RU2446492C1 - Способ определения удельной активности радионуклидов в низкоактивных и сбросных минерализованных водах - Google Patents

Способ определения удельной активности радионуклидов в низкоактивных и сбросных минерализованных водах Download PDF

Info

Publication number
RU2446492C1
RU2446492C1 RU2011100720/07A RU2011100720A RU2446492C1 RU 2446492 C1 RU2446492 C1 RU 2446492C1 RU 2011100720/07 A RU2011100720/07 A RU 2011100720/07A RU 2011100720 A RU2011100720 A RU 2011100720A RU 2446492 C1 RU2446492 C1 RU 2446492C1
Authority
RU
Russia
Prior art keywords
radionuclides
sorbent
specific activity
activity
heavy metal
Prior art date
Application number
RU2011100720/07A
Other languages
English (en)
Inventor
Виталий Николаевич Епимахов (RU)
Виталий Николаевич Епимахов
Михаил Сергеевич Олейник (RU)
Михаил Сергеевич Олейник
Тимофей Витальевич Епимахов (RU)
Тимофей Витальевич Епимахов
Геннадий Григорьевич Леонтьев (RU)
Геннадий Григорьевич Леонтьев
Original Assignee
Федеральное государственное унитарное предприятие "Научно-исследовательский технологический институт имени А.П. Александрова"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие "Научно-исследовательский технологический институт имени А.П. Александрова" filed Critical Федеральное государственное унитарное предприятие "Научно-исследовательский технологический институт имени А.П. Александрова"
Priority to RU2011100720/07A priority Critical patent/RU2446492C1/ru
Application granted granted Critical
Publication of RU2446492C1 publication Critical patent/RU2446492C1/ru

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

Изобретение относится к области аналитической радиохимии и технологии обработки радиоактивных вод. Способ определения удельной активности радионуклидов в низкоактивных и сбросных минерализованных водах включает их фильтрование через слой сорбента, содержащего ферроцианид тяжелого металла, сульфид тяжелого металла и сорбент для стронция, с выделением на нем радионуклидов и их последующий спектрометрический анализ. В состав сорбента, содержащего ферроцианид тяжелого металла и сульфид тяжелого металла, дополнительно включают анионообменную смолу. Фильтрат, полученный после пропускания вод через трехкомпонентный сорбент, дополнительно фильтруют через слой сорбента для стронция, в качестве которого используют катионообменную смолу. Производят гамма-спектромерическое определение удельной активности радионуклидов, сорбированных на трехкомпонентном сорбенте. Определение удельной активности радионуклидов, сорбированных на катионообменной смоле, производят путем радиометрического измерения их суммарной β-активности в элюате. Изобретение направлено на повышение точности определения удельной активности γ-излучающих радионуклидов и упрощение определения удельной активности γ- и β-излучающих радионуклидов в низкоактивных и сбросных минерализованных водах. 1 з.п. ф-лы.

Description

Изобретение относится к области аналитической радиохимии и технологии обработки радиоактивных вод.
Определение удельной активности радионуклидов в низкоактивных и сбросных водах осуществляется путем их предварительного концентрирования (для повышения точности и достоверности измерений) с последующим гамма-спектрометрическим и бета-спектрометрическим измерением активности по отдельным радионуклидам. Необходимость бета-спектрометрического контроля в дополнение к гамма-спектрометрическому обуславливается тем, что один из основных и радиотоксичных радионуклидов в низкоактивных и сбросных водах 89,90Sr практически не обладает γ-излучением и может быть идентифицирован только по β-излучению. Точность такого контроля особенно важна для сбросных вод, содержание в которых отдельных радионуклидов может быть следовым, но должно учитываться в суммарном годовом сбросе. Максимальное концентрирование радионуклидов из низкоактивных вод (коэффициент сокращения объема ≥103) достигается при выведении их на сорбентах, из которых максимальной сорбционной емкостью по ионам практически всех радионуклидов обладают ионообменные смолы (полная емкость 3-5 мг-экв/г).
Простейший способ концентрирования радионуклидов из сбросных вод заключается в последовательном фильтровании их через слои катионообменной и анионообменной смол, что позволяет выводить на фильтрах радионуклиды как в катионной, так и в анионной форме. [Раузен Ф.В., Соловьева З.Я. Удаление радиоактивных изотопов из сбросных вод. - Атомная энергия, 1965, т.18, вып.6, с.623-626]. При этом гамма-спектрометрический анализ радионуклидов может производиться непосредственно на ионитах, а их хорошая обратимость позволяет элюировать радионуклиды кислотой из ионитов для последующего бета-спектрометрического анализа.
Недостатком этого способа является то, что для более полного извлечения радионуклидов из низкоактивных и сбросных вод часто приходится использовать двухстадийную сорбцию - последовательную фильтрацию через 4 слоя ионитов (катионит, анионит, катионит, анионит) [Раузен Ф.В., Соловьева З.Я. Удаление радиоактивных изотопов из сбросных вод. - Атомная энергия, 1965, т.18, вып.6, с.623-626], что ведет к увеличению количества фильтров и ионитов и, соответственно, к снижению в них концентрации радионуклидов, то есть к снижению достоверного контроля удельной активности.
Известен способ выведения радионуклидов из низкоактивных вод, заключающийся в фильтрации вод через смешанный (двухкомпонентный) слой катионообменных и анионообменных смол. Это приводит к резкому возрастанию элементарных актов ионирования и позволяет использовать для контроля удельной активности радионуклидов в низкоактивных и сбросных минерализованных водах одностадийную фильтрацию с одним ионитным фильтром смешанного действия [Патент Франции №1131909, МКИ СО2В, 1957].
Недостатком этого способа является низкая эффективность при извлечении радионуклидов из засоленных (более 0,2 г/л) вод, так как полное извлечение радионуклидов достигается только при полном обессоливании вод ионитами [Хоникевич А.А. Очистка радиоактивно-загрязненных вод. - М., Атомиздат, 1974, с.284]. Кроме того, в этом случае если на анионите легко выделяются гамма-спектрометрически определяемые γ-излучающие радионуклиды йода, хрома, молибдена и др., то на катионите выделяются как γ-излучающие радионуклиды цезия, кобальта, железа и др., так и β-излучающие радионуклиды стронция, что требует проведения и аппаратурно-сложного бета-спектрометрического анализа.
Известен способ концентрирования радионуклидов из низкоактивных минерализованных вод путем фильтрования их через слой смешанного сорбента, содержащего не менее двух соединений из группы: ферроцианид меди, нерастворимая соль бария (сульфат или карбонат) и(или) сульфид тяжелого металла (железа, меди или марганца). При этом степень минерализации (даже свыше 1 г/л) вод практически не влияет на эффективность выделения радионуклидов, и при введении корректирующего раствора сульфата натрия выводятся даже следовые количества радионуклидов цезия и стронция. [Патент Великобритании №1312852, МКИ G21F 9/12, опубл. 11.04.1973. Аналог - Патент РФ №468446, МКИ G21F 9/04, опубл. 25.04.1975]. Данный способ по своей сущности и достигаемому эффекту наиболее близок к заявляемому и выбран нами в качестве прототипа.
Недостатком данного способа является то, что таким смешанным сорбентом лишь частично выводятся и, соответственно, анализируются радионуклиды, находящиеся в анионной форме. Так, например, радионуклиды йода можно частично вывести лишь на сульфиде меди. Кроме того, в данном случае в одном слое сорбента в труднорастворимых формах оказываются γ-излучающие радионуклиды цезия и β-излучающие радионуклиды стронция, что требует извлечения из фильтра и последующего растворения кислотой всего объема смешанного сорбента с проведением как гамма- так и бета-спектрометрического анализа.
Задача, решаемая данным изобретением, заключается в повышении эффективности концентрирования и определения удельной активности в минерализованных водах радионуклидов йода и других радионуклидов, находящихся в анионной форме, а также раздельном выделении и определении радионуклидов цезия и стронция.
Техническим результатом изобретения является повышение точности определения удельной активности γ-излучающих радионуклидов и упрощение определения удельной активности γ- и β-излучающих радионуклидов в низкоактивных и сбросных минерализованных (свыше 1 г/л) водах.
Сущность изобретения заключается в том, что в способе определения удельной активности радионуклидов в низкоактивных и сбросных минерализованных водах, включающем их фильтрование через слой сорбента, содержащего ферроцианид тяжелого металла, сульфид тяжелого металла и сорбент для стронция, с выделением на нем радионуклидов и их последующий спектрометрический анализ, согласно изобретению в состав сорбента, содержащего ферроцианид тяжелого металла и сульфид тяжелого металла, дополнительно включают анионообменную смолу, а фильтрат, полученный после пропускания вод через трехкомпонентныи сорбент, дополнительно фильтруют через слой сорбента для стронция, в качестве которого используют катионообменную смолу, затем производят гамма-спектромерическое определение удельной активности радионуклидов, сорбированных на трехкомпонентном сорбенте, а определение удельной активности радионуклидов, сорбированных на катионообменной смоле, производят путем простого радиометрического измерения их суммарной β-активности. Сорбция γ-излучающих радионуклидов на трехкомпонентном фильтре отдельно от β-излучающего стронция повышает эффективность их концентрирования и, соответственно, точность определения удельной активности. Отдельные виды сорбентов в трехкомпонентном сорбенте могут располагаться в фильтре как в виде смеси, так и отдельными последовательными слоями без смешения. Причем в последнем случае при гамма-спектрометрическом анализе сорбированных на них радионуклидов повышается точность гамма-спектрометрического определения удельной активности отдельных γ-излучающих радионуклидов, сорбированных в каждом слое, и появляется возможность определять, в какой ионной форме эти радионуклиды находятся в воде. В то же время для катионообменной смолы существует возможность ее регенерации, т.е. элюирования сорбированных на ней радионуклидов с последующим простым радиометрическим определением их удельной суммарной β-активности (т.е. без бета-спектрометрии), что приводит к упрощению определения удельной активности γ- и β-излучающих радионуклидов.
По сравнению с известными способами, применяемыми для контроля удельной активности радионуклидов в низкоактивных и сбросных водах, использование согласно изобретению ионообменных смол обеспечивает эффективное концентрирование и определение удельной активности γ- и β-излучающих радионуклидов в минерализованных водах, что не следует явным образом из уровня техники, так как применение ионообменных смол при засоленности вод более 0,2 г/л неэффективно [Хоникевич А.А. Очистка радиоактивно-загрязненных вод. - М., Атомиздат, 1974, с.284] и, следовательно, заявляемый способ соответствует критерию изобретательского уровня.
Способ осуществляется следующим образом.
Низкоактивные или сбросные минерализованные воды пропускают через слой трехкомпонентного сорбента, включающего в свой состав сульфиды тяжелых металлов (никеля, кобальта, меди, цинка, марганца или железа), предпочтительнее FeS, ферроцианиды тяжелых металлов (никеля, кобальта, меди, цинка, марганца или железа), предпочтительнее ферроцианид кобальта-калия, и анионообменную смолу (анионит), предпочтительнее АВ-17-8 чс, предпочтительнее в равных массовых долях. При этом на многокомпонентном сорбенте выводятся радионуклиды активированных продуктов коррозии (т.е. железа, кобальта, марганца и др.) и цезия, а также радионуклиды, находящиеся в анионной форме, в том числе йода. Поскольку радионуклиды йода эффективно выводятся на анионите, то, в отличие от прототипа, в качестве тяжелых металлов в сульфидах и ферроцианидах могут использоваться не только медь, но и никель, цинк, марганец, железо, кобальт и т.д., обладающие не меньшей сорбционной эффективностью по цезию, рутению, кобальту и др. [Никифоров А.С., Куличенко В.В., Жихарев М.И. Обезвреживание жидких радиоактивных отходов. - М., Энергоатомиздат, 1985, с.36-37]. В то же время радионуклиды стронция практически полностью проходят в фильтрат. Затем фильтрат трехкомпонентного сорбента пропускают через слой катионита, предпочтительнее КУ-2-8 чс, на котором радионуклиды стронция, в отличие от цезия, эффективно сорбируются даже при значительной (свыше 1 г/л) минеаализации вод. Определение удельной активности γ-излучающих радионуклидов производят путем непосредственного гамма-слектрометрического анализа трехкомпонентного сорбента, а β-излучающих радионуклидов - путем радиометрического определения суммарной β-активности элюата (кислотного регенерата) катионитного фильтра.
Примеры конкретного выполнения.
Пример 1 (Аналог 1). Минерализованные (солесодержанием 4,5 г/л морские воды) сбросные воды, содержащие по 5·10-3 Бк/л 137Cs, 90Sr, 60Co, 131I, фильтровали с линейной скоростью 4 мл/мин·см2 через фильтры с высотой слоя по 20 мм последовательно расположенных катионита КУ-2-8 чс, анионита АВ-17-8 чс, катионита КУ-2-8 чс и анионита АВ-17-8 чс до их насыщения. Гамма-спектрометрический анализ ионитов показал выделение на сорбентах 137Cs~95%, 60Со~90%, 131I~90%. При элюировании HNO3 радионуклидов из катионитовых фильтров с последующим бета-спектрометрическим анализом было установлено, что выделено на сорбентах 90Sr~99%.
Пример 2 (Аналог). Отличается от примера 1 тем, что фильтрацию сбросных вод проводили через фильтр с высотой слоя 40 мм, представляющего собой смесь катионита КУ-2-8 чс и анионита АВ-17-8 чс, до их насыщения. Гамма-спектрометрический анализ ионитов показал выделение на сорбентах 137Cs~80%, 60Со~90%, 131I~90%. При элюировании HNO3 радионуклидов из катионитовых фильтров с последующим бета-спектрометрическим анализом было установлено, что выделено на сорбентах 90Sr~99%.
Пример 3 (Прототип). Отличается от примера 2 тем, что фильтрацию сбросных вод проводили через фильтр с высотой слоя 60 мм, представляющего собой смесь гранулированных в размерах ионитов сорбентов на основе сульфата бария, сульфида железа и ферроцианида меди, до их насыщения. Гамма-спектрометрический анализ ионитов показал выделение на сорбентах 137Cs~90%, 60Со~80%, 131I~20%. При элюировании HNO3 радионуклидов из катионитовых фильтров с последующим бета-спектрометрическим анализом было установлено, что выделено на сорбентах 90Sr~95%.
Пример 4 (Заявляемый способ). Отличается от примера 3 тем, что фильтрацию сбросных вод проводили через фильтр с высотой слоя 60 мм, представляющего собой смесь гранулированных в размерах ионита сорбентов на основе сульфида железа и ферроцианида кобальта-калия и анионита АВ-17-8 чс, а затем через слой высотой 20 мм катионита КУ-2-8 чс до их насыщения. Гамма-спектрометрический анализ ионитов показал выделение на сорбентах 137Cs~99%, 60Со~90%, 131I~90%. При элюировании HNO3 радионуклидов из катионитовых фильтров с последующим радиометрическим анализом было установлено, что выделено на сорбентах 90Sr~99%.
Пример 5 (Заявляемый способ). Отличается от примера 4 тем, что фильтрацию сбросных вод проводили через фильтр с высотой слоя 60 мм, представляющего собой раздельно размещенные слои гранулированных в размерах ионита сорбентов на основе сульфида железа, ферроцианида кобальта-калия и анионита АВ-17-8 чс, а затем через слой высотой 20 мм катионита КУ-2-8 чс до их насыщения. Гамма-спектрометрический анализ ионитов показал выделение на сорбентах 137Cs~99%, 60Со~95%, 131I~95%, причем 60Со выделялся на всех трех слоях сорбентов. При элюировании HNO3 радионуклидов из катионитовых фильтров с последующим радиометрическим анализом было установлено, что выделено на сорбентах 90Sr~99%.
Предлагаемый способ по сравнению с прототипом обеспечивает повышение эффективности концентрирования и определения удельной активности в минерализованных водах радионуклидов йода и других радионуклидов, находящихся в анионной форме, а также раздельное выделение и определение удельной активности радионуклидов цезия и стронция. При этом достигается упрощение определения удельной активности γ- и β-излучающих радионуклидов, так как радионуклиды стронция в отсутствие остальных радионуклидов, сорбированных на трехкомпонентном фильтре-сорбенте, контролируются путем простого радиометрического определения суммарной β-активности элюата катионита.
Предлагаемый способ является промышленно применимым, т.к. необходимые для его реализации сорбенты и реагенты для их получения выпускаются в промышленных масштабах.

Claims (2)

1. Способ определения удельной активности радионуклидов в низкоактивных и сбросных минерализованных водах, включающий их фильтрование через слой сорбента, содержащего ферроцианид тяжелого металла, сульфид тяжелого металла и сорбент для стронция, с выделением на нем радионуклидов и их последующий спектрометрический анализ, отличающийся тем, что в состав сорбента, содержащего ферроцианид тяжелого металла и сульфид тяжелого металла, дополнительно включают анионообменную смолу, а фильтрат, полученный после пропускания вод через трехкомпонентный сорбент, дополнительно фильтруют через слой сорбента для стронция, в качестве которого используют катионообменную смолу, затем производят гамма-спектромерическое определение удельной активности радионуклидов, сорбированных на трехкомпонентном сорбенте, а определение удельной активности радионуклидов, сорбированных на катионообменной смоле, производят путем радиометрического измерения их суммарной β-активности в элюате.
2. Способ по п.1, отличающийся тем, что отдельные виды сорбентов в трехкомпонентном сорбенте располагаются последовательными слоями без смешения.
RU2011100720/07A 2011-01-12 2011-01-12 Способ определения удельной активности радионуклидов в низкоактивных и сбросных минерализованных водах RU2446492C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011100720/07A RU2446492C1 (ru) 2011-01-12 2011-01-12 Способ определения удельной активности радионуклидов в низкоактивных и сбросных минерализованных водах

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011100720/07A RU2446492C1 (ru) 2011-01-12 2011-01-12 Способ определения удельной активности радионуклидов в низкоактивных и сбросных минерализованных водах

Publications (1)

Publication Number Publication Date
RU2446492C1 true RU2446492C1 (ru) 2012-03-27

Family

ID=46030988

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011100720/07A RU2446492C1 (ru) 2011-01-12 2011-01-12 Способ определения удельной активности радионуклидов в низкоактивных и сбросных минерализованных водах

Country Status (1)

Country Link
RU (1) RU2446492C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2524497C2 (ru) * 2012-07-17 2014-07-27 Общество с ограниченной ответственностью Научно-производственное предприятие "Эксорб" Способ извлечения радионуклидов из водных растворов
RU2672473C1 (ru) * 2017-10-17 2018-11-15 Общество с ограниченной ответственностью Научно-производственное предприятие "Эксорб" Способ определения содержания радионуклидов в растворах и устройство для его осуществления (варианты)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1312852A (en) * 1970-09-01 1973-04-11 Belgonucleaire Sa Decontamination processes for radio-active liquids
GB1412492A (en) * 1972-01-12 1975-11-05 Ceskoslovenska Komise Atom Process for purifying waste waters by sorption
RU2200994C2 (ru) * 2001-05-14 2003-03-20 Институт химии и технологии редких элементов и минерального сырья им. И.В.Тананаева Кольского научного центра РАН Способ очистки водных радиоактивных растворов от радионуклидов

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1312852A (en) * 1970-09-01 1973-04-11 Belgonucleaire Sa Decontamination processes for radio-active liquids
GB1412492A (en) * 1972-01-12 1975-11-05 Ceskoslovenska Komise Atom Process for purifying waste waters by sorption
RU2200994C2 (ru) * 2001-05-14 2003-03-20 Институт химии и технологии редких элементов и минерального сырья им. И.В.Тананаева Кольского научного центра РАН Способ очистки водных радиоактивных растворов от радионуклидов

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
НИКИФОРОВ А.С. и др. Обезвреживание жидких радиоактивных отходов. - М.: Энергоатомиздат, 1985, с.25-37. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2524497C2 (ru) * 2012-07-17 2014-07-27 Общество с ограниченной ответственностью Научно-производственное предприятие "Эксорб" Способ извлечения радионуклидов из водных растворов
RU2672473C1 (ru) * 2017-10-17 2018-11-15 Общество с ограниченной ответственностью Научно-производственное предприятие "Эксорб" Способ определения содержания радионуклидов в растворах и устройство для его осуществления (варианты)

Similar Documents

Publication Publication Date Title
Srivastava et al. Novel biomaterials: decontamination of toxic metals from wastewater
Vaaramaa et al. Removal of metals and anions from drinking water by ion exchange
Gaur Determination of Cs-137 in environmental water by ion-exchange chromatography
JP5841933B2 (ja) 新規吸着剤、その製造方法およびその使用
Rout et al. Enhanced removal of dissolved metal ions in radioactive effluents by flocculation
JP2014145687A (ja) 放射性ストロンチウム含有排水の処理装置
RU2446492C1 (ru) Способ определения удельной активности радионуклидов в низкоактивных и сбросных минерализованных водах
Kumar et al. Removal of cesium and strontium from acid solution using a composite of zirconium molybdate and zirconium tungstate
CN105617982A (zh) 一种去除放射性水中110mAg的无机吸附剂及其制备方法
Lehto et al. Soluble and particle-bound and 210Po 210Pb in groundwaters
Mishra et al. Biosorptive behaviour of rice hulls for Cs-134 from aqueous solutions: A radiotracer study
Kumar et al. Adsorptive and kinetic studies of resin for removal of Cs+ and Sr2+ from aqueous solution
Attallah et al. Selective removal of cesium using zirconium (IV) tungstate as an inorganic ion exchanger from aqueous solution
US20200377386A1 (en) Phospate recovery by acid retardation
RU2330340C9 (ru) Способ извлечения радионуклидов из водных растворов
Mishra et al. Inorganic ion-exchangers in radioactive waste management: Part XVI: Uptake of some metal phosphates (stannic and zirconium) for 134 Cs
Banerjee et al. Removal of radiocesium from low level radioactive effluents by hexacyanoferrate loaded synthetic zeolite: laboratory to pilot plant scale demonstration
Mishra et al. Biosorptive behavior of some dead biomasses in the removal of Sr (85+ 89) from aqueous solutions
JP2012225892A (ja) 溶液から放射性物質を除去する方法
JP6464475B2 (ja) 放射性ストロンチウムの分析方法
Kim et al. Development of an agent suited for adsorbing Cs-137 from ash and soil waste solutions
Harjula et al. Development of a selective cesium and strontium removal system for the JAERI Tokai-Mura site-laboratory tests
Barr et al. Americium separations from nitric acid process effluent streams
Izatt et al. The application of molecular recognition technology (MRT) in the nuclear power cycle: from uranium mining and refining to power plant waste separation and recovery, as well as element analysis and isotope purification 9075
Mishra et al. Biosorptive behavior of mango (Mangifera indica) and neem (Azadirachta indica) barks for 134 Cs from aqueous solutions: A radiotracer study