RU2443606C2 - Установка кондиционирования воздуха воздушного судна и способ управления работой этой установки - Google Patents

Установка кондиционирования воздуха воздушного судна и способ управления работой этой установки Download PDF

Info

Publication number
RU2443606C2
RU2443606C2 RU2009101941/11A RU2009101941A RU2443606C2 RU 2443606 C2 RU2443606 C2 RU 2443606C2 RU 2009101941/11 A RU2009101941/11 A RU 2009101941/11A RU 2009101941 A RU2009101941 A RU 2009101941A RU 2443606 C2 RU2443606 C2 RU 2443606C2
Authority
RU
Russia
Prior art keywords
air
compressor
fuel battery
aircraft
engine
Prior art date
Application number
RU2009101941/11A
Other languages
English (en)
Other versions
RU2009101941A (ru
Inventor
Гуйдо КЛЕВЕР (DE)
Гуйдо КЛЕВЕР
Original Assignee
Эйрбас Оперейшнз Гмбх
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Эйрбас Оперейшнз Гмбх filed Critical Эйрбас Оперейшнз Гмбх
Publication of RU2009101941A publication Critical patent/RU2009101941A/ru
Application granted granted Critical
Publication of RU2443606C2 publication Critical patent/RU2443606C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D13/00Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
    • B64D13/06Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D13/00Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
    • B64D13/06Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned
    • B64D2013/0603Environmental Control Systems
    • B64D2013/0618Environmental Control Systems with arrangements for reducing or managing bleed air, using another air source, e.g. ram air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D13/00Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
    • B64D13/06Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned
    • B64D2013/0603Environmental Control Systems
    • B64D2013/0644Environmental Control Systems including electric motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D41/00Power installations for auxiliary purposes
    • B64D2041/005Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/50On board measures aiming to increase energy efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pulmonology (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Fuel Cell (AREA)
  • Duct Arrangements (AREA)

Abstract

Группа изобретений относится к технике обработки воздуха на воздушных судах. Установка (10) кондиционирования воздуха воздушного судна включает в себя компрессор (18), двигатель (20), приводящий в действие компрессор (18) и топливную батарею (24). Топливная батарея (24) соединена через электрическую линию (26) непосредственно с блоком (22) управления, а блок (22) управления соединен через электрическую линию (28) с двигателем (20). Блок (22) управления непосредственно управляет двигателем (20) путем преобразования зависящего от нагрузки постоянного напряжения, вырабатываемого непосредственно топливной батареей (24), в соответствующие электрические управляющие сигналы и передачи указанных электрических управляющих сигналов через электрическую линию (28) в двигатель (20). Группа изобретений обеспечивает снабжение установки кондиционирования воздуха электрической энергией с повышенной надежностью и эффективностью. 2 н. и 14 з.п. ф-лы, 1 ил.

Description

Область техники, к которой относится изобретение
Настоящее изобретение относится к установке кондиционирования воздуха воздушного судна, которая включает в себя компрессор, а также двигатель, приводящий в действие компрессор. Кроме того, изобретение относится к способу управления работой такой установки.
Уровень техники
В настоящее время работа установки кондиционирования воздуха, предусмотренной на борту воздушного судна, обычно обеспечивается сжатым воздухом, при этом сжатый воздух либо забирается в виде воздуха, отбираемого от компрессора, соединенного с главным приводным агрегатом, либо вырабатывается компрессором. Если для выработки сжатого воздуха для установки кондиционирования воздуха воздушного судна используется компрессор с электрическим приводом, то электрическая энергия, требуемая для обеспечения питания компрессора, поставляется генераторами, которые приводятся в действие главными приводными агрегатами или вспомогательной газовой турбиной (вспомогательной силовой установкой, ВСУ).
В настоящее время для выработки электрической энергии, требуемой на борту воздушного судна, предпринимаются попытки использования топливной батареи вместо генераторов, приводимых в действие главными приводными агрегатами или вспомогательной турбиной. Однако для того, чтобы зависящее от нагрузки постоянное напряжение, вырабатываемое топливной батареей, могло использоваться большим количеством различных потребителей электроэнергии, снабжаемых электрической энергией через бортовую сеть, необходимо преобразовывать электрическую энергию, выработанную топливной батареей с помощью электрических преобразователей (например, преобразователей постоянный/переменный ток или преобразователей постоянный/постоянный ток), и подавать электрическую энергию через соответствующую систему шин (систему шин переменного тока или систему шин постоянного тока) к отдельным потребителям электроэнергии. Помимо этого необходимые электрические преобразователи создают перебои и помехи в электрической энергии, обеспечиваемой топливной батареей, вследствие чего требуется применение сетевых фильтров с тем, чтобы обеспечить при этом нормальное функционирование компонентов, чувствительных к таким перебоям и помехам. Однако каждое преобразование электрической энергии, вырабатываемой топливными батареями, создает потери, которые неблагоприятно влияют на эффективность общей системы. Кроме того, использование преобразователей и сетевых фильтров требует дополнительного пространства для их установки и в результате приводит к увеличению веса общей системы.
Раскрытие изобретения
Задача настоящего изобретения заключается в создании установки кондиционирования воздуха воздушного судна, которая снабжается электрической энергией надежным образом и с высокой эффективностью.
Для того чтобы решить эту задачу, установка кондиционирования воздуха по настоящему изобретению включает в себя компрессор и двигатель, приводящий в действие указанный компрессор. Кроме того, установка кондиционирования воздуха воздушного судна, соответствующая данному изобретению, включает в себя топливную батарею, которая соединяется непосредственно с блоком управления для управления двигателем, приводящим в действие компрессор, при этом блок управления выполнен с возможностью преобразования электрической энергии, вырабатываемой непосредственно топливной батареей, в соответствующие электрические управляющие сигналы для управления двигателем, приводящим в действие компрессор. При этом следует понимать, что под "непосредственным" соединением между топливной батареей и блоком управления для управления двигателем, приводящим в действие компрессор, подразумевается электрическое соединение без промежуточного соединения с отдельными электрическими преобразователями и сетевыми фильтрами. Аналогичным образом, следует понимать, что под электрической энергией, выработанной "непосредственно" топливной системой, подразумевается электрическая энергия, которая не подвергалась ни преобразованию с помощью отдельного электрического преобразователя, ни фильтрации через сетевой фильтр.
Другими словами, блок управления установки кондиционирования воздуха воздушного судна по настоящему изобретению выполнен таким образом, что может непосредственно использовать зависящее от нагрузки постоянное напряжение, вырабатываемое топливной батареей, и может преобразовывать его в соответствующие управляющие сигналы для управления двигателем, приводящим в действие компрессор. Предпочтительно, электрические управляющие сигналы, подаваемые блоком управления, адаптированы к конфигурации двигателя, приводящего в действие компрессор (двигателя переменного тока или двигателя постоянного тока). Таким образом, блок управления выполняет двойную функцию, а именно, с одной стороны, обеспечивает нужное управление двигателем, приводящим в действие компрессор, и вместе с тем обеспечивает снабжение двигателя, приводящего в действие компрессор, электрической энергией.
Установка кондиционирования воздуха воздушного судна по настоящему изобретению может обходиться без использования отдельных электрических преобразователей для преобразования зависящего от нагрузки постоянного напряжения, вырабатываемого топливной батареей, а также без использования сетевых фильтров для фильтрации перебоев и помех в электрической энергии, обеспечиваемой топливной батареей. Таким образом, потребители электроэнергии установки кондиционирования воздуха воздушного судна по настоящему изобретению с помощью топливной батареи могут снабжаться электрической энергией энергоэффективным, экологичным и надежным образом. Наряду с этим установка кондиционирования воздуха воздушного судна по настоящему изобретению имеет относительно простую конструкцию, поскольку обходится без отдельных электрических преобразователей и сетевых фильтров, а также требует меньшего установочного пространства и меньше весит. Дополнительное преимущество заключается в том, что работа топливной батареи может управляться особенно энергоэффективным образом.
Потребители электроэнергии на борту воздушного судна, не считающиеся частью установки кондиционирования воздуха воздушного судна по настоящему изобретению, могут снабжаться электрической энергией с помощью дополнительной топливной батареи, а также с помощью топливной батареи, которая обеспечивает электрической энергией потребителей электроэнергии установки кондиционирования воздуха воздушного судна. Конструктивные элементы, чувствительные к перебоям и помехам в электрической энергии, обеспечиваемой топливной батареей, могут подключаться к топливной батарее посредством промежуточного соединения с отдельным электрическим преобразователем и сетевым фильтром или электрическим преобразователем со встроенным сетевым фильтром. Однако не чувствительные к перебоям и помехам потребители вне установки кондиционирования воздуха воздушного судна по настоящему изобретению могут снабжаться электрической энергией, вырабатываемой топливной батареей, непосредственно, т.е. без присоединения электрического преобразователя и сетевого фильтра. Однако в качестве альтернативы потребители электроэнергии на борту воздушного судна, не считающиеся частью установки кондиционирования воздуха воздушного судна по настоящему изобретению, могут обычным образом снабжаться электрической энергией, вырабатываемой генераторами, которые приводятся в действие главными приводными агрегатами или вспомогательной газовой турбиной воздушного судна.
Предпочтительно, впускное отверстие компрессора соединяется через впускной трубопровод компрессора с воздуховодом установки кондиционирования воздуха воздушного судна. Например, окружающий воздух может протекать через воздуховод установки кондиционирования воздуха воздушного судна, так что окружающий воздух может подаваться из воздуховода установки кондиционирования воздуха воздушного судна через впускной трубопровод компрессора во впускное отверстие компрессора. Однако во впускное отверстие компрессора можно подавать также смесь окружающего воздуха и отработанного воздуха салона, и в этом случае отработанный воздух салона может вводиться, например, через трубопровод отработанного воздуха салона в воздуховод установки кондиционирования воздуха воздушного судна или во впускной трубопровод компрессора.
С другой стороны, предпочтительно, чтобы выпускное отверстие компрессора соединялось с трубопроводом подачи воздуха для подачи воздуха в салон воздушного судна. Таким образом, воздух, сжатый и вследствие этого нагретый в компрессоре, может подаваться через трубопровод подачи воздуха в салон воздушного судна.
В трубопроводе подачи воздуха может располагаться теплообменник, который служит для того, чтобы охлаждать воздух, сжатый компрессором и протекающий через трубопровод подачи воздуха. Предпочтительно, теплообменник располагается в воздуховоде установки кондиционирования воздуха воздушного судна, через который протекает окружающий воздух, так, что воздух, протекающий через трубопровод подачи воздуха, может охлаждаться энергоэффективным образом. Помимо этого в трубопроводе подачи воздуха может быть предусмотрен конденсатор для удаления влаги из воздуха, протекающего через трубопровод подачи воздуха. И, наконец, в трубопроводе подачи воздуха можно расположить турбину, в которой воздух, сжатый компрессором, протекающий через трубопровод подачи воздуха, расширяется и вследствие этого охлаждается до желаемой низкой температуры. Предпочтительно, турбина расположена на общем с компрессором вале, так что энергия, возвращенная при работе турбины, помимо приведения в действие электродвигателя, может использоваться и для приведения в действие компрессора.
Топливный элемент, применяемый в топливной батарее установки кондиционирования воздуха воздушного судна по настоящему изобретению, включает в себя катодную область, а также анодную область, отделенную от катодной области электролитом. При работе топливного элемента водородсодержащий топливный газ подается на анодную сторону топливного элемента, а кислородсодержащий окисляющий компонент, например воздух, подается на катодную сторону топливного элемента. В топливном элементе с мембраной из полимерного электролита (РЕМ-топливном элементе) молекулы водорода вступают в реакцию на анодном катализаторе, присутствующем в анодной области, например, в соответствии с формулой
H2→2·H++2·e-
и вследствие этого освобождают электроны на электроде с образованием положительно заряженных ионов водорода.
С другой стороны, в других типах топливных элементов, например, таких как топливный элемент на оксидной керамике (SOFC - твердооксидный топливный элемент), имеет место анодная реакция, например, по формуле
О2-2→H2O+2·е-.
Далее в РЕМ-топливном элементе ионы Н+, образовавшиеся в анодной области, диффундируют через электролит на катод, где на катодном катализаторе, присутствующем в катодной области и обычно нанесенном на углеродный носитель, они вступают в реакцию с кислородом, подаваемым на катод, а также с электронами, подаваемыми на катод через внешний контур, в соответствии с формулой
0,5·O2+2·H++2·e-→H2O,
в результате чего образуется вода.
С другой стороны, в твердооксидных топливных элементах (SOFC) катодная реакция имеет место, например, по формуле
0,5·O2+2·е-→О2-,
при этом ионы О2 диффундируют с катода на анод. Таким образом, отработанный газ из топливного элемента топливной батареи содержит воду.
Следовательно, предпочтительно, выпускное отверстие отработанного газа топливной батареи соединено с трубопроводом подачи воздуха установки кондиционирования воздуха по настоящему изобретению с тем, чтобы использовать воду, содержащуюся в отработанном газе топливного элемента для увлажнения воздуха, подаваемого в салон воздушного судна. Таким образом, помимо электрической энергии, вырабатываемой топливной батареей, для работы установки кондиционирования воздуха воздушного судна по настоящему изобретению может использоваться и вода, образующаяся во время работы топливной батареи.
В предпочтительном варианте осуществления установки кондиционирования воздуха воздушного судна по настоящему изобретению выпускное отверстие компрессора соединяется, например, через впускной трубопровод воздуха с впускным отверстием воздуха топливной батареи с тем, чтобы подавать сжатый компрессором воздух в топливную батарею, т.е. на катодную сторону топливного элемента, предусмотренного в топливной батарее. Впускной трубопровод воздуха топливной батареи может ответвляться, например, от трубопровода подачи воздуха, соединенного с выпускным отверстием компрессора. Таким образом, компрессор установки кондиционирования воздуха воздушного судна по настоящему изобретению используется не только для того, чтобы вырабатывать сжатый воздух для установки кондиционирования воздуха воздушного судна, но и для того, чтобы снабжать сжатым воздухом топливную батарею. Так же, как и при увлажнении воздуха, подаваемого в салон воздушного судна, с помощью содержащего воду отработанного газа из топливной батареи, эффект совместного действия достигается благодаря использованию компрессора для выработки сжатого воздуха для установки кондиционирования воздуха воздушного судна и для топливной батареи.
С помощью компрессора установки кондиционирования воздуха воздушного судна топливная батарея может обеспечиваться сжатым окружающим воздухом. Однако дополнительно или в качестве альтернативы в топливную батарею можно подавать также и отработанный воздух салона. С этой целью трубопровод отработанного воздуха салона воздушного судна может быть соединен с впускным отверстием воздуха топливной батареи. Отработанный воздух салона может подаваться непосредственно в топливную батарею. Тогда трубопровод отработанного воздуха салона воздушного судна может быть соединен, например, непосредственно с впускным отверстием воздуха или впускным трубопроводом воздуха топливной батареи. Однако отработанный воздух салона воздушного судна можно вводить также и в воздуховод установки кондиционирования воздуха воздушного судна или во впускной трубопровод компрессора, так что в топливную батарею подается сжатая компрессором смесь окружающего воздуха и отработанного воздуха салона.
Предпочтительно, охлаждающая система топливной батареи, включенная в установку кондиционирования воздуха воздушного судна по настоящему изобретению, включает в себя теплообменник, расположенный в воздуховоде установки кондиционирования воздуха воздушного судна. Например, теплообменник может быть встроен в охлаждающий контур топливной батареи, так что охлаждающая текучая среда, протекающая через охлаждающий контур, может охлаждаться до желаемой низкой температуры в теплообменнике, расположенном в воздуховоде установки кондиционирования воздуха воздушного судна. Однако дополнительно или в качестве альтернативы избыточное тепло, вырабатываемое топливной батареей, можно подавать в установку кондиционирования воздуха воздушного судна, соответствующую данному изобретению, также и другим образом, а также можно использовать избыточное тепло, например, для того, чтобы нагревать воздух, подаваемый в салон воздушного судна.
В соответствующем изобретению способе управления работой установки кондиционирования воздуха воздушного судна, которая содержит компрессор и двигатель, приводящий в действие компрессор, блок управления для управления двигателем, приводящим в действие компрессор, который соединяется непосредственно с топливной батарей, преобразует электрическую энергию, непосредственно вырабатываемую топливной батареей, в соответствующие управляющие сигналы для управления двигателем, приводящим в действие компрессор.
При этом следует понимать, что под "непосредственным" соединением между топливной батареей и блоком управления для управления двигателем, приводящим в действие компрессор, вновь подразумевается электрическое соединение без промежуточного соединения с отдельными электрическими преобразователями и сетевыми фильтрами. Аналогичным образом, следует понимать, что под электрической энергией, выработанной "непосредственно" топливной системой, вновь подразумевается электрическая энергия, которая не подвергалась ни преобразованию с помощью отдельного электрического преобразователя, ни фильтрации через сетевой фильтр.
В предпочтительном варианте осуществления соответствующего изобретению способа управления работой установки кондиционирования воздуха воздушного судна окружающий воздух, протекающий через воздуховод установки кондиционирования воздуха воздушного судна, подается через впускной трубопровод компрессора во впускное отверстие компрессора.
Предпочтительно, чтобы воздух из выпускного отверстия компрессора подавался через трубопровод подачи воздуха в салон воздушного судна, при этом воздух, протекающий через трубопровод подачи воздуха, может охлаждаться перед поступлением в салон воздушного судна посредством теплообменника, расположенного в трубопроводе подачи воздуха. Теплообменник может располагаться, например, в воздуховоде установки кондиционирования воздуха воздушного судна. Помимо этого из воздуха, протекающего через трубопровод подачи воздуха и сжатого компрессором, может удаляться влага посредством конденсатора, расположенного в трубопроводе подачи воздуха. И, наконец, воздух, сжатый компрессором и протекающий через трубопровод подачи воздуха, может быть проведен через турбину, так что воздух расширяется и вследствие этого охлаждается. Предпочтительно, энергия, возвращенная при работе турбины, используется для приведения в действие компрессора в дополнение к энергии, обеспечиваемой двигателем.
Для того чтобы увлажнить воздух, подаваемый в салон воздушного судна, предпочтительно, содержащий воду отработанный газ из топливной батареи подается от выпускного отверстия отработанного газа топливной батареи в трубопровод подачи воздуха.
В предпочтительном варианте осуществления соответствующего изобретению способа управления работой установки кондиционирования воздуха воздушного судна, воздух, сжатый компрессором, подается во впускное отверстие воздуха топливной батареи, соединенное с выпускным отверстием компрессора, например, через впускной трубопровод воздуха, ответвляющийся от трубопровода подачи воздуха.
Дополнительно или в качестве альтернативы для обеспечения топливной батареи воздухом может использоваться также отработанный воздух салона, отведенный из салона воздушного судна. В этом случае отработанный воздух салона подается в топливную батарею через впускное отверстие воздуха, соединенное с трубопроводом отработанного воздуха салона воздушного судна.
Предпочтительно, охлаждающая текучая среда топливной батареи пропускается через теплообменник, расположенный в воздуховоде установки кондиционирования воздуха воздушного судна, с тем, чтобы энергоэффективным образом охлаждать охлаждающую текучую среду до нужной низкой температуры. Дополнительно или в качестве альтернативы, избыточное тепло, вырабатываемое топливной батареей, также может подаваться в установку кондиционирования воздуха воздушного судна и использоваться, например, для того, чтобы нагревать воздух, подаваемый в салон воздушного судна.
Краткое описание чертежей
В дальнейшем предпочтительный вариант изобретения будет описан более подробно с помощью прилагаемого чертежа, который схематически иллюстрирует установку кондиционирования воздуха воздушного судна согласно настоящему изобретению.
Осуществление изобретения
Установка 10 кондиционирования воздуха воздушного судна, проиллюстрированная на фигуре, включает в себя воздуховод 12, через который в направлении стрелки Р протекает окружающий воздух. Воздуховод 12 соединяется через впускной трубопровод 14 компрессора с впускным отверстием 16 компрессора 18. Таким образом, окружающий воздух, протекающий через воздуховод 12, может подаваться через впускной трубопровод 14 компрессора в компрессор 18 и сжиматься компрессором 18.
Компрессор 18 установки кондиционирования воздуха 10 воздушного судна приводится в действие двигателем 20 переменного тока, который управляется с помощью электронного блока 22 управления. Топливная батарея 24 служит для выработки электрической энергии. Электронный блок 22 управления соединяется через электрическую линию 26 непосредственно (т.е. без промежуточного соединения с отдельным электрическим преобразователем) с топливной батареей 24 и выполнен так, что может снабжаться электрической энергией путем зависящего от нагрузки постоянного напряжения, вырабатываемого непосредственно топливной батареей 24. В результате удаления преобразователя, создающего помехи, можно обходиться также и без использования сетевого фильтра между топливной батареей 24 и электронным блоком 22 управления. Электронный блок 22 управления преобразует электрическую энергию, подаваемую в него из топливной батареи 24, в соответствующие электрические управляющие сигналы, которые передаются в приводной двигатель 20 компрессора через электрическую линию 28.
Кроме этого топливная батарея 24 подключается через электрическую линию 29 непосредственно (т.е. без промежуточного соединения с электрическими преобразователями и сетевыми фильтрами) к дополнительным потребителям 30 электроэнергии, не считающимся частью установки 10 кондиционирования воздуха. Точно так же, как электронный блок 22 управления установки 10 кондиционирования воздуха воздушного судна, потребители 30 электроэнергии могут непосредственно обеспечиваться зависящим от нагрузки постоянным напряжением, вырабатываемым топливной батареей 24.
Наконец, топливная батарея 24 подает электрическую энергию через электрическую линию 31 в электрическую сеть 32 воздушного судна. Для того чтобы зависящее от нагрузки постоянное напряжение, вырабатываемое топливной батареей 24, могло быть использовано различными потребителями электроэнергии вне установки 10 кондиционирования воздуха, которые на фигуре не показаны и которые обеспечиваются электрической энергией через сеть 32, электрическая энергия, вырабатываемая топливной батареей 24, преобразуется и фильтруется с помощью встроенного электрического преобразователя/сетевого фильтра 33.
Выпускное отверстие 34 компрессора 18, приводимого в действие двигателем 20, соединяется с трубопроводом 35 подачи воздуха, который служит для того, чтобы подавать воздух в салон 36 воздушного судна. Первый теплообменник 37, размещенный в воздуховоде 12, располагается в трубопроводе 35 подачи воздуха. Этот теплообменник служит для того, чтобы охлаждать воздух, сжатый и вследствие этого нагретый компрессором 18 и протекающий через трубопровод 35 подачи воздуха, путем передачи тепла окружающему воздуху, протекающему через воздуховод 12. Конденсатор 38 для удаления влаги из воздуха, протекающего через трубопровод 35 подачи воздуха, предусматривается ниже по потоку от первого теплообменника 37 в трубопроводе 35 подачи воздуха.
Турбина 40 располагается ниже по потоку от конденсатора 38 в трубопроводе 35 подачи воздуха. Когда воздух, сжатый компрессором 18, протекающий через трубопровод 35 подачи воздуха, проводится через турбину 40, воздух расширяется и вследствие этого охлаждается. Турбина 40 располагается вместе с компрессором 18 на общем вале 42, так что энергия, возвращаемая при работе турбины 40, может использоваться для приведения в действие компрессора 18 помимо энергии приводного двигателя 20 компрессора.
Впускной трубопровод 46 воздуха, соединяющий трубопровод 35 подачи воздуха с впускным отверстием 44 воздуха топливной батареи 24, ответвляется от трубопровода 35 подачи воздуха выше по потоку от первого теплообменника 37. Таким образом, воздух, сжатый компрессором 18, подается не только в салон 36 воздушного судна, но также используется и для того, чтобы обеспечить воздухом топливную батарею 24. Кроме того, отработанный воздух салона подается во впускное отверстие 44 воздуха топливной батареи 24 через трубопровод 47 отработанного воздуха салона 36 воздушного судна.
Охлаждающая система 48 топливной батареи 24, через которую протекает охлаждающая текучая среда, включает в себя второй теплообменник 50, который, точно так же как и первый теплообменник 37, располагается в воздуховоде 12 установки 10 кондиционирования воздуха воздушного судна. Таким образом, окружающий воздух, протекающий через воздуховод 12, может использоваться для охлаждения охлаждающей текучей среды, протекающей через охлаждающую систему 48 топливной батареи 24.
Выпускное отверстие 52 отработанного газа топливной батареи 24 соединяется через трубопровод 54 отработанного газа ниже по потоку от турбины 40 с трубопроводом 35 подачи воздуха. Поскольку при работе топливной батареи 24 образуется вода, то содержащий воду отработанный воздух из топливной батареи может использоваться для увлажнения воздуха, подаваемого в салон 36 воздушного судна.
В установке 10 кондиционирования воздуха воздушного судна, проиллюстрированной на фигуре, во впускное отверстие 16 компрессора подается исключительно окружающий воздух, протекающий через воздуховод 12. Однако во впускное отверстие 16 компрессора можно также подавать и отработанный воздух салона, отведенный из салона 36 воздушного судна и, возможно, смешанный с окружающим воздухом. Например, отработанный воздух салона может вводиться в воздуховод 12 или во впускной трубопровод 14 компрессора.

Claims (16)

1. Установка (10) кондиционирования воздуха воздушного судна, содержащая компрессор (18), двигатель (20), приводящий в действие компрессор (18), и топливную батарею (24), отличающаяся тем, что топливная батарея (24) соединена через электрическую линию (26) непосредственно с блоком (22) управления, а блок (22) управления соединен через электрическую линию (28) с двигателем (20), приводящим в действие компрессор (18), при этом блок (22) управления выполнен с возможностью непосредственного управления двигателем (20), приводящим в действие компрессор (18), путем преобразования зависящего от нагрузки постоянного напряжения, вырабатываемого непосредственно топливной батареей (24), в соответствующие электрические управляющие сигналы и передачи указанных электрических управляющих сигналов через электрическую линию (28) в двигатель (20), приводящий в действие компрессор (18).
2. Установка по п.1, отличающаяся тем, что впускное отверстие (16) компрессора (18) соединено через впускной трубопровод (14) компрессора с воздуховодом (12) установки (10) кондиционирования воздуха воздушного судна с тем, чтобы подавать окружающий воздух, протекающий через воздуховод (12) установки кондиционирования воздуха (10), во впускное отверстие (16) компрессора (18).
3. Установка по п.1 или 2, отличающаяся тем, что выпускное отверстие (34) компрессора (18) соединено с трубопроводом (35) подачи воздуха для подачи воздуха в салон (36) воздушного судна.
4. Установка по п.3, отличающаяся тем, что в трубопроводе (35) подачи воздуха расположены первый теплообменник (37), и/или конденсатор (38), и/или турбина (40).
5. Установка по п.3, отличающаяся тем, что выпускное отверстие (52) отработанного газа топливной батареи (24) соединено с трубопроводом (35) подачи воздуха.
6. Установка по п.1 или 2, отличающаяся тем, что выпускное отверстие (34) компрессора (18) соединено с впускным отверстием (44) воздуха топливной батареи (24) с тем, чтобы подавать воздух, сжатый компрессором (18), в топливную батарею (24).
7. Установка по п.1 или 2, отличающаяся тем, что впускное отверстие (44) воздуха топливной батареи (24) соединено с трубопроводом (47) отработанного воздуха салона (36) воздушного судна.
8. Установка по п.1 или 2, отличающаяся тем, что охлаждающая система (48) топливной батареи (24) включает в себя второй теплообменник, расположенный в воздуховоде (12) установки (10) кондиционирования воздуха воздушного судна.
9. Способ управления работой установки (10) кондиционирования воздуха воздушного судна, которая содержит компрессор (18), двигатель (20), приводящий в действие компрессор (18), и топливную батарею (24), отличающийся тем, что блок управления (22), который соединяют через электрическую линию (26) непосредственно с топливной батареей (24) и через электрическую линию (28) - с двигателем (20), приводящим в действие компрессор (18), непосредственно управляет двигателем (20), приводящим в действие компрессор (18), путем преобразования зависящего от нагрузки постоянного напряжения, вырабатываемого непосредственно топливной батареей (24), в соответствующие электрические управляющие сигналы для управления двигателем (20), приводящим в действие компрессор (18), и передачи указанных электрических управляющих сигналов через электрическую линию (28) в двигатель (20), приводящий в действие компрессор (18).
10. Способ по п.9, отличающийся тем, что окружающий воздух, протекающий через воздуховод (12) установки (10) кондиционирования воздуха воздушного судна, подают через впускной трубопровод (14) компрессора во впускное отверстие (16) компрессора (18).
11. Способ по п.9 или 10, отличающийся тем, что воздух из выпускного отверстия (34) компрессора (18) подают через трубопровод (35) подачи воздуха в салон (36) воздушного судна.
12. Способ по п.11, отличающийся тем, что охлаждают воздух, протекающий через трубопровод (35) подачи воздуха, посредством первого теплообменника (37), расположенного в трубопроводе (35) подачи воздуха, и/или удаляют влагу из воздуха, протекающего через трубопровод (35) подачи воздуха, посредством конденсатора (38), расположенного в трубопроводе (35) подачи воздуха, и/или производят расширение и вследствие этого охлаждение воздуха, протекающего через трубопровод (35) подачи воздуха, посредством турбины (40), расположенной в трубопроводе (35) подачи воздуха.
13. Способ по п.11, отличающийся тем, что отработанный газ из топливной батареи (24) подают от выпускного отверстия (52) отработанного газа в трубопровод (35) подачи воздуха.
14. Способ по п.9 или 10, отличающийся тем, что воздух, сжатый компрессором (18), подают в топливную батарею (24) через впускное отверстие (44) воздуха, соединенное с выпускным отверстием (34) компрессора (18).
15. Способ по п.9 или 10, отличающийся тем, что отработанный воздух салона подают в топливную батарею (24) через впускное отверстие (44) воздуха, соединенное с трубопроводом (47) отработанного воздуха салона (36) воздушного судна.
16. Способ по п.9 или 10, отличающийся тем, что охлаждающую текучую среду топливной батареи (24) пропускают через второй теплообменник (50), расположенный в воздуховоде (12) установки (10) кондиционирования воздуха воздушного судна.
RU2009101941/11A 2006-07-31 2007-07-25 Установка кондиционирования воздуха воздушного судна и способ управления работой этой установки RU2443606C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006035621A DE102006035621B4 (de) 2006-07-31 2006-07-31 Flugzeugklimaanlage und Verfahren zum Betreiben einer Flugzeugklimaanlage
DE102006035621.7 2006-07-31

Publications (2)

Publication Number Publication Date
RU2009101941A RU2009101941A (ru) 2010-09-10
RU2443606C2 true RU2443606C2 (ru) 2012-02-27

Family

ID=38567246

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009101941/11A RU2443606C2 (ru) 2006-07-31 2007-07-25 Установка кондиционирования воздуха воздушного судна и способ управления работой этой установки

Country Status (10)

Country Link
US (1) US8468847B2 (ru)
EP (1) EP2046641B1 (ru)
JP (1) JP5204772B2 (ru)
CN (1) CN101495372A (ru)
AT (1) ATE491637T1 (ru)
BR (1) BRPI0712323A2 (ru)
CA (1) CA2652386A1 (ru)
DE (2) DE102006035621B4 (ru)
RU (1) RU2443606C2 (ru)
WO (1) WO2008014912A1 (ru)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008006742A1 (de) 2008-01-30 2009-08-06 Airbus Deutschland Gmbh Luftfahrzeug-Brennstoffzellensystem
US8656727B2 (en) * 2008-04-08 2014-02-25 The Boeing Company Evaporative cooling for an aircraft subsystem
DE102008039782A1 (de) * 2008-08-26 2010-03-04 Airbus Deutschland Gmbh Zonentemperaturregelung an Bord eines Flugzeuges mittels Brennstoffzellenabwärme
DE102009050309A1 (de) * 2009-10-22 2011-04-28 Liebherr-Aerospace Lindenberg Gmbh Notenergiesystem für ein Luftfahrzeug
DE202008016514U1 (de) * 2008-12-12 2010-04-22 Liebherr-Aerospace Lindenberg Gmbh Notenergiesystem für ein Flugzeug
EP2356026B1 (de) 2008-12-12 2015-02-18 Liebherr-Aerospace Lindenberg GmbH Notenergiesystem für ein luftfahrzeug
DE102009031880A1 (de) 2009-07-06 2011-01-20 Airbus Operations Gmbh Kühlkonzept für ein Brennstoffzellen-Notstromsystem
US8973393B2 (en) * 2009-11-08 2015-03-10 The Boeing Company System and method for improved cooling efficiency of an aircraft during both ground and flight operation
DE102010013956A1 (de) * 2010-04-06 2011-10-06 Airbus Operations Gmbh Kompressor/Turbinen-Anordnung, Klimaaggregat und Verfahren zum Betreiben einer Kompressor/Turbinen-Anordnung
FR2962488B1 (fr) * 2010-07-06 2014-05-02 Turbomeca Procede et architecture de recombinaison de puissance de turbomachine
DE102011014565B4 (de) * 2011-03-21 2016-11-24 Airbus Operations Gmbh Klimaanlagensystem für ein Luftfahrzeug
DE102011015827A1 (de) * 2011-04-01 2012-10-04 Liebherr-Aerospace Lindenberg Gmbh Druckluftkonditionierungssystem
EP2602191B1 (en) * 2011-12-05 2016-05-11 Hamilton Sundstrand Corporation Motor driven cabin air compressor with variable diffuser
DE102012002132A1 (de) 2012-02-03 2013-08-08 Airbus Operations Gmbh Vereisungsschutzsystem für ein Flugzeug und Verfahren zum Betreiben eines Vereisungsschutzsystems
EP2799343B1 (en) 2013-04-03 2017-02-15 Airbus Operations GmbH Aircraft air-conditioining system
US9429072B2 (en) 2013-05-22 2016-08-30 General Electric Company Return fluid air cooler system for turbine cooling with optional power extraction
US9422063B2 (en) 2013-05-31 2016-08-23 General Electric Company Cooled cooling air system for a gas turbine
US10224556B2 (en) * 2015-12-15 2019-03-05 Hamilton Sundstrand Corporation Integrated fuel cell aircraft pressurization and cooling system
EP3187417B1 (en) * 2015-12-30 2019-12-11 Airbus Operations S.L. Air conditioning system
US10731501B2 (en) * 2016-04-22 2020-08-04 Hamilton Sundstrand Corporation Environmental control system utilizing a motor assist and an enhanced compressor
US11731780B2 (en) 2021-09-09 2023-08-22 Hamilton Sundstrand Corporation Aircraft system including a cryogenic fluid operated auxiliary power unit (APU)
US20230365263A1 (en) * 2022-05-16 2023-11-16 General Electric Company Environmental control system having a fuel cell assembly
CN118145001A (zh) * 2022-12-06 2024-06-07 空中客车简化股份公司 用于飞行器的自主空气调节***

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0957026A2 (de) * 1998-05-15 1999-11-17 dbb fuel cell engines GmbH Energieversorgungseinheit an Bord eines Luftfahrzeugs
DE19927518A1 (de) * 1999-06-16 2001-01-18 Valeo Klimasysteme Gmbh Standklimatisierung
RU2220884C2 (ru) * 2001-09-20 2004-01-10 Открытое акционерное общество Производственно-конструкторское объединение "Теплообменник" Система кондиционирования воздуха
WO2005110844A1 (en) * 2004-05-18 2005-11-24 Airbus Deutschland Gmbh Apparatus for the humidification of the air in a cabin of a passenger or cargo aircraft

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2970437A (en) * 1956-02-28 1961-02-07 Thompson Ramo Wooldridge Inc High temperature pumping system with variable speed pump and refrigeration by-product
US6429019B1 (en) * 1999-01-19 2002-08-06 Quantum Group, Inc. Carbon monoxide detection and purification system for fuels cells
EP1055545B1 (en) * 1999-05-26 2004-01-28 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle with fuel cells incorporated therein and method of controlling the same
JP4193521B2 (ja) * 2002-03-20 2008-12-10 ソニー株式会社 燃料電池装置及び燃料電池の制御方法
DE102004058430B4 (de) * 2004-12-03 2010-07-29 Airbus Deutschland Gmbh Versorgungssystem zur Energieversorgung in einem Luftfahrzeug, Luftfahrzeug und Verfahren zum Versorgen eines Luftfahrzeugs mit Energie
US7380749B2 (en) * 2005-04-21 2008-06-03 The Boeing Company Combined fuel cell aircraft auxiliary power unit and environmental control system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0957026A2 (de) * 1998-05-15 1999-11-17 dbb fuel cell engines GmbH Energieversorgungseinheit an Bord eines Luftfahrzeugs
DE19927518A1 (de) * 1999-06-16 2001-01-18 Valeo Klimasysteme Gmbh Standklimatisierung
RU2220884C2 (ru) * 2001-09-20 2004-01-10 Открытое акционерное общество Производственно-конструкторское объединение "Теплообменник" Система кондиционирования воздуха
WO2005110844A1 (en) * 2004-05-18 2005-11-24 Airbus Deutschland Gmbh Apparatus for the humidification of the air in a cabin of a passenger or cargo aircraft

Also Published As

Publication number Publication date
RU2009101941A (ru) 2010-09-10
JP5204772B2 (ja) 2013-06-05
DE102006035621A1 (de) 2008-02-14
ATE491637T1 (de) 2011-01-15
EP2046641B1 (en) 2010-12-15
EP2046641A1 (en) 2009-04-15
DE102006035621B4 (de) 2011-03-03
DE602007011275D1 (de) 2011-01-27
CA2652386A1 (en) 2008-02-07
US20090211273A1 (en) 2009-08-27
WO2008014912A1 (en) 2008-02-07
JP2009545476A (ja) 2009-12-24
CN101495372A (zh) 2009-07-29
US8468847B2 (en) 2013-06-25
BRPI0712323A2 (pt) 2012-02-22

Similar Documents

Publication Publication Date Title
RU2443606C2 (ru) Установка кондиционирования воздуха воздушного судна и способ управления работой этой установки
EP3182490B1 (en) Integrated fuel cell aircraft pressurization and cooling system
US8623566B2 (en) Aircraft fuel cell system
US10293945B2 (en) Aircraft having a redundant and efficient bleed system
CN101258634B (zh) 用于供应饮用水和氧气的燃料电池***
US20050112428A1 (en) Fuel cell power system having multiple fuel cell modules
US20080118798A1 (en) Fuel cell system apparatus
CN102222795B (zh) 进入和退出燃料电池***的再生/备用模式的方法
US10483563B2 (en) Cathode supply for a fuel cell
JP2008288149A (ja) 燃料電池システム
JP2009140872A (ja) 燃料電池システム及びそれを備えた燃料電池車
US20110262824A1 (en) Apparatus for a 12v hybrid fuel cell vehicle
CN112912268B (zh) 一种供电装置、车辆及设备
CN213056723U (zh) 供电装置、车辆及设备
CZ20012723A3 (cs) Zařízení k zásobování elektřinou pro pomocná zařízení kolejových vozidel
CN112823102A (zh) 供电装置、车辆及设备
CN115848633A (zh) 一种机载设备供电与热管理综合***及方法
CN115513501A (zh) 用于向燃料电池***供应压缩空气的***
CN115303131A (zh) 一种基于对称电极sofc的电动车混合动力***及其控制方法
CN116134649A (zh) 具有优化冷却的用于向燃料电池阴极供应加压空气的设备
CN116477063A (zh) 飞机客舱***的供电架构
KR20150042406A (ko) 부생수소를 이용한 연료전지 시스템

Legal Events

Date Code Title Description
TK4A Correction to the publication in the bulletin (patent)

Free format text: AMENDMENT TO CHAPTER -FG4A- IN JOURNAL: 6-2012

MM4A The patent is invalid due to non-payment of fees

Effective date: 20170726