RU2458739C1 - Способ капсулирования силикалита титана в полимерной матрице - Google Patents

Способ капсулирования силикалита титана в полимерной матрице Download PDF

Info

Publication number
RU2458739C1
RU2458739C1 RU2011106686/04A RU2011106686A RU2458739C1 RU 2458739 C1 RU2458739 C1 RU 2458739C1 RU 2011106686/04 A RU2011106686/04 A RU 2011106686/04A RU 2011106686 A RU2011106686 A RU 2011106686A RU 2458739 C1 RU2458739 C1 RU 2458739C1
Authority
RU
Russia
Prior art keywords
titanium silicalite
granules
polymer
minutes
titanium silicate
Prior art date
Application number
RU2011106686/04A
Other languages
English (en)
Inventor
Сергей Михайлович Данов (RU)
Сергей Михайлович Данов
Марина Евгеньевна Федосова (RU)
Марина Евгеньевна Федосова
Алексей Евгеньевич Федосов (RU)
Алексей Евгеньевич Федосов
Алексей Владимирович Лунин (RU)
Алексей Владимирович Лунин
Сергей Валерьевич Орехов (RU)
Сергей Валерьевич Орехов
Татьяна Анатольевна Рябова (RU)
Татьяна Анатольевна Рябова
Original Assignee
Государственное образовательное учреждение высшего профессионального образования "Нижегородский государственный технический университет им. Р.Е. Алексеева" (НГТУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное образовательное учреждение высшего профессионального образования "Нижегородский государственный технический университет им. Р.Е. Алексеева" (НГТУ) filed Critical Государственное образовательное учреждение высшего профессионального образования "Нижегородский государственный технический университет им. Р.Е. Алексеева" (НГТУ)
Priority to RU2011106686/04A priority Critical patent/RU2458739C1/ru
Application granted granted Critical
Publication of RU2458739C1 publication Critical patent/RU2458739C1/ru

Links

Landscapes

  • Catalysts (AREA)

Abstract

Изобретение относится к способу получения формованного силикалита титана. Предложен способ капсулирования силикалита титана в полимерной матрице, включающий смешение гранул полимера с порошком силикалита титана в массовом соотношении от 1:1 до 1:5, нагрев до температуры плавления полимера, перемешивание в течение 30-60 минут и экструзию с получением гранул необходимой формы и размера. Технический результат - повышение активности полученного катализатора, обеспечивающей увеличение степени превращения углеводородов при его использовании. 13 пр.

Description

Изобретение относится к способу получения формованного силикалита титана.
Основным фактором, тормозящим процесс создания новых производств, является коллоидный размер частиц силикалита титана, сильно усложняющий стадию отделения катализатора от реакционной массы. В последнее время появляется много работ, посвященных процессам нанесения на носители либо формования силикатита титана в частицы необходимого размера.
Нанесение силикалита титана на различные поверхности осуществляется за счет взаимодействия гидроксильных групп кристаллов цеолита с поверхностными гидроксильными группами подложки с образованием связей Si-O-Si /US 4859785, C07D 301/12, 22.08.1989/. В /US 6849570, B01J 21/08; B01J 29/06; B01J 27/198; B01J 27/182; C07C 249/00, 01.02.2005/ предлагается получать гранулы катализатора, содержащего силикалит титана, смешением основы (оксид алюминия, силикагель), связующего вещества (метилгидроксицеллюлоза, полиспирты, фруктоза, пентаэритрит) с последующим формованием, сушкой и обжигом при 500-750°С. При использовании в качестве основы оксида алюминия для процесса получения оксида пропилена в среде спирта наблюдается значительное снижение селективности, по сравнению с порошковым катализатором, так как, обладая кислотными свойствами, окись алюминия катализирует реакцию образования пропиленгликоля и алкоксипропанолов.
В /US 6491861, В28В 3/20, 10.12.2002/ предлагается получать гранулы силикалита титана размером 1-2 мм. Исходную смесь, содержащую силикалит титана, тетраметоксисилан, метилцеллюлозу и алифатический спирт (метанол, этанол, н-пропанол), подвергают экструзии с последующей сушкой при 120°С в течение 16 часов и прокаливанию при 500°С в течение 5 часов. Подобным способом получают гранулы силикалита титана размером 10-35 мм, используя в качестве связующих Tylose MH1500 (Hoechst) и аморфный кремний.
Другой метод нанесения силикалита титана на носители включает многократную обработку подложки, обладающей «сотовой» структурой, суспензией силикалита титана (50-90 г TS-1/100 г воды), с последующей сушкой и прокаливанием /US 6603027, B01J 29/89; C07D 301/06, 05.08.2003/.
Метод иммобилизации силикалита титана на полиуретановую основу, предложенный в /W.J. Kim, T.J. Kim, W.S. Ahn, Y.J. Lee, K.B. Yoon. Catalysis Letters, Vol.91, №1-2, November 2003/, заключается в пропитке носителя реакционной массой, полученной гидролизом тетраэтилортосиликата в водном растворе тетрапропиламмоний гидроксида с добавлением спиртового раствора тетрабутилортотитаната и гидротермальным синтезом. После промывки и выжигания полиуретановой основы при 550°С получают каркасный катализатор, который показывает высокую активность в процессе получения оксида пропилена, но на основе приведенных авторами данных можно предположить, что в ходе реакции будет наблюдаться быстрое разрушение каркасного катализатора.
Прототипом данного изобретения является способ получения гранул силикалита титана /US 6958405, B01J 29/6, 25.10.2005/, заключающийся в капсулировании силикалита титана в полимерной матрице в присутствии органического растворителя. В нагретый раствор полимера в органическом растворителе (40-80°С) добавляют силикалит титана и перемешивают в течение 1-6 часов в зависимости от типа используемого полимера, после чего охлаждают до комнатной температуры, осаждают капсулы растворителем, промывают и сушат их под вакуумом. Полученный катализатор испытывался в процессе окисления н-пентана водным раствором пероксида водорода с получением вторичных спиртов и кетонов. Степень превращения н-пентана составила 40%.
Основным недостатком данного способа получения капсулированного силикалита титана является многостадийность процесса изготовления, использование большого количества вспомогательных веществ (растворителей), относительно низкая активность полученного катализатора.
Таким образом, задачей настоящего изобретения является разработка нового способа получения титансодержащих цеолитов, иммобилизованных на инертных носителях, и упрощение технологии их изготовления.
Технический результат - повышение активности полученного катализатора, обеспечивающее увеличение степени превращения углеводородов при его использовании.
В настоящем изобретении в качестве полимеров для капсулирования силикалита титана могут применяться различные полимеры и сополимеры, полученные различными способами: полистиролы, полиолефины и полифторолефины, полимеры (мет)акрилового ряда, полиэфиры, полиамиды и др. Наиболее предпочтительно применение полиолефинов, полиэфиров, полистиролов, полимеров (мет)акрилового ряда и сополимеров на их основе.
В соответствии с настоящим изобретением порошок силикалита титана, с размером частиц 200-400 нм, смешивают с гранулами полиэтилена 271-70 ГОСТ 16338-85, полипропилена Baymod Type A-80 (Германия), сополимера полипропилена с этиленом 22015-16 ГОСТ 26996-86, полистирола ПСМ-151 ГОСТ 20282-86, сополимера стирола и акрилонитрила SAN CR-5381, полиэтилентерефталата ПЭТФ-Г-80 ГОСТ Р 51695-2000.
Массовое соотношение силикалита титана и гранул полимера выбирается в интервале от 1:1 до 1:5. Смесь нагревают до температуры плавления (140-280°С в зависимости от типа используемого полимера), перемешивают в течение от 30 до 60 минут и подвергают экструзии с получением гранул, сфер, колец или другой необходимой формы и необходимого размера.
Сущность изобретения иллюстрируется примерами.
ПРИМЕР 1
Порошок силикалита титана массой 1 г смешивали с 1 г гранул полиэтилена 271-70 ГОСТ 16338-85 (массовое соотношение 1:1), нагревали до температуры плавления полимера (140-150°С), перемешивали в течение 30 минут, экструдировали и получали капсулированный силикалит титана.
ПРИМЕР 2
Порошок силикалита титана массой 1 г смешивали с 5 г гранул полиэтилена 271-70 ГОСТ 16338-85 (массовое соотношение 1:5), нагревали до температуры плавления (140-150°С), перемешивали в течение 60 минут, экструдировали и получали капсулированный силикалит титана.
ПРИМЕР 3
Порошок силикалита титана массой 1 г смешивали с 1 г гранул полипропилена Baymod Type A-80 (Германия) (массовое соотношение 1:1), нагревали до температуры плавления полимера (270-280°С), перемешивали в течение 30 минут, экструдировали и получали капсулированный силикалит титана.
ПРИМЕР 4
Порошок силикалита титана массой 1 г смешивали с 5 г гранул полипропилена Baymod Type A-80 (массовое соотношение 1:5), нагревали до температуры плавления (270-280°С), перемешивали в течение 60 минут, экструдировали и получали капсулированный силикалит титана.
ПРИМЕР 5
Порошок силикалита титана массой 1 г смешивали с 1 г гранул сополимера пропилена с этиленом 22015-16 ГОСТ 26996-86 (массовое соотношение 1:1), нагревали до температуры плавления полимера (200-210°С), перемешивали в течение 30 минут, экструдировали и получали капсулированный силикалит титана.
ПРИМЕР 6
Порошок силикалита титана массой 1 г смешивали с 5 г гранул сополимера пропилена с этиленом 22015-16 ГОСТ 26996-86 (массовое соотношение 1:5), нагревали до температуры плавления (200-210°С), перемешивали в течение 60 минут, экструдировали и получали капсулированный силикалит титана.
ПРИМЕР 7
Порошок силикалита титана массой 1 г смешивали с 1 г гранул полистирола ПСМ-151 ГОСТ 20282-86 (массовое соотношение 1:1), нагревали до температуры плавления полимера (190-240°С), перемешивали в течение 30 минут, экструдировали и получали капсулированный силикалит титана.
ПРИМЕР 8
Порошок силикалита титана массой 1 г смешивали с 5 г гранул полистирола ПСМ-151 ГОСТ 20282-86 (массовое соотношение 1:5), нагревали до температуры плавления (190-240°С), перемешивали в течение 60 минут, экструдировали и получали капсулированный силикалит титана.
ПРИМЕР 9
Порошок силикалита титана массой 1 г смешивали с 1 г гранул сополимера стирола и акрилонитрила SAN CR-5381 (массовое соотношение 1:1), нагревали до температуры плавления полимера (100-115°С), перемешивали в течение 30 минут, экструдировали и получали капсулированный силикалит титана.
ПРИМЕР 10
Порошок силикалита титана массой 1 г смешивали с 5 г гранул сополимера стирола и акрилонитрила SAN CR-5381 (массовое соотношение 1:5), нагревали до температуры плавления (100-115°С), перемешивали в течение 60 минут, экструдировали и получали капсулированный силикалит титана.
ПРИМЕР 11
Порошок силикалита титана массой 1 г смешивали с 1 г гранул полиэтилентерефталата ПЭТФ-Г-80 ГОСТ Р 51695-2000 (массовое соотношение 1:1), нагревали до температуры плавления полимера (250-265°С), перемешивали в течение 30 минут, экструдировали и получали капсулированный силикалит титана.
ПРИМЕР 12
Порошок силикалита титана массой 1 г смешивали с 5 г гранул полиэтилентерефталата ПЭТФ-Г-80 ГОСТ Р 51695-2000 (массовое соотношение 1:5), нагревали до температуры плавления (250-265°С), перемешивали в течение 60 минут, экструдировали и получали капсулированный силикалит титана.
ПРИМЕР 13
В реактор с мешалкой и рубашкой, объемом 100 мл помещали капсулированный силикалит титана (50% TS-1), полученный по технологии, описанной в примерах 1, 3, 5, 7, 9, 11, н-пентан, 1-бутанол и 30%-ный раствор пероксида водорода в массовом отношении 1:1,05:100:2,75. Процесс проводили при температуре 60°С под давлением азота в течение 2 часов. Анализ реакционной массы проводился методом ГЖХ. Степень превращения н-пентана в продукты окисления составила 78,3-85,1%. В качестве продуктов процесса окисления обнаружены 2-пентанон, 3-пентанон, 2-пентанол, 3-пентанол.
Был проведен эксперимент при уменьшении массового соотношения силикалита титана и гранул полимера от 1:1 до 1:0,5, при этом силикалит титана невозможно подвергнуть капсулированию. При увеличении массового соотношения силикалита титана и гранул полимера от 1:5 до 1:10 наблюдается уменьшение степени превращения н-пентана в продукты окисления в условиях, описанных в примере 13, до 55%.
Кроме того, приняв массовое соотношение силикалита титана и гранул полимера 1:2,5, варьировали время перемешивания. При времени перемешивания менее 30 минут наблюдается незначительное уменьшение (на 2-4%) степени превращения н-пентана в продукты окисления в условиях, описанных в примере 11. При времени перемешивания более 60 минут изменения степени превращения н-пентана в продукты окисления в условиях, описанных в примере 11, не происходит.
Использование данного изобретения позволяет получать катализатор, устойчивый в условиях окисления органических соединений водными растворами пероксида водорода, имеющий высокую каталитическую активность в процессах окисления органических соединений, а также позволяющий проводить многократную регенерацию без снижения каталитической активности.

Claims (1)

  1. Способ капсулирования силикалита титана в полимерной матрице, включающий смешение гранул полимера с порошком силикалита титана, отличающийся тем, что порошок силикалита титана и гранулы полимера, взятые в массовом соотношении от 1:1 до 1:5, нагревают до температуры плавления полимера, перемешивают в течение 30-60 мин и экструдируют с получением гранул необходимой формы и размера.
RU2011106686/04A 2011-02-22 2011-02-22 Способ капсулирования силикалита титана в полимерной матрице RU2458739C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011106686/04A RU2458739C1 (ru) 2011-02-22 2011-02-22 Способ капсулирования силикалита титана в полимерной матрице

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011106686/04A RU2458739C1 (ru) 2011-02-22 2011-02-22 Способ капсулирования силикалита титана в полимерной матрице

Publications (1)

Publication Number Publication Date
RU2458739C1 true RU2458739C1 (ru) 2012-08-20

Family

ID=46936555

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011106686/04A RU2458739C1 (ru) 2011-02-22 2011-02-22 Способ капсулирования силикалита титана в полимерной матрице

Country Status (1)

Country Link
RU (1) RU2458739C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2523547C1 (ru) * 2013-05-15 2014-07-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Нижегородский государственный технический университет им. Р.Е. Алексеева" НГТУ Способ капсулирования силикалита титана в полимерной матрице

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6958405B2 (en) * 2004-03-09 2005-10-25 Arco Chemical Technology, L.P. Polymer-encapsulated titanium zeolites for oxidation reactions

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6958405B2 (en) * 2004-03-09 2005-10-25 Arco Chemical Technology, L.P. Polymer-encapsulated titanium zeolites for oxidation reactions

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2523547C1 (ru) * 2013-05-15 2014-07-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Нижегородский государственный технический университет им. Р.Е. Алексеева" НГТУ Способ капсулирования силикалита титана в полимерной матрице

Similar Documents

Publication Publication Date Title
Zhang et al. Enantioselective catalysis over chiral imidazolidin‐4‐one immobilized on siliceous and polymer‐coated mesocellular foams
JP6436495B2 (ja) 多孔質材料上に堆積させた寸法の小さい分子篩結晶を含む触媒組成物
RU2469792C2 (ru) Способ приготовления кремнеалюмофосфатных (sapo) молекулярных сит, катализаторы, содержащие упомянутые сита, и способы каталитической дегидратации с использованием упомянутых катализаторов
CN103842079B (zh) 包括磷改性沸石的催化剂在醇脱水工艺中的用途
JP2015506832A (ja) アルキル化反応のための担持されたナノ粒子ゼオライト触媒
CN110003468A (zh) 一种共价三嗪框架聚合物、其制备方法和应用
CN101326007A (zh) 包含微孔材料和至少一种含硅粘合剂的成形体、其制备方法和其尤其是在甲胺连续合成法中作为催化剂的用途
KR100921185B1 (ko) 다공성 실리카의 제조방법
CN110586182A (zh) 一种贵金属纳米粒子封装的中空多孔聚合物纳米球复合材料及其合成和应用
CN101045214A (zh) 制备丙烯环氧化催化剂的方法
Guo et al. Catalytic conversion of CO 2 into propylene carbonate in a continuous fixed bed reactor by immobilized ionic liquids
JPS6230205B2 (ru)
RU2458739C1 (ru) Способ капсулирования силикалита титана в полимерной матрице
US9006303B2 (en) Mesoporous polymer colloids
JP7023382B2 (ja) 軽質オレフィン製造用触媒、その製造方法、およびこれを用いて軽質オレフィンを製造する方法
CN115805083A (zh) 无机固体硅基磺酸作为催化剂的用途
BR122020007784B1 (pt) Material zeolítico compreendendo monocristais zeolíticos
Lin et al. Diverse supports for immobilization of catalysts in continuous flow reactors
CN108698017B (zh) 挥发性有机化合物吸附剂和共混有挥发性有机化合物吸附剂的树脂组合物
Bashti et al. Biginelli Multicomponent Condensation Reaction Promoted by 4, 4ʹ-Bipyridinium Dichloride Ordered Mesoporous Silica Nanocomposite under Solvent Free Conditions
WO2009062742A2 (en) Porous solid acid catalysts, methods of manufacturing the same, and methods of manufacturing organics molecules using the same
CN106554432B (zh) 球形沸石介孔复合材料和负载型催化剂及其制备方法和应用以及烯烃聚合的方法
JP6641705B2 (ja) プロピレン及び直鎖ブテンの製造方法
Chikh et al. Polymerization of pyrrole with 4-hydroxybenzaldehyde over Al-MCM-41 mesoporous aluminosilicate materials
RU2523547C1 (ru) Способ капсулирования силикалита титана в полимерной матрице

Legal Events

Date Code Title Description
QB4A Licence on use of patent

Free format text: LICENCE

Effective date: 20140723

MM4A The patent is invalid due to non-payment of fees

Effective date: 20190223