU2574930C2 (ru) * 2014-05-12 2016-02-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный архитектурно-строительный университет" Способ получения гранулированного присадочного материала для дуговой сварки
RU2561615C1 (ru) * 2014-07-08 2015-08-27 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Способ получения композиционного плакированного порошка для нанесения покрытий
RU2573309C1 (ru) * 2014-07-08 2016-01-20 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Способ получения композиционного армированного порошкового материала
RU2595080C1 (ru) * 2015-04-30 2016-08-20 Государственный научный центр Российской Федерации - федеральное государственное унитарное предприятие "Исследовательский Центр имени М.В. Келдыша" Дисперсно-упрочненный композиционный материал на основе алюминиевой матрицы и способ его получения
RU2644834C1 (ru) * 2017-04-18 2018-02-14 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Способ получения металлокерамической порошковой композиции
RU2686831C1 (ru) * 2018-03-22 2019-04-30 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Металлокерамический композиционный материал на основе интерметаллидной матрицы и способ его получения
RU2794069C1 (ru) * 2022-09-15 2023-04-11 Виталий Вадимович Зарубин Способ получения композиционного порошка на основе карбида титана
RU2816077C1 (ru) * 2023-04-11 2024-03-26 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт конструкционных материалов "Прометей" имени И.В. Горынина Национального исследовательского центра "Курчатовский институт" (НИЦ "Курчатовский институт" - ЦНИИ КМ "Прометей") Способ получения композиционного порошкового материала для нанесения функциональных покрытий с высокой износостойкостью

Also Published As

Publication number Publication date
RU2010139100A (ru) 2012-03-27

Similar Documents

Publication Publication Date Title
Xie et al. Al matrix composites fabricated by solid-state cold spray deposition: A critical review
RU2460815C2 (ru) Способ получения композиционного порошкового материала системы металл - керамика износостойкого класса
Luo et al. Large sized cubic BN reinforced nanocomposite with improved abrasive wear resistance deposited by cold spray
Arokiasamy et al. Experimental investigations on the enhancement of mechanical properties of magnesium-based hybrid metal matrix composites through friction stir processing
HU222859B1 (hu) Színterelt anyag és porkohászati préspor szinterelt termékek előállítására
US11453088B2 (en) Process and composition for formation of hybrid aluminum composite coating
US11872631B2 (en) Additive manufacturing of composite powders
WO2005079209A2 (en) Nanocrystalline material layers using cold spray
Irhayyim et al. Effect of nano-TiO 2 particles on mechanical performance of Al-CNT matrix composite
Sohi et al. Liquid phase surface melting of AA8011 aluminum alloy by addition of Al/Al2O3 nano-composite powders synthesized by high-energy milling
Singh et al. Aluminium metal matrix composites: manufacturing and applications
Akshay et al. Mechanical properties of friction stir processed Al6061-BN surface composite
WO2004106587A1 (ja) 放電表面処理用電極、放電表面処理用電極の製造方法、放電表面処理装置および放電表面処理方法
Yang et al. Advanced nanomaterials and coatings by thermal spray: multi-dimensional design of micro-nano thermal spray coatings
Tiwari et al. Characterization of ultrafine grain tungsten carbide tool and its wear investigation in friction stir welding of HSLA steel
Kumar et al. Casting and characterization of Al6063/SiC nano composites produced using stir casting method
Ghanaraja et al. Synthesis and mechanical properties of cast alumina nano-particle reinforced metal matrix composites
Jayalakshmi et al. Structure-property correlation in magnesium nanocomposites synthesized by disintegrated melt deposition technique
Márquez-Martínez et al. Processing and characterization of Inconel 718/Al2O3 nanocomposite powder fabricated by different techniques
Chen et al. Effect of Submicron SiC Particles on the Properties of Alcocrfeni High Entropy Alloy Coatings
Gül et al. Preparation and characterization of bronze/SiCp composites produced via current activated sintering method
An et al. Preparation of ultramicro molybdenum carbide powders and study on wear properties of their coating
CN106133191B (zh) 通过冷气喷涂涂布材料来产生涂层的方法和涂层
RU2561615C1 (ru) Способ получения композиционного плакированного порошка для нанесения покрытий
RU2573309C1 (ru) Способ получения композиционного армированного порошкового материала

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner