RU2456711C1 - Полупроводниковый светоизлучающий элемент - Google Patents

Полупроводниковый светоизлучающий элемент Download PDF

Info

Publication number
RU2456711C1
RU2456711C1 RU2010147338/28A RU2010147338A RU2456711C1 RU 2456711 C1 RU2456711 C1 RU 2456711C1 RU 2010147338/28 A RU2010147338/28 A RU 2010147338/28A RU 2010147338 A RU2010147338 A RU 2010147338A RU 2456711 C1 RU2456711 C1 RU 2456711C1
Authority
RU
Russia
Prior art keywords
layer
contact layer
emitting element
layers
substrate
Prior art date
Application number
RU2010147338/28A
Other languages
English (en)
Other versions
RU2010147338A (ru
Inventor
Юрий Николаевич Макаров (RU)
Юрий Николаевич Макаров
Сергей Юрьевич Курин (RU)
Сергей Юрьевич Курин
Хелава Хейкки (US)
Хелава Хейкки
Татьяна Юрьевна Чемекова (RU)
Татьяна Юрьевна Чемекова
Original Assignee
Общество с ограниченной ответственностью "Галлий-Н"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Галлий-Н" filed Critical Общество с ограниченной ответственностью "Галлий-Н"
Priority to RU2010147338/28A priority Critical patent/RU2456711C1/ru
Publication of RU2010147338A publication Critical patent/RU2010147338A/ru
Application granted granted Critical
Publication of RU2456711C1 publication Critical patent/RU2456711C1/ru

Links

Images

Landscapes

  • Led Devices (AREA)

Abstract

Полупроводниковый светоизлучающий элемент содержит подложку, а также выполненные из AlxGa1-xN n-контактный слой, активный слой, барьерный слой и р-контактный слой. Подложка выполнена из AlN, а р-контактный слой - из GaN. Между подложкой и n-контактным слоем расположена переходная структура, состоящая из одинаковых пар слоев, выполненных из беспримесного соединения AlxGa1-xN. Количество пар слоев 3÷6. Толщина слоев в слоях со стороны подложки - 300÷500 нм, а в слоях со стороны n-контактного слоя - 70÷140 нм. Содержания Al в слоях со стороны подложки - 30÷70%, а в слоях со стороны n-контактного слоя - 10÷60%. Изобретение направлено на увеличение выходной мощности полупроводникового светоизлучающего элемента в широком диапазоне длин волн излучения и увеличение его срока службы. 4 з.п. ф-лы, 1 табл., 1 ил.

Description

Изобретение относится к полупроводниковым приборам, специально предназначенным для светового излучения, в частности к светодиодам на основе нитридных соединений металлов III группы.
Известен полупроводниковый светоизлучающий элемент, структура которого последовательно включает подложку, выполненную из сапфира, буферный слой, выполненный из нитрида металла III группы, n-контактный слой, содержащий GaN, активный слой, выполненный из нитридного материала Alx1Iny1Ga1-xl-y1N, легированный как донорами, так и акцепторами, расположенный на активном слое слой p-типа, выполненный из AlxGa1-xN, и расположенный на слое p-типа p-контактный слой, содержащий GaN легированный Mg. Вышеупомянутые слои образуют либо одностороннюю, либо двухстороннюю гетероструктуру (Patent US 6005258 «Light-emitting semiconductor device using group III nitrogen compound having emission layer doped with donor and acceptor impurities», filled: Feb.26, 1997, Date of Patent Dec.21, 1999, IPC: H01L 29/06).
В данной конструкции для повышения внутренней квантовой эффективности, обуславливающей уровень мощности светоизлучающего элемента, используется либо легирование активного слоя как донорами, так и акцепторами, либо замена односторонней структуры двусторонней.
Однако такой светоизлучающий элемент пригоден, в первую очередь, для генерации излучения с длиной волны 350 нм и более. В более коротковолновом диапазоне внутренняя эффективность излучения известного светоизлучающего элемента резко деградирует.
Наиболее существенными факторами, определяющими эффективность излучения, являются ограничение носителей в активном слое и подавление потенциальных барьеров, связанных с поляризационными зарядами, возникающими на интерфейсах со скачкообразным изменением состава. В рассматриваемом известном светоизлучающем элементе ограничение носителей в пределах активного слоя недостаточно. В результате инжектируемые дырки могут свободно приникать в n-контактный слой, а электроны в p-контактный слой, где они рекомбинируют преимущественно безизлучательно, приводя к резкому снижению внутренней эффективности.
Известен также полупроводниковый светоизлучающий элемент, структура которого последовательно включает подложку, выполненные из AlxGa1-xN n-контактный слой, активный слой, барьерный слой, расположенный между p-контактным слоем и активным слоем, в котором количество Al уменьшается по толщине в направлении p-контактного слоя, а также выполненный из нитрида металла III группы p-контактный слой, легированный Mg (Российский патент RU 2262155, Полупроводниковый элемент, излучающий свет в ультрафиолетовом диапазоне», заявл. 14.09.2004, опубл. 10.10.2005, МПК: H01L 33/00).
Известный светоизлучающий элемент эффективен при работе в ультрафиолетовом диапазоне (280 нм и менее) и не позволяет получить высокий уровень мощности излучения в широком диапазоне излучения из-за повышенной плотности дефектов в эпитаксиальных слоях и, как следствие, неудовлетворительной морфологии при высоких уровнях легирования. Основной причиной неудовлетворительной морфологии слоев в известном устройстве является существенное различие параметров кристаллической решетки материала подложки, в частности сапфира, и выращиваемых на нем слоев нитридов металлов III группы.
Плотность дислокаций, обусловленных несоответствием параметров решетки между сапфиром и нитридами металлов третьей группы, может составлять порядка 108÷109/см2. Кроме того, сапфир имеет низкую теплопроводность, что также ограничивает уровень мощности светодиодной структуры за счет тепловых потерь. Применение буферного слоя, расположенного между подложкой и n-контактным слоем не позволяет значительно снизить плотность дефектов кристаллической решетки.
Эффективность известного светоизлучающего элемента ограничена также высоким контактным сопротивлением p-контактного слоя, выполненного из AlGaN. Снижение контактного сопротивления путем повышения уровня легирования магнием малоэффективно, так как магний при высокой плотности является легирующей примесью n-типа.
Задача создания изобретения - увеличение выходной мощности полупроводникового светоизлучающего элемента в широком диапазоне длин волн излучения, а также увеличение срока службы полупроводникового светоизлучающего элемента.
Поставленная задача решается за счет того, что в полупроводниковом светоизлучающем элементе, структура которого включает подложку, выполненные из AlxGa1-xN n-контактный слой, активный слой, барьерный слой, расположенный между p-контактным слоем и активным слоем, в котором количество Al уменьшается по толщине в направлении p-контактного слоя, а также выполненный из нитрида металла III группы p-контактный слой, легированный Mg, подложка выполнена из AlN, в качестве нитридного материала p-контактного слоя использован GaN, а между подложкой и n-контактным слоем расположена переходная структура, содержащая последовательно расположенные 3÷6 одинаковых пар слоев, выполненных из беспримесного соединения AlxGa1-xN, при этом в каждой из пар слой, расположенный со стороны подложки, выполнен толщиной 300÷500 нм и содержит 30÷70% Al, а слой, расположенный со стороны n-контактного слоя, выполнен толщиной 70÷140 нм и содержит 10÷60% Al.
Предпочтительно в качестве барьерного слоя, расположенного между p-контактным слоем и активным слоем, использовать структуру, состоящую из двух слоев, с содержанием Al 13÷68% и 5÷60%, при этом толщина слоя, прилегающего к активному слою, - 50÷100 нм, а толщина слоя, прилегающего к p-контактному слою, - 150÷200 нм.
Целесообразно, чтобы р-контактный слой был выполнен толщиной 40÷100 нм с концентрацией Mg не более 8·1019 см-3.
Целесообразно также, чтобы между n-контактным слоем и активным слоем был расположен легированный кремнием барьерный слой, выполненный из AlxGa1-xN.
Барьерный слой, расположенный между n-контактным слоем и активным слоем, может быть выполнен толщиной 200÷300 нм с содержанием Al 10÷65%.
Существует два способа рекомбинации электронов и дырок: излучательный и безизлучательный, при этом излучательная рекомбинация производит свет, безизлучательная рекомбинация является источником тепла. В случае, когда электрон рекомбинирует с дыркой в таком дефекте, как дислокация, рекомбинация является неизлучательной, т.е. имеют место большие потери мощности за счет теплового излучения.
Для обеспечения высокой эффективности полупроводникового светоизлучающего элемента в широком диапазоне длин волн излучения в предлагаемом техническом решении использованы нитридные соединения с высоким содержанием AlN. В этом случае наиболее существенными факторами, определяющими эффективность излучения, являются ограничение носителей в активном слое и подавление потенциальных барьеров, связанных с поляризационными зарядами, возникающими на интерфейсах со скачкообразным изменением состава.
Снижение контактного сопротивления p-контактного слоя в предлагаемом изобретении обеспечивается за счет использования в качестве нитридного материала p-контактного слоя GaN.
Поскольку дислокации являются основным источником безызлучательной рекомбинации в нитридных структурах, в соответствии с предлагаемым изобретением, подложка выполнена из AlN, благодаря чему имеет те же параметры кристаллической решетки, что и GaN, что позволяет уменьшить безызлучательную рекомбинацию.
Кроме того, за счет уменьшения плотности дислокаций, характерное время излучательной рекомбинации в нитридных полупроводниках больше по сравнению со временем неизлучательной рекомбинации. Малое характерное время излучательной рекомбинации означает, что электроны и дырки могут рекомбинировать, прежде чем произойдет взаимодействие с дислокацией.
В предлагаемом изобретении рассогласование кристаллической решетки подложки и сформированной на ней полупроводниковой структуры практически полностью исключается за счет наличия между подложкой и n-контактным слоем переходной структуры, содержащей последовательно расположенные пары слоев, выполненные из беспримесного соединения AlxGa1-xN.
При условии, что количество пар слоев в переходной структуре составляет менее трех, эффективность борьбы с прорастающими дислокациями снижается.
При количестве пар слоев более шести имеет место ухудшение растекания тока по структуре, увеличение сопротивления и рабочего напряжения светоизлучающей структуры, увеличение плотности дислокаций несоответствия на границах интерфейсов. Все это сопровождается снижением внешнего квантового выхода и, как следствие, снижением мощности светоизлучающей структуры в целом.
Чередующиеся слои с периодически изменяющимся содержанием Al препятствуют проникновению дислокаций в верхние слои структуры, заворачивая линии прорастающих дислокаций таким образом, что они оказываются расположенными вдоль интерфейса и, следовательно, прекращают свое дальнейшее движение.
В указанных слоях содержание алюминия должно быть достаточно высоким, чтобы обеспечить оптическую прозрачность для излучения (вывод излучения происходит, в том числе, и через подложку, выполненную из AlN, которая является оптически прозрачной для излучения). При прохождении через переходную структуру излучение не должно поглощаться.
Экспериментально установлено, что увеличение содержания Al в слоях переходной структуры, расположенных со стороны подложки, свыше 70% приводит к увеличению количества дефектов и ухудшению морфологии поверхности слоев переходной структуры, а также увеличивает сопротивление структуры в целом.
Уменьшение содержания Al в слоях переходной структуры, расположенных со стороны подложки, менее 30%, так же как и увеличение содержания Al в слоях переходной структуры, расположенных со стороны n-контактного слоя, более 60% приводит к тому, что барьеры переходной структуры становятся недостаточно «резкими», что может привести к прорастанию дислокаций в активный слой.
Уменьшение содержания Al в слоях, расположенных со стороны n-контактного слоя, менее 10% неэффективно с точки зрения борьбы с прорастающими дислокациями и создает предпосылки для поглощения излучения в самой структуре.
Важным фактором, ограничивающим выходную мощность светоизлучающих элементов, являются тепловые потери, что связано с большим содержанием Al в слоях. В предлагаемом изобретении эта проблема решается благодаря тому, что подложка выполнена из AlN. Подложки из AlN обладают высокой теплопроводностью, что объясняется простой атомной структурой, наличием сильной ковалентной связи и слабой ангармоничностью колебаний кристаллической решетки.
Охлаждение светоизлучающего элемента, выполненного на подложке из AlN, более эффективно, чем указанных выше известных светоизлучающих элементов, как за счет высокой теплопроводности подложки, так и за счет отсутствия буферного слоя, необходимого при использовании инородных подложек (например, сапфира), который характеризуется большим тепловым сопротивлением.
Кроме того, проблема снижения тепловых потерь в предлагаемом изобретении решена за счет тщательного подбора толщин слоев в структуре и оптимальных уровней легирования.
При условии, что толщины слоев переходной структуры превышают 500 нм и 140 нм, возрастает рабочее напряжение и удельное сопротивление светоизлучающего элемента, что приводит к разогреву светоизлучающего элемента, снижает его внутреннюю квантовую эффективность, а следовательно, и мощность излучения. Срок службы светоизлучающего элемента в этом случае тоже снижается.
Уменьшение толщины слоя переходной структуры, расположенного со стороны подложки менее 300 нм, а слоя, расположенного со стороны n-контактного слоя, менее 70 нм способствует проникновению дислокаций в активную область светоизлучающего элемента.
Выполнение барьерного слоя, расположенного между p-контактным слоем и активным слоем в форме структуры, состоящей из двух слоев, позволяет повысить эффективность светоизлучающего элемента за счет отражения излучения, обусловленного наличием границы между слоями.
Снижение количества Al в слое, прилегающем к p-контактному слою, менее 5%, а в слое, прилегающем к активному слою, менее 13% сопровождается увеличением тока утечки электронов и создает предпосылки для нежелательной диффузии Mg в активный слой.
С другой стороны, превышение максимальных указанных значений концентрации Al в рассматриваемых слоях приводит к снижению необходимой концентрации свободных носителей.
Уменьшение толщины слоев менее 50 нм и 150 нм соответственно приводит к ухудшению электронного ограничения и увеличению тока утечки электронов.
При условии, что толщины слоев превышают 100 нм и 200 нм наблюдается увеличение сопротивления без дополнительного улучшения электронного ограничения.
Толщина p-контактного слоя не должна быть больше 100 нм из-за повышения дефектности материала в процессе роста. С другой стороны, формирование омических контактов к контактным слоям p-типа требует дополнительного термического отжига. В процессе отжига металл электродов диффундирует в контактный слой. Чтобы избежать проникновения атомов металла в активные слои структуры светоизлучающего элемента, толщина p-контактного слоя не должна быть меньше 40 нм.
Уровень легирования p-контактного слоя должен быть максимально возможным, однако в случае, когда уровень легирования превышает 8·1019 см-3, имеет место самокомпенсация акцепторов за счет встраивания атомов Mg в междоузлия GaN, что затрудняет получение p-типа проводимости.
Концентрация Al в барьерном слое, расположенном между n-контактным слоем и активным слоем, 10÷65% при толщине слоя 200÷300 нм является достаточной для обеспечения эффективного ограничения дырок в активном слое.
При содержании Al менее 10% эффективность ограничения дырок в активном слое снижается, при этом возрастает вероятность поглощения излучения в барьерном слое, что снижает эффективность светоизлучающего элемента в целом. Увеличение количества Al свыше 65% не обеспечивает дополнительного выигрыша в ограничении носителей и, как следствие, в квантовом выходе и приводит к ограничению количества свободных носителей.
Увеличение толщины легированного кремнием барьерного слоя, расположенного между n-контактным слоем и активным слоем, более 300 нм приводит к росту сопротивления и, как следствие, рабочего напряжения, а уменьшение толщины барьерного слоя снижает эффективность ограничения дырок в активном слое и увеличивает вероятность поглощения излучения в барьерном слое.
Сущность изобретения поясняется чертежом, где представлен полупроводниковый светоизлучающий элемент.
Полупроводниковый светоизлучающий элемент в конкретном исполнении во всех примерах последовательно включает:
- подложку 1, выполненную из AlN,
- переходную структуру 2, содержащую последовательно расположенные 3÷6 одинаковых пар слоев, выполненных из беспримесного соединения AlxGa1-xN,
- n-контактный слой 3, легированный кремнием,
- барьерный слой 4, выполненный из AlxGa1-xN,
- активный слой 5,
- барьерный слой 6, легированный кремнием, выполненный из AlxGa1-xN,
- p-контактный слой 7, выполненный из GaN.
В барьерном слое 6 количество Al уменьшается по толщине в направлении p-контактного слоя. В соответствии с изобретением предпочтительно выполнение барьерного слоя в форме структуры, состоящей из двух слоев, с содержанием Al 13÷68% и 5÷60%.
Три партии гетероструктур полупроводниковых светоизлучающих элементов по 20 шт. были изготовлены методом хлоридно-гидридной эпитаксии (HVPE). Характеристики изготовленных гетероструктур представлены в таблице 1.
Figure 00000001
Диаметр гетероструктур полупроводниковых светоизлучающих элементов для всех партий составлял 50,8 мм.
Отступ от края, уменьшающий полезную площадь гетероструктур, составлял не более 5 мм.
Отсутствие трещин и включений определяли с помощью оптического микроскопа «Leica ERGOLUX-200» (Германия), который был настроен и отрегулирован для изучения морфологии поверхностей.
Для определения диапазона длин волн излучения и радиометрических характеристик гетероструктур использовали оптометр UDT S3 70 (UDT Instruments, USA) и пакет компьютерных программ «Ocean Optics».
Партия 1: диапазон длин волн излучения 260÷280 нм.
Партия 2: диапазон длин волн излучения 300÷320 нм.
Партия 3: диапазон длин волн излучения 355÷365 нм.
Плотность проникающих дислокаций определяли с помощью атомно-силового микроскопа Dimension 3100 (фирмы «Veeco Instruments)), США). Во всех образцах плотность проникающих дислокаций не превышала 1×107 см-2.
Полуширина кривых качания во всех образцах была определена с помощью ретнгеновского дифрактометра «Rigaku» и не превышала 250 угловых секунд.
Для определения рабочих характеристик светоизлучающих элементов были вырезаны элементы с квадратным сечением излучающей поверхности 0,3×0,3 мм по 20 шт. из каждой партии. На полученные элементы были нанесены соответственно p-контакты и n-контакты с целью получения чипов. Чипы были установлены в специально разработанный экспериментальный стенд, на котором осуществляли испытания чипов в рабочем режиме. На контакты подавали напряжение и осуществляли измерения их рабочих параметров.
Рабочее напряжение чипов в пределах 3.0÷3.8 В. Удельная мощность на единицу площади составляла 16÷18 мВт/мм2 (партия 1), 22÷24 мВт/мм2 (партия 2), 32÷36 мВт/мм2 (партия 3).
Срок службы не менее 5000 часов. Таким образом, применение предлагаемого изобретения позволяет увеличить выходную мощность полупроводникового светоизлучающего элемента в широком диапазоне длин волн излучения при одновременном увеличении срока службы.

Claims (5)

1. Полупроводниковый светоизлучающий элемент, структура которого включает подложку, выполненные из AlxGa1-xN n-контактный слой, активный слой, легированный магнием барьерный слой, расположенный между р-контактным слоем и активным слоем, в котором количество Al уменьшается по толщине в направлении р-контактного слоя, а также выполненный из нитрида металла III группы легированный Mg p-контактный слой, отличающийся тем, что подложка выполнена из AlN, в качестве нитридного материала р-контактного слоя использован GaN, a между подложкой и n-контактным слоем расположена переходная структура, содержащая последовательно расположенные 3÷6 одинаковых пар слоев, выполненных из беспримесного соединения AlxGa1-xN, при этом в каждой из пар слой, расположенный со стороны подложки, выполнен толщиной 300÷500 нм и содержит 30÷70% Al, а слой, расположенный со стороны n-контактного слоя, выполнен толщиной 70÷140 нм и содержит 10÷60% Al.
2. Полупроводниковый светоизлучающий элемент по п.1, отличающийся тем, что барьерный слой, расположенный между р-контактным слоем и активным слоем, выполнен в форме структуры, состоящей из двух слоев, с содержанием Al 13÷68% и 5÷60%, при этом толщина слоя, прилегающего к активному слою, составляет 50÷100 нм, а толщина слоя, прилегающего к р-контактному слою, составляет 150÷200 нм.
3. Полупроводниковый светоизлучающий элемент по п.1, отличающийся тем, что р-контактный слой выполнен толщиной 40÷100 нм с концентрацией Mg не более 8·1019 см-3.
4. Полупроводниковый светоизлучающий элемент по п.1, отличающийся тем, что между n-контактным слоем и активным слоем расположен легированный кремнием барьерный слой, выполненный из AlxGa1-xN.
5. Полупроводниковый светоизлучающий элемент по п.1 или 4, отличающийся тем, что барьерный слой, расположенный между n-контактным слоем и активным слоем, выполнен толщиной 200÷300 нм с содержанием Al 10÷65%.
RU2010147338/28A 2010-11-11 2010-11-11 Полупроводниковый светоизлучающий элемент RU2456711C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010147338/28A RU2456711C1 (ru) 2010-11-11 2010-11-11 Полупроводниковый светоизлучающий элемент

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010147338/28A RU2456711C1 (ru) 2010-11-11 2010-11-11 Полупроводниковый светоизлучающий элемент

Publications (2)

Publication Number Publication Date
RU2010147338A RU2010147338A (ru) 2012-05-20
RU2456711C1 true RU2456711C1 (ru) 2012-07-20

Family

ID=46230383

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010147338/28A RU2456711C1 (ru) 2010-11-11 2010-11-11 Полупроводниковый светоизлучающий элемент

Country Status (1)

Country Link
RU (1) RU2456711C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0772249A2 (en) * 1995-11-06 1997-05-07 Nichia Chemical Industries, Ltd. Nitride semiconductor device
US5739554A (en) * 1995-05-08 1998-04-14 Cree Research, Inc. Double heterojunction light emitting diode with gallium nitride active layer
US6005258A (en) * 1994-03-22 1999-12-21 Toyoda Gosei Co., Ltd. Light-emitting semiconductor device using group III Nitrogen compound having emission layer doped with donor and acceptor impurities
RU2262156C1 (ru) * 2004-09-14 2005-10-10 Закрытое акционерное общество "Нитридные источники света" Полупроводниковый элемент, излучающий свет в ультрафиолетовом диапазоне
US7537950B2 (en) * 2004-12-06 2009-05-26 Sensor Electronic Technology, Inc. Nitride-based light emitting heterostructure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6005258A (en) * 1994-03-22 1999-12-21 Toyoda Gosei Co., Ltd. Light-emitting semiconductor device using group III Nitrogen compound having emission layer doped with donor and acceptor impurities
US5739554A (en) * 1995-05-08 1998-04-14 Cree Research, Inc. Double heterojunction light emitting diode with gallium nitride active layer
EP0772249A2 (en) * 1995-11-06 1997-05-07 Nichia Chemical Industries, Ltd. Nitride semiconductor device
RU2262156C1 (ru) * 2004-09-14 2005-10-10 Закрытое акционерное общество "Нитридные источники света" Полупроводниковый элемент, излучающий свет в ультрафиолетовом диапазоне
US7537950B2 (en) * 2004-12-06 2009-05-26 Sensor Electronic Technology, Inc. Nitride-based light emitting heterostructure

Also Published As

Publication number Publication date
RU2010147338A (ru) 2012-05-20

Similar Documents

Publication Publication Date Title
US8816321B2 (en) Nitride semiconductor light-emitting device and method for producing the same
US9985177B2 (en) Ultraviolet light emitting devices and methods of fabrication
JP6896708B2 (ja) 2次元正孔ガスを組み込んだ紫外線発光デバイス
US9324908B2 (en) Nitride semiconductor light-emitting element
US9620671B2 (en) Nitride semiconductor light emitting element and method for manufacturing same
US6881602B2 (en) Gallium nitride-based semiconductor light emitting device and method
US8093606B2 (en) Nitride semiconductor light emitting device
US7294867B2 (en) Semiconductor light generating device
US9184344B2 (en) Lighting-emitting device with nanostructured layer and method for fabricating the same
JP3614070B2 (ja) 窒化物半導体発光ダイオード
JPWO2010113405A1 (ja) 窒化物系半導体素子およびその製造方法
US9318645B2 (en) Nitride semiconductor light-emitting element
TWI321363B (en) Iii-nitride light emitting device with p-type active layer
WO2015174925A1 (en) Light-emitting device and method of forming the same
US20130234106A1 (en) Semiconductor light-emitting device
JP5082444B2 (ja) 窒化物半導体発光素子
JP2008130878A (ja) 窒化物半導体発光素子
KR20080077212A (ko) 산화물 반도체 발광 소자
TWI825984B (zh) 氮化物半導體發光元件
JP2012502497A (ja) 3族窒化物半導体発光素子
TWI567877B (zh) Manufacturing method of nitride semiconductor device
RU2456711C1 (ru) Полупроводниковый светоизлучающий элемент
US8878213B2 (en) Semiconductor light emitting device
Stephan et al. Influence of Mg doping profile on the electroluminescence properties of GaInN multiple-quantum-well light-emitting diodes
KR100918830B1 (ko) 수직구조 질화갈륨계 발광다이오드 소자 및 그 제조방법

Legal Events

Date Code Title Description
QB4A Licence on use of patent

Free format text: PLEDGE

Effective date: 20140326

MM4A The patent is invalid due to non-payment of fees

Effective date: 20171112