RU2455068C2 - Катализатор, способ его приготовления и способ получения синтез-газа из синтетических углеводородных топлив - Google Patents

Катализатор, способ его приготовления и способ получения синтез-газа из синтетических углеводородных топлив Download PDF

Info

Publication number
RU2455068C2
RU2455068C2 RU2010135826/04A RU2010135826A RU2455068C2 RU 2455068 C2 RU2455068 C2 RU 2455068C2 RU 2010135826/04 A RU2010135826/04 A RU 2010135826/04A RU 2010135826 A RU2010135826 A RU 2010135826A RU 2455068 C2 RU2455068 C2 RU 2455068C2
Authority
RU
Russia
Prior art keywords
catalyst
oxide
methanol
chromium
copper
Prior art date
Application number
RU2010135826/04A
Other languages
English (en)
Other versions
RU2010135826A (ru
Inventor
Виктор Викторович Киреенков (RU)
Виктор Викторович Киреенков
Николай Алексеевич Кузин (RU)
Николай Алексеевич Кузин
Юрий Иванович Амосов (RU)
Юрий Иванович Амосов
Валерий Александрович Кириллов (RU)
Валерий Александрович Кириллов
Original Assignee
Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации filed Critical Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации
Priority to RU2010135826/04A priority Critical patent/RU2455068C2/ru
Publication of RU2010135826A publication Critical patent/RU2010135826A/ru
Application granted granted Critical
Publication of RU2455068C2 publication Critical patent/RU2455068C2/ru

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Изобретение относится к катализаторам паровой конверсии синтетических топлив. Описан катализатор получения синтез-газа паровой конверсией синтетических углеводородных топлив, преимущественно метанола, характеризующийся тем, что он представляет собой каталитический структурированный блок с системой газораспределения, состоящий из чередующихся гофрированных и плоских каталитически активных лент, образующих каналы, катализатор содержит в качестве активных компонентов соединения меди, цинка, хрома и алюминия в следующих количествах, мас.%: оксид меди 5-15, оксид хрома 0,4-2,6, оксид цинка 3-16 и оксид алюминия 2-8, армированный металлопористый носитель - остальное до 100%. Описан способ приготовления указанного выше катализатора нанесением активных компонентов на носитель путем пропитки жаростойкого армированного металлопористого носителя раствором солей меди, хрома, цинка и алюминия, сушкой и последующей прокалкой при 400-450°C, с последующим нарезанием каталитически активных лент из полученного армированного катализатора и образованием катализатора, представляющего собой каталитический структурированный блок с системой газораспределения, состоящий из чередующихся гофрированных и плоских каталитически активных лент, образующих каналы. Описан способ получения синтез-газа паровой конверсией метанола с использованием описанного выше катализатора. Технический результат - повышение производительности процесса получения синтез-газа. 3 н. и 4 з.п. ф-лы, 1 табл., 4 пр.

Description

Изобретение относится к катализаторам паровой конверсии синтетических топлив, преимущественно метанола, для получения синтез-газа. Синтез-газ может быть использован в химических производствах, для сжигания в каталитических тепловых установках, в водородной энергетике, в том числе - в топливных элементах (ТЭ).
Для получения водорода в качестве первой стадии процесса обычно используется паровой или автотермический риформинг, в результате которого из метанола или иных видов топлив получается синтез-газ. Паровая конверсия метанола в сравнении с иными видами риформинга обеспечивает максимальный выход водорода (около 70-74%) и потому может рассматриваться как одна из приоритетных. Метанол также представляет значительный интерес из-за доступности сырья и относительно низкой температуры проведения процесса паровой конверсии. Однако для осуществления эндотермической реакции паровой конверсии метанола с целью получения синтез-газа необходим подвод тепла в зону реакции от внешнего источника. В настоящее время для проведения реакции паровой конверсии используются трубчатые аппараты с неподвижным слоем катализатора. При этом производительность такого реактора с неподвижным слоем катализатора зависит не только от активности используемого катализатора, но и от интенсивности передачи тепла через стенку аппарата и радиальной теплопроводности слоя зерен. Коэффициенты теплообмена через стенку аппарата и радиальная теплопроводность слоя определяются размерами зерна катализатора и линейной скоростью газа в реакторе и, таким образом, возможности их увеличения ограничены. В связи с этим для снижения этих тепловых сопротивлений и повышения производительности единицы объема реактора необходима разработка новых подходов в организации процесса.
Изобретение решает задачу эффективной генерации водородсодержащего газа путем паровой конверсии синтетических топлив, преимущественно метанола, для использования в энергоустановках различного типа.
Поскольку паровая конверсия является эндотермическим процессом, то для ее осуществления необходим подвод тепла в зону реакции. Поэтому решение данной проблемы может быть найдено в тепловом сопряжении эндотермической реакции паровой конверсии метанола и каталитическом окислении, например, водородсодержащего анодного газа, остающегося после топливной батареи (S.Nagano et al., 2002; L. Pan and S.Wang, 2005; J.Lattner and M. Harold, 2005; W. Cao, 2006), либо исходного углеводородного газа.
Высокая теплопроводность структурированного металлопористого катализатора и металлической стенки, практическое отсутствие пространственной разделенности зон реакций могут обеспечить необходимую сопряженность по теплу данных реакций. Такой способ проведения процесса позволяет создать устройство, обладающее преимуществами как существующих вариантов парового риформера (высокий выход водорода), так и автотермических устройств (малая масса и размеры, незначительное гидравлическое сопротивление, малая инерционность). В нашем случае устройство состоит из двух каталитических блоков, сопряженных по теплу. Первый блок состоит из эндотермических каналов металлопористого катализатора паровой конверсии метанола, где следующие реакции имеют место быть:
CH4O+Н2O=CO2+3H2 - паровая конверсия метанола;
СО+H2O=СO22 - шифт-реакция;
CH4O=СО+2Н2 - разложение метанола.
Второй блок состоит из экзотермических каналов катализатора глубокого окисления исходного топлива, где протекают следующие экзотермические реакции:
CH4O+1.5O2=СO2+2Н2O - окисление метанола в момент запуска и нагрева;
Н2+0.5O22O - окисление водородсодержащего газа, остающегося после топливной батареи.
В настоящее время такие сопряженные по теплу реформеры представляют значительный интерес из-за развития высокотемпературных протонообменных топливных ячеек (НТ PEMFCs), предъявляющих высокие требования к низкой концентрации СО в синтез-газе (A.Reiche et al., 2006). Использование метанола для генерации водородсодержащего газа с использованием парового реформинга метанола с отношением Н2O/МеОН>1.3 позволяет получить концентрацию СО не более 3% в реакционных продуктах, которые могут быть использованы для подачи в НТ PEMFC батарею.
В предлагаемом изобретении металлопористый блочный катализатор паровой конверсии метанола позволяет обеспечивать сопряженность по теплу между эндотермической реакцией паровой конверсии метанола и экзотермической реакцией окисления метанола и/или анодного газа.
Поставленная задача решается использованием металлопористого блочного катализатора паровой конверсии метанола.
Катализатор получения синтез-газа паровой конверсией синтетических углеводородных топлив, преимущественно метанола, характеризующийся тем, что он представляет собой каталитический структурированный блок с системой газораспределения, состоящий из чередующихся гофрированных и плоских каталитически активных лент, образующих каналы.
В качестве металлопористого блочного катализатора паровой конверсии метанола используют армированный пористый материал, содержащий в качестве активных компонентов оксиды меди, цинка, хрома и алюминия. Использование металлопористого блочного катализатора на подложке из нержавеющей сетки позволяет обеспечить тепловое сопряжение между эндотермической и экзотермической зонами. Металлопористый блочный катализатор представляет собой монолит, образующийся из плоских и гофрированных каталитически активных лент, образующих канальчатую структуру слоя катализатора. Диаметр канала определяется размером гофра каталитически активной ленты.
Таким образом, образуется пористая структура, состоящая из крупных транспортных пор - каналов (за счет гофр) и мелких пор (за счет пористости сетки). Это создает благоприятные условия для передачи тепла от экзотермической реакции окисления метанола и/или анодного газа (водорода) в зону протекания эндотермической реакции паровой конверсии метанола.
Использование структурированного блочного катализатора на подложке из нержавеющей сетки позволяет обеспечить тепловое сопряжение между эндотермической и экзотермической зонами.
Анализ литературных и патентных данных показывает, что основное направление разработок катализаторов паровой конверсии метанола связано с низкотемпературными шифт-катализаторами (рабочий диапазон 200-275°С), которые включают в качестве активных компонентов нанесенные оксиды меди, цинка, хрома и алюминия. Недостатком данных катализаторов является их пироформность (способность самовоспламеняться и/или окисляться при контакте с воздухом) и дезактивация после продолжительной работы. Другое направление разработок катализаторов паровой конверсии метанола связано с высокотемпературными катализаторами синтеза метанола. Эти катализаторы не содержат оксидов меди и включают в качестве активного компонента нанесенные оксиды железа. Эти катализаторы менее пироформны и проявляют высокую активность в реакции паровой конверсии метанола. Недостатком данных катализаторов является более высокий температурный диапазон.
Наиболее близким к предлагаемому нами катализатору является катализатор получения синтез-газа паровой конверсией метанола [US 2006/0236607, A1, B01J 8/00, 26.10.2006]. Катализатор представляет собой неподвижный слой зерен катализатора. Неподвижный слой катализатора представляет собой зерна из оксида алюминия, с нанесенными активными компонентами из оксида меди, оксида хрома, оксида цинка и алюмината кальция. Процесс осуществляют при входной температуре смеси 500°С.
Недостатком данного катализатора является то, что производительность реактора с неподвижным слоем катализатора зависит не только от активности используемого катализатора, но и от интенсивности передачи тепла через стенку аппарата и радиальной теплопроводности слоя зерен. При этом коэффициенты теплообмена через стенку аппарата и радиальная теплопроводность слоя определяются размерами зерна катализатора и линейной скоростью газа в реакторе и, таким образом, возможности их увеличения ограничены. Кроме того, структура носителя обладает большим разбросом размеров пор и высоким гидравлическим сопротивлением. Он имеет высокую пористость и замкнутые поры, что снижает теплопроводность и удельную поверхность, а также механические характеристики.
Изобретение решает задачу приготовления эффективного катализатора получения синтез-газа паровой конверсией метанола.
Катализатор должен обладать следующими свойствами:
- высокой активностью и термостабильностью;
- теплопроводностью слоя катализатора на уровне 1-5 ватт/мК;
- возможностью использования катализатора в качестве структурных элементов конструкции реактора;
- низкой стоимостью;
- соответствием коэффициентов теплового расширения материала носителя и каталитически активного слоя;
- низким гидравлическим сопротивлением;
- хорошей адгезией слоя катализатора и металлической поверхности.
Задача решается катализатором получения синтез-газа паровой конверсией синтетических углеводородных топлив, преимущественно метанола, который представляет собой каталитический структурированный блок с системой газораспределения, состоящий из чередующихся гофрированных и плоских каталитически активных лент, образующих каналы.
Величина гофра составляет, ориентировочно, 2 мм.
В качестве катализатора паровой конверсии используют катализатор, содержащий в качестве активных компонентов соединения меди, цинка, хрома и алюминия.
Катализатор содержит указанные компоненты в следующих количествах, мас.%: оксид меди - 5-15, оксид хрома - 0,4-2,6, оксид цинка - 3-16 и оксид алюминия - 2-8, армированный металлопористый носитель - остальное до 100%.
Армированный металлопористый носитель может быть выполнен из нержавеющей тканой сетки полотняного переплетения марка проволоки 12Х18Н9, фехралевой проволоки Х23Ю5Т, Мегапир 200, ЕврофехральGSТ, ЕврофехральGS 23-5, ЕврофехральGS SY, из нержавеющей тканой сетки саржевого переплетения С 120 марка проволоки 12Х18Н9.
Задача решается также способом приготовления катализатора получения синтез-газа паровой конверсией синтетических углеводородных топлив, преимущественно, метанола, нанесением активного компонента на носитель, который готовят пропиткой носителя раствором солей меди, хрома, цинка и алюминия, сушкой и последующей прокалкой при 400-450°С, в качестве носителя используют жаростойкий армированный металлопористый носитель, при этом получают катализатор следующего состава, содержащий, мас.%: оксид меди - 5-15, оксид хрома - 0,4-2,6, оксид цинка - 3-16 и оксид алюминия - 2-8, армированный металлопористый носитель - остальное до 100%.
Армированный металлопористый носитель может быть выполнен из нержавеющей тканой сетки полотняного переплетения марка проволоки 12Х18Н9 согласно ГОСТ 3187-76, фехралевой проволоки Х23Ю5Т, Мегапир 200, ЕврофехральGSТ, ЕврофехральGS 23-5, ЕврофехральGS SY, из нержавеющей тканой сетки саржевого переплетения С120 марка проволоки 12Х18Н9.
Задача решается также способом получения синтез-газа паровой конверсией метанола, который проводят с использованием описанного выше катализатора. Содержание СО в продуктах реакции не более 3%.
Задача решается применением металлопористых монолитных катализаторов на жаростойких сетчатых носителях со значительной продольной и радиальной теплопроводностью армированного металлопористого носителя, обладающего высокой теплопроводностью, развитой поверхностью, регулярностью структуры и механической прочностью, низким гидравлическим сопротивлением.
В качестве носителя предлагается использовать жаростойкий армированный металлопористый носитель, изготовленный из сетчатых жаростойких сталей, на который наносят активные компоненты. Такая технология обеспечивает механическую прочность, теплопроводность, регулярность и однородность структуры, низкое гидравлическое сопротивление.
При этом появляется возможность путем выбора химического состава носителя обеспечить оптимальные характеристики для каждого конкретного применения.
Таким образом, задача решается разработкой катализатора для получения синтез-газа посредством паровой конверсии синтетического углеводородного кислородсодержащего топлива (метанола), представляющего собой металлопористый монолитный катализатор. Катализатор содержит оксид меди, оксид хрома, оксид цинка и оксид алюминия, нанесенные на жаростойкий армированный металлопористый носитель, в качестве которого можно применять армированную нержавеющую сетку, при содержании компонентов в катализаторе, мас.%: оксид меди - 5-15, оксид хрома - 0,4-2,6, оксид цинка - 3-16 и оксид алюминия - 2-8, армированный металлопористый носитель - остальное до 100%.
Жаростойкий армированный металлопористый носитель представляет собой сетчатый материал промышленного производства.
Задача решается также способом приготовления катализатора, который включает последовательность выполнения операций по усовершенствованной технологии.
1. Зачистка и отжиг армирующей сетки проводят при 600°C с тем, чтобы удалить защитное покрытие и улучшить формовочные свойства.
2. Приготовление раствора с заданным соотношением активных компонентов включает в себя растворение в воде азотнокислых солей меди, хрома, цинка и алюминия.
3. Осаждение активного компонента. Приготовленный носитель несколько раз пропитывают в водном растворе солей с заданным соотношением активных компонентов до тех пор, пока масса катализатора не увеличится на 20-25 мас.%. После каждого процесса пропитки образец сушат на воздухе и на короткий период нагревают до 400-450°С.
4. Термообработку проводят в течение 4-5 ч. Температура термообработки зависит от термостойкости активного компонента.
5. Нарезание лент армированного катализатора заданной ширины. Ленты гофрируют с помощью специально разработанных гофропрессов.
6. Приготовление катализаторов регулярной структуры.
На монолитный металлопористый катализатор на основе нержавеющей сетки (75-80 мас.%) наносят несколько раз водный раствор азотнокислых солей меди, хрома, цинка и алюминия, пока масса катализатора не увеличится на 15-20 мас.%. После каждого нанесения активных компонентов катализатор сушат и прокаливают при 400-450°С.
Жаростойкий металлопористый носитель может быть также выполнен из нержавеющей тканой сетки полотняного переплетения марка проволоки 12Х18Н9, фехралевой проволоки Х23Ю5Т, Мегапир 200, ЕврофехральGSТ, ЕврофехральGS 23-5, ЕврофехральGS SY, из нержавеющей тканой сетки саржевого переплетения С 120 марка проволоки 12Х18Н9 согласно ГОСТ 3826-82.
Задача решается также способом получения синтез-газа паровой конверсией метанола в присутствии вышеуказанного катализатора.
Полученный катализатор характеризуется высокой теплопроводностью и активностью в реакции паровой конверсии метанола при температуре смеси на выходе из катализатора 275-300°С. При этих условиях в продуктах реакции обеспечивается содержание H2 до 74% и СО около 1% (даны концентрации в сухой смеси).
Отличительными признаками предлагаемого металлопористого блочного катализатора являются:
1. Состав катализатора паровой конверсии метанола, содержащий мас.%: оксид меди - 5-15, оксид хрома - 0,4-2,6, оксид цинка - 3-16 и оксид алюминия - 2-8, армированный металлопористый носитель - остальное до 100%.
2. Армированный металлопористый носитель, может быть выполнен из нержавеющей тканой сетки полотняного переплетения марка проволоки 12Х18Н9, фехралевой проволоки Х23Ю5Т, Мегапир 200, ЕврофехральGSТ, ЕврофехральGS 23-5, ЕврофехральGS SY, из нержавеющей тканой сетки саржевого переплетения С 120 марка проволоки 12Х18Н9 согласно ГОСТ 3187-76.
Использование в качестве носителя армированного металлопористого носителя увеличивает теплопроводность катализатора, а также делает возможным изготовление структурированного (блочного) катализатора.
3. Металлопористый блочный катализатор позволяет обеспечить подачу тепла, необходимого для протекания эндотермической реакции паровой конверсии метанола, протекающей на катализаторе.
4. Металлопористый блочный катализатор обеспечивает содержание СО в продуктах паровой конверсии на уровне не более 3%, что делает возможным подачу генерируемого водородсодержащего газа на НТ PEMFC батарею.
Сущность изобретения иллюстрируется следующими примерами.
Пример 1
На катализатор паровой конверсии метанола, содержащий, мас.%: оксид меди - 5,2, оксид хрома - 2,6, оксид цинка - 3,2 и оксид алюминия - 5,0, армированный металлопористый носитель - остальное до 100%, подают 1,65 г/мин воднометанольной смеси Н2О/СН3ОН (моль)=1.3.
Содержание сухого синтез-газа, %:
водорода 72,9
монооксида углерода 2,8
диоксида углерода 22,7.
Пример 2
На катализатор паровой конверсии метанола, содержащий, мас.%: оксид меди - 7,6, оксид хрома - 0,4, оксид цинка - 5,8 и оксид алюминия - 6,2, армированный металлопористый носитель - остальное до 100%, подают 1,65 г/мин воднометанольной смеси Н2O/СН3ОН (моль)=1.3.
Содержание сухого синтез-газа, %:
водорода 73
монооксида углерода 2,6
диоксида углерода 22,9.
Пример 3
На катализатор паровой конверсии метанола, содержащий, мас.%: оксид меди - 5,2, оксид хрома - 2,6, оксид цинка - 3,2 и оксид алюминия - 5,0, армированный металлопористый носитель - остальное до 100%, подают 2,45 г/мин воднометанольной смеси Н2O/СН3ОН (моль)=2.5.
Содержание сухого синтез-газа, %:
водорода 71,2
монооксида углерода 1,6
диоксида углерода 22,3
Пример 4
На катализатор паровой конверсии метанола, содержащий, мас.%: оксид меди - 7,6, оксид хрома - 0,4, оксид цинка - 5,8 и оксид алюминия - 6,2, армированный металлопористый носитель - остальное до 100%, подают 2,45 г/мин воднометанольной смеси Н2O/СН3ОН (моль)=2.5.
Содержание сухого синтез-газа, %:
водорода 74
монооксида углерода 1,0
диоксида углерода 23,2.
Предлагаемое изобретение позволяет создать эффективный металлопористый блочный катализатор для генерации водородсодержащего газа путем паровой конверсии синтетических топлив (метанола). Катализатор обеспечивает генерацию синтез-газа с содержанием СО не более 3%.
Изобретение может быть использовано в водородной энергетике (в ТЭ НТ PEMFC).
Расход воднометанольной смеси на конверсию, г/мин Температура на выходе из катализатора, °С Состав продуктов конверсии, % Степень превращения
Н2 СО СO2
1 1.65(1.3:1) 303 72.9 2.8 22.7 98.5
2 1.65(1.3:1) 290 73 2.6 22.9 98.6
3 2.45(2.5:1) 305 71.2 1.6 22.3 98.8
4 2.45(2.5:1) 272 74.0 1.0 23.2 98.6

Claims (7)

1. Катализатор получения синтез-газа паровой конверсией синтетических углеводородных топлив, преимущественно метанола, характеризующийся тем, что он представляет собой каталитический структурированный блок с системой газораспределения, состоящий из чередующихся гофрированных и плоских каталитически активных лент, образующих каналы, катализатор содержит в качестве активных компонентов соединения меди, цинка, хрома и алюминия в следующих количествах, мас.%: оксид меди 5-15, оксид хрома 0,4-2,6, оксид цинка 3-16 и оксид алюминия 2-8, армированный металлопористый носитель остальное до 100%.
2. Катализатор по п.1, отличающийся тем, что величина гофра составляет ориентировочно 2 мм.
3. Катализатор п.1, отличающийся тем, что армированный металлопористый носитель может быть выполнен из нержавеющей тканой сетки полотняного переплетения марка проволоки 12Х18Н9, фехралевой проволоки Х23Ю5Т, Мегапир 200, ЕврофехральGSТ, ЕврофехральGS 23-5, ЕврофехральGS SY, из нержавеющей тканой сетки саржевого переплетения С 120 марка проволоки 12Х18Н9.
4. Способ приготовления катализатора получения синтез-газа паровой конверсией синтетических углеводородных топлив, преимущественно метанола, нанесением активного компонента на носитель, отличающийся тем, что катализатор готовят пропиткой носителя раствором солей меди, хрома, цинка и алюминия, сушкой и последующей прокалкой при 400-450°С, в качестве носителя используют жаростойкий армированный металлопористый носитель, при этом получают катализатор следующего состава, содержащий, мас.%: оксид меди 5-15, оксид хрома 0,4-2,6, оксид цинка 3-16 и оксид алюминия 2-8, армированный металлопористый носитель остальное до 100%, далее нарезают каталитически активные ленты из полученного армированного катализатора и образуют катализатор, представляющий собой каталитический структурированный блок с системой газораспределения, состоящий из чередующихся гофрированных и плоских каталитически активных лент, образующих каналы.
5. Способ по п.4, отличающийся тем, что армированный металлопористый носитель может быть выполнен из нержавеющей тканой сетки полотняного переплетения марка проволоки 12Х18Н9, фехралевой проволоки Х23Ю5Т, Мегапир 200, ЕврофехральGSТ, ЕврофехральGS 23-5, ЕврофехральGS SY, из нержавеющей тканой сетки саржевого переплетения С 120 марка проволоки 12Х18Н9.
6. Способ получения синтез-газа паровой конверсией метанола, отличающийся тем, что процесс проводят с использованием катализатора по любому из пп.1-3 или приготовленному по любому из пп.4 и 5.
7. Способ по п.6, отличающийся тем, что содержание СО в продуктах реакции составляет не более 3%.
RU2010135826/04A 2010-08-30 2010-08-30 Катализатор, способ его приготовления и способ получения синтез-газа из синтетических углеводородных топлив RU2455068C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010135826/04A RU2455068C2 (ru) 2010-08-30 2010-08-30 Катализатор, способ его приготовления и способ получения синтез-газа из синтетических углеводородных топлив

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010135826/04A RU2455068C2 (ru) 2010-08-30 2010-08-30 Катализатор, способ его приготовления и способ получения синтез-газа из синтетических углеводородных топлив

Publications (2)

Publication Number Publication Date
RU2010135826A RU2010135826A (ru) 2012-03-10
RU2455068C2 true RU2455068C2 (ru) 2012-07-10

Family

ID=46028698

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010135826/04A RU2455068C2 (ru) 2010-08-30 2010-08-30 Катализатор, способ его приготовления и способ получения синтез-газа из синтетических углеводородных топлив

Country Status (1)

Country Link
RU (1) RU2455068C2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2673527C2 (ru) * 2014-03-04 2018-11-27 Джонсон Мэтти Паблик Лимитед Компани Паровой риформинг
RU2673839C2 (ru) * 2014-03-04 2018-11-30 Джонсон Мэтти Паблик Лимитед Компани Каталитическая установка

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1093852A1 (en) * 1998-06-09 2001-04-25 Idemitsu Kosan Company Limited Catalyst and process for reforming hydrocarbon
RU2209378C2 (ru) * 2001-09-27 2003-07-27 Институт катализа им. Г.К. Борескова СО РАН Водогрейный котел и способ его работы
EP1533271A1 (en) * 2003-11-22 2005-05-25 Haldor Topsoe A/S Process for the preparation of hydrogen or synthesis gas
RU2269725C1 (ru) * 2004-08-10 2006-02-10 Институт Катализа Им. Г.К. Борескова Сибирского Отделения Российской Академии Наук Каталитический водогрейный котел
CN101185895A (zh) * 2006-11-17 2008-05-28 南化集团研究院 用于合成气合成低碳醇的催化剂及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1093852A1 (en) * 1998-06-09 2001-04-25 Idemitsu Kosan Company Limited Catalyst and process for reforming hydrocarbon
RU2209378C2 (ru) * 2001-09-27 2003-07-27 Институт катализа им. Г.К. Борескова СО РАН Водогрейный котел и способ его работы
EP1533271A1 (en) * 2003-11-22 2005-05-25 Haldor Topsoe A/S Process for the preparation of hydrogen or synthesis gas
RU2269725C1 (ru) * 2004-08-10 2006-02-10 Институт Катализа Им. Г.К. Борескова Сибирского Отделения Российской Академии Наук Каталитический водогрейный котел
CN101185895A (zh) * 2006-11-17 2008-05-28 南化集团研究院 用于合成气合成低碳醇的催化剂及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2673527C2 (ru) * 2014-03-04 2018-11-27 Джонсон Мэтти Паблик Лимитед Компани Паровой риформинг
RU2673839C2 (ru) * 2014-03-04 2018-11-30 Джонсон Мэтти Паблик Лимитед Компани Каталитическая установка

Also Published As

Publication number Publication date
RU2010135826A (ru) 2012-03-10

Similar Documents

Publication Publication Date Title
US6616909B1 (en) Method and apparatus for obtaining enhanced production rate of thermal chemical reactions
US7867299B2 (en) Methods, apparatus, and systems for producing hydrogen from a fuel
JP5105420B2 (ja) 希土類元素で変性された酸化物担体を有する水−ガスシフト貴金属触媒
BR112013020271B1 (pt) método para preparar um catalisador adequado para o uso em um processo de reforma a vapor
JP2012110894A (ja) 触媒、その製造方法、及び触媒を用いる反応
Solov’ev et al. Tri-reforming of methane on structured Ni-containing catalysts
KR101365787B1 (ko) Pt-Re 바이메탈 수성 가스 전환 촉매를 위한 공정조건
Li et al. SiC foam monolith catalyst for pressurized adiabatic methane reforming
JP2005529824A (ja) 水−気体転化用白金族金属触媒のメタン化活性の抑制
KR20140133077A (ko) Gtl 공정에서 메탄의 수증기/co2 복합 개질 방법
RU2455068C2 (ru) Катализатор, способ его приготовления и способ получения синтез-газа из синтетических углеводородных топлив
US9789471B2 (en) Monolith catalyst for carbon dioxide reforming reaction, preparation method for same, and preparation method for synthesis gas using same
JP2022502251A (ja) コアシェル構造を有するメタン酸化用触媒、その製造方法及びそれを用いたメタンの酸化方法
RU2491118C1 (ru) Способ приготовления катализатора для получения синтез-газа, катализатор, приготовленный по этому способу, и способ получения синтез-газа с его использованием
KR100976789B1 (ko) 수성가스 전환반응을 위한 촉매, 이의 제조 방법 및 이를 이용한 수성가스 전환 방법
KR102090749B1 (ko) 메탄의 산화이량화 반응용 촉매
KR100891903B1 (ko) 알루미나-지르코니아 복합산화물 담체에 담지된액화천연가스의 수증기 개질반응용 니켈 촉매 및 그제조방법
RU2493912C1 (ru) Способ приготовления катализатора для получения синтез-газа
KR102141105B1 (ko) 촉매 담지량 및 열충격시 박리 내구성이 향상된 촉매 담지용 금속 또는 세라믹 지지체의 제조 방법
RU2320408C1 (ru) Катализатор, способ его приготовления и способ получения синтез-газа
RU2248932C1 (ru) Катализатор (варианты), способ его приготовления (варианты) и способ получения синтез-газа
WO2017216420A1 (en) A method and reactor for catalytic partial oxidation of hydrocarbons
Marcos et al. Overall insights into sustainable utilization of methane and carbon dioxide in heterogeneous catalysis
KR20040020106A (ko) 고효율 합성가스 제조용 촉매를 이용한 합성가스의 제조공정
KR100293200B1 (ko) 메탄의이산화탄소개질에사용되는니켈계촉매및이를이용한메탄의이산화탄소개질방법

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20160831

NF4A Reinstatement of patent

Effective date: 20190520

PD4A Correction of name of patent owner
PC41 Official registration of the transfer of exclusive right

Effective date: 20210202