RU2437195C1 - Система вентиляции электрической машины (варианты) - Google Patents

Система вентиляции электрической машины (варианты) Download PDF

Info

Publication number
RU2437195C1
RU2437195C1 RU2010146618/07A RU2010146618A RU2437195C1 RU 2437195 C1 RU2437195 C1 RU 2437195C1 RU 2010146618/07 A RU2010146618/07 A RU 2010146618/07A RU 2010146618 A RU2010146618 A RU 2010146618A RU 2437195 C1 RU2437195 C1 RU 2437195C1
Authority
RU
Russia
Prior art keywords
ventilation
stator
channels
gap
electric machine
Prior art date
Application number
RU2010146618/07A
Other languages
English (en)
Inventor
Владимир Григорьевич Шалаев (RU)
Владимир Григорьевич Шалаев
Original Assignee
Закрытое Акционерное Общество "Нефтьстальконструкция"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Закрытое Акционерное Общество "Нефтьстальконструкция" filed Critical Закрытое Акционерное Общество "Нефтьстальконструкция"
Priority to RU2010146618/07A priority Critical patent/RU2437195C1/ru
Priority to EP11840794.9A priority patent/EP2642406A1/en
Priority to PCT/RU2011/000287 priority patent/WO2012067538A1/ru
Application granted granted Critical
Publication of RU2437195C1 publication Critical patent/RU2437195C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/14Arrangements for cooling or ventilating wherein gaseous cooling medium circulates between the machine casing and a surrounding mantle
    • H02K9/18Arrangements for cooling or ventilating wherein gaseous cooling medium circulates between the machine casing and a surrounding mantle wherein the external part of the closed circuit comprises a heat exchanger structurally associated with the machine casing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/20Stationary parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/32Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

Изобретение относится к области электромашиностроения и предназначено для использования в системе вентиляции крупной электрической машины, в частности турбогенератора большой мощности с воздушным охлаждением статора и ротора. Технический результат, достигаемый при использовании настоящего изобретения, состоит в обеспечении эффективного охлаждения всех активных частей электрической машины при одновременном обеспечении возможности увеличения ее единичной мощности и сохранения простоты конструкции. Электрическая машина содержит ротор, статор с подпазовыми и радиальными вентиляционными каналами. По исполнению дистанционных распорок радиальные каналы подразделены на два типа, в каналах одного типа установлены дистанционные распорки, перекрывающие вход охлаждающего потока в подпазовые каналы по их периметру, а в каналах другого типа - со стороны пространства между корпусом и спинкой статора, причем совокупности каналов каждого типа образуют чередующиеся в аксиальном направлении вентиляционные зоны, на границах которых в зазоре установлены кольцевые разделительные перегородки, а в роторе выполнены вентиляционные каналы, каждый из которых сообщается с упомянутыми вентиляционными зонами. По второму варианту закрытые со стороны зазора радиальные вентиляционные каналы чередуются в аксиальном направлении с открытыми в зазор радиальными вентиляционными каналами, подразделенными по исполнению дистанционных распорок на два типа. 2 н. и 8 з.п. ф-лы, 6 ил.

Description

Заявляемая группа технических решений относится к области электромашиностроения и предназначена для использования в системе вентиляции крупной электрической машины, в частности турбогенератора большой мощности с воздушным охлаждением статора и ротора.
Известна система вентиляции электрической машины [1], сердечник статора которой выполнен с открытыми в зазор вентиляционными каналами. Кольцевыми перегородками корпуса со стороны спинки статора образованы чередующиеся кольцевые зоны повышенного и пониженного давления. В роторе выполнены вентиляционные каналы, открытые в зазор. На наружной поверхности ротора установлены разделительные элементы, образующие кольцевые чередующиеся зоны, сообщающиеся с зонами повышенного и пониженного давления. С этими зонами сообщаются вентиляционные каналы ротора. Преимуществом данной системы вентиляции является то, что напор вентиляторов частично используется для организации движения охлаждающего потока в вентиляционных каналах ротора. Однако она отличается сложностью конструкции из-за большого количества коробов и перепускных труб и является малоэффективной при использовании воздушного охлаждения, т.к. на торцевые зоны электрической машины, которые испытывают наибольший нагрев, не направляется интенсивный поток охлаждающего газа.
Известна многоструйная система вентиляции электрической машины с продольным секционированием статора [2], в которой выходящий в зазор из подпазовых каналов и радиальных отверстий ротора охлаждающий поток отделен от зоны нагнетания статора перегородкой, смонтированной на сердечнике статора. При этом соединение зоны нагнетания статора с зоной разрежения выполнено через аксиальные отверстия в перегородке. Система исключает взаимное торможение потоков, выходящих из ротора и статора, но она малоэффективна в части охлаждения торцевых зон активных частей статора электрической машины.
За прототип для вариантов заявляемого решения принята система вентиляции электрической машины [3], содержащая сердечник статора с обмоткой и ротор. Охлаждающий поток циркулирует через спинку и зубцовую зону статора по радиальным каналам сердечника, образованным прямыми и U-образными дистанционными распорками, и по подпазовым каналам направляется с большой скоростью в торцевые части сердечника. Данное решение отличается простотой конструкции и обеспечивает эффективное охлаждение активных частей статора и, особенно, наиболее нагретых торцевых зон, но перекрытие зазора, исключающее связь с ротором, не позволяет использовать напорное действие вентиляторов для циркуляции воздуха в роторе. Этот недостаток ограничивает применение данной системы вентиляции для машин большой мощности с длинным ротором, в которых сечения отверстий (например, подпазовых каналов), выполненных в торцах бочки ротора, будет недостаточно для эффективного охлаждения ротора.
Целью заявляемой группы решений является обеспечение эффективного охлаждения всех активных частей электрической машины с возможностью увеличения ее единичной мощности и сохранения простоты конструкции.
Поставленная цель по первому варианту заявляемого решения достигается за счет того, что в известной системе вентиляции электрической машины, содержащей ротор, зазор, статор с подпазовыми вентиляционными каналами и образованными с помощью дистанционных распорок радиальными вентиляционными каналами, открытыми в пространство между корпусом и спинкой статора, упомянутые радиальные вентиляционные каналы открыты в зазор и по исполнению дистанционных распорок подразделены на два типа, в каналах одного типа установлены дистанционные распорки, перекрывающие вход охлаждающего потока в подпазовые каналы по их периметру, а в каналах другого типа - со стороны пространства между корпусом и спинкой статора, причем совокупности каналов каждого типа образуют чередующиеся в аксиальном направлении вентиляционные зоны, на границах которых в зазоре установлены кольцевые разделительные перегородки, а в роторе выполнены вентиляционные каналы, каждый из которых сообщается с упомянутыми вентиляционными зонами.
Поставленная цель по второму варианту решения достигается за счет того, что в известной системе вентиляции электрической машины, содержащей ротор, статор с образованными с помощью дистанционных распорок радиальными вентиляционными каналами, открытыми в пространство между корпусом и спинкой статора и закрытыми со стороны зазора, с распорками в зубцовой части статора, имеющими U-образную форму и охватывающими подпазовые вентиляционные каналы, упомянутые закрытые со стороны зазора радиальные вентиляционные каналы чередуются в аксиальном направлении с дополнительно выполненными в статоре открытыми в зазор и в пространство между корпусом и спинкой статора радиальными вентиляционными каналами, подразделенными по исполнению дистанционных распорок на два типа, в каналах одного типа установлены дистанционные распорки, перекрывающие вход охлаждающего потока в подпазовые каналы по их периметру, а в каналах другого типа - со стороны пространства между корпусом и спинкой статора, причем совокупности каналов каждого типа образуют чередующиеся в аксиальном направлении вентиляционные зоны, на границах которых в зазоре установлены кольцевые разделительные перегородки, а в роторе выполнены вентиляционные каналы, каждый из которых сообщается с упомянутыми вентиляционными зонами.
Для обоих вариантов решения кольцевые разделительные перегородки скреплены с ротором или статором, а в дистанционных распорках, перекрывающих вход охлаждающего потока в подпазовые вентиляционные каналы со стороны пространства между корпусом и спинкой статора, могут быть выполнены перепускные отверстия или в спинке статора выполнены аксиальные отверстия.
Новизна заявляемой системы вентиляции электрической машины, по сравнению с прототипом, для обоих вариантов решения заключается в организации аксиального чередования вентиляционных зон повышенного и пониженного давления внутри сердечника статора с подключением в схему вентиляции аксиальных каналов статора и каналов ротора, сообщающихся с указанными вентиляционными зонами, и дополнительно для второго варианта - с чередованием закрытых со стороны зазора и открытых в зазор радиальных вентиляционных каналов.
Из уровня техники не выявлен признак, касающийся установки дистанционных распорок, в одних зонах перекрывающих вход охлаждающего потока в подпазовые вентиляционные каналы по их периметру, а в других зонах - со стороны пространства между корпусом и спинкой статора при открытых в зазор радиальных вентиляционных каналах статора. Также не выявлено сочетание известных из прототипа закрытых со стороны зазора радиальных вентиляционных каналов с дополнительно выполненными открытыми в зазор радиальными вентиляционными каналами. Признак, касающийся перепускных отверстий в дистанционных распорках, перекрывающих подпазовые каналы со стороны спинки, из уровня техники не выявлен. Это позволяет сделать вывод о соответствии предлагаемого в качестве изобретения технического решения условию патентоспособности по изобретательскому уровню. Известные из уровня техники признаки «кольцевая разделительная перегородка в зазоре» и «аксиальное отверстие в спинке статора» в сочетании с новыми признаками повышают эффективность охлаждения, соответственно, ротора и спинки статора.
Изобретение поясняется чертежами, где на фигуре 1 представлен общий вид электрической машины, на фигурах 2 и 3 - поперечные сечения по соседним вентиляционным зонам, на фигуре 4 - вариант фигуры 3 с дистанционными распорками, на фигуре 5 - фрагмент варианта общего вида электрической машины, на фигуре 6 - поперечное сечение фигуры 5.
Система вентиляции электрической машины, например турбогенератора с воздушным охлаждением, состоит из статора с сердечником 1, с обмоткой 2, с нажимной плитой 3 и ротора 4 с обмоткой 5 (см. фиг.1). Сердечник 1 статора содержит радиальные вентиляционные каналы 6, открытые в пространство 7 между корпусом 8 и сердечником 1, а также в зазор 9, и подпазовые вентиляционные каналы 10. В аксиальном направлении сердечник 1 статора подразделен на чередующиеся вентиляционные зоны 11 и 12. В вентиляционных зонах 11 подпазовые каналы 10 охвачены по периметру дистанционными распорками 13. В вентиляционных зонах 12 установлены дистанционные распорки 14, перекрывающие подачу воздуха по радиальным вентиляционным каналам 6 в подпазовые каналы 10 со стороны пространства 7. В роторе 4 выполнены вентиляционные каналы 15, каждый из которых образован радиальными щелями в обмотке 5 ротора 4 и подпазовыми щелями в бочке ротора 4. Таким образом, каждый вентиляционный канал 15 открыт в соседние вентиляционные зоны 11 и 12. В зазоре 9 на границах вентиляционных зон 11 и 12 установлены кольцевые разделительные перегородки 16, которые могут быть закреплены как на роторе 4 (показано на фиг.1), так и на расточке сердечника 1 статора. Сечение по вентиляционной зоне 11 с распорками 13 показано на фигуре 2. Сечение по вентиляционной зоне 12 с распорками 14 показано на фигуре 3. В распорках 14 могут быть выполнены перепускные отверстия 17 для локального перепуска воздуха от спинки сердечника 1 в подпазовые каналы 10 статора. В вентиляционной зоне 12 могут быть размещены дистанционные распорки 18 (см. фиг.4), не перекрывающие вход в подпазовые каналы 10 в зоне 12. Как вариант локальной вентиляции спинки сердечника 1 - в спинке по всей длине статора могут быть выполнены аксиальные каналы 19. В вариантном решении системы вентиляции (см. фиг.5) закрытые со стороны зазора тангенциальными распорками 20 радиальные вентиляционные каналы 21 размещены с чередованием с открытыми вентиляционными каналами 6. В каналах 21 подпазовые вентиляционные каналы 10 охвачены U-образными дистанционными распорками 22, боковые образующие 23 (см. фиг.6) которых обращены в сторону зазора. Оптимальным размещением закрытых со стороны зазора радиальных вентиляционных каналов 21 является чередование их с каждым радиальным вентиляционным каналом 6 в каждой вентиляционной зоне 11 и 12.
Вентиляция электрической машины по первому варианту решения осуществляется следующим образом. Охлаждающий воздух (на чертежах движение воздуха обозначено стрелками) поступает из пространства 7 в радиальные каналы 6. В вентиляционных зонах 11 он проходит через спинку сердечника 1 статора, затем, минуя закрытые распорками 13 подпазовые каналы 10, по зубцовой части сердечника 1 статора с обмоткой 2 и выходит в зазор 9. Из зазора 9 он попадает в вентиляционные каналы 15 ротора 4, охлаждает активные части ротора и выходит в зазор 9 вентиляционной зоны 12. Далее воздух через зубцовую часть сердечника 1 выходит в подпазовые каналы 10 статора и, охлаждая торцевую часть статора (крайние пакеты сердечника 1, нажимную плиту 3, лобовые части обмотки 2 статора), направляется к вентилятору. Частичный перепуск воздуха из зоны 11 в зону 12 осуществляется через зазор (позицией не обозначен) между разделительными перегородками 16 и расточкой сердечника 1 статора. Охлаждающий воздух, поступающий из пространства 7 в радиальные каналы 6 вентиляционной зоны 12, проходит через спинку сердечника 1 статора и через перепускные отверстия 17 в дистанционных распорках 14 выходит в подпазовый канал 10 и далее в торцевую часть статора. Возможно исполнение, когда воздух проходит через спинку сердечника 1 и по аксиальным каналам 19 выходит в торцевую часть статора.
По второму варианту решения вентиляция электрической машины по открытым в зазор 9 радиальным каналам 6 осуществляется так же, как в первом варианте решения. Вентиляция по закрытым в сторону зазора радиальным каналам 21 осуществляется следующим образом. Воздух, поступающий в каналы 21 из пространства 7, проходит через спинку сердечника в зубцовую часть, огибает боковые образующие 23 U-образных распорок 22 и выходит в подпазовые каналы 10.
Введение закрытых со стороны зазора вентиляционных каналов 21 в зоны 11 и 12 позволяет отвести часть тепла, выделяющегося в сердечнике статора, обмотке, на поверхности ротора и в зазоре. Таким образом, обеспечивается снижение температуры обмотки статора в зонах 12 на 20-25°С и снижение температуры обмотки ротора примерно на 10°С.
Предлагаемая система вентиляции позволяет обеспечить интенсивное охлаждение всех активных частей электрической машины большой мощности, получить более равномерное распределение температуры по длине статора и ротора. Перепад давления воздуха между зонами 11 и 12 создается установленными на роторе вентиляторами. Это позволяет путем подбора вентиляторов обеспечить оптимальную величину перепада давления и эффективно вентилировать ротор большой длины, характерный для мощных турбогенераторов. Решение отличается конструктивной простотой и технологичностью.
Источники информации
1. Патент US 3265912, фирма Westinghouse, H02K 3/24б, Н02К 9/00, приоритет от 15.06.64, опубл. 09.08.66.
2. Патент JP 62236340, фирма Hitachi, H02K 1/20, приоритет от 07.04.86, опубл. 16.10.87.
3. Патент RU 2246786, фирма Ленинградский электромашиностроительный завод, Н02К 9/08, приоритет от 09.07.2003, опубл. 20.02.2005.

Claims (10)

1. Система вентиляции электрической машины, содержащая ротор, зазор, статор с подпазовыми вентиляционными каналами и образованными с помощью дистанционных распорок радиальными вентиляционными каналами, открытыми в пространство между корпусом и спинкой статора, отличающаяся тем, что радиальные вентиляционные каналы открыты в зазор и по исполнению дистанционных распорок подразделены на два типа, в каналах одного типа установлены дистанционные распорки, перекрывающие вход охлаждающего потока в подпазовые каналы по их периметру, а в каналах другого типа - со стороны пространства между корпусом и спинкой статора, причем совокупности каналов каждого типа образуют чередующиеся в аксиальном направлении вентиляционные зоны, на границах которых в зазоре установлены кольцевые разделительные перегородки, а в роторе выполнены вентиляционные каналы, каждый из которых сообщается с упомянутыми вентиляционными зонами.
2. Система вентиляции электрической машины по п.1, отличающаяся тем, что кольцевые разделительные перегородки скреплены с ротором.
3. Система вентиляции электрической машины по п.1, отличающаяся тем, что кольцевые разделительные перегородки скреплены со статором.
4. Система вентиляции электрической машины по любому из пп.1-3, отличающаяся тем, что в дистанционных распорках, перекрывающих вход охлаждающего потока в подпазовые вентиляционные каналы со стороны пространства между корпусом и спинкой статора, выполнены перепускные отверстия.
5. Система вентиляции электрической машины по любому из пп.1-3, отличающаяся тем, что в спинке статора выполнены аксиальные отверстия.
6. Система вентиляции электрической машины, содержащая ротор, статор с образованными с помощью дистанционных распорок радиальными вентиляционными каналами, открытыми в пространство между корпусом и спинкой статора и закрытыми со стороны зазора, с распорками в зубцовой части статора, имеющими U-образную форму и охватывающими подпазовые вентиляционные каналы, отличающаяся тем, что закрытые со стороны зазора радиальные вентиляционные каналы чередуются в аксиальном направлении с дополнительно выполненными в статоре открытыми в зазор и в пространство между корпусом и спинкой статора радиальными вентиляционными каналами, подразделенными по исполнению дистанционных распорок на два типа, в каналах одного типа установлены дистанционные распорки, перекрывающие вход охлаждающего потока в подпазовые каналы по их периметру, а в каналах другого типа - со стороны пространства между корпусом и спинкой статора, причем совокупности каналов каждого типа образуют чередующиеся в аксиальном направлении вентиляционные зоны, на границах которых в зазоре установлены кольцевые разделительные перегородки, а в роторе выполнены вентиляционные каналы, каждый из которых сообщается с упомянутыми вентиляционными зонами.
7. Система вентиляции электрической машины по п.6, отличающаяся тем, что кольцевые разделительные перегородки скреплены с ротором.
8. Система вентиляции электрической машины по п.6, отличающаяся тем, что кольцевые разделительные перегородки скреплены со статором.
9. Система вентиляции электрической машины по любому из пп.6-8, отличающаяся тем, что в дистанционных распорках, перекрывающих вход охлаждающего потока в подпазовые вентиляционные каналы со стороны пространства между корпусом и спинкой статора, выполнены перепускные отверстия.
10. Система вентиляции электрической машины по любому из пп.6-8, отличающаяся тем, что в спинке статора выполнены аксиальные отверстия.
RU2010146618/07A 2010-11-16 2010-11-16 Система вентиляции электрической машины (варианты) RU2437195C1 (ru)

Priority Applications (3)

Application Number Priority Date Filing Date Title
RU2010146618/07A RU2437195C1 (ru) 2010-11-16 2010-11-16 Система вентиляции электрической машины (варианты)
EP11840794.9A EP2642406A1 (en) 2010-11-16 2011-04-29 Ventilation system for an electric machine (variants)
PCT/RU2011/000287 WO2012067538A1 (ru) 2010-11-16 2011-04-29 Система вентиляции электрической машины (варианты)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010146618/07A RU2437195C1 (ru) 2010-11-16 2010-11-16 Система вентиляции электрической машины (варианты)

Publications (1)

Publication Number Publication Date
RU2437195C1 true RU2437195C1 (ru) 2011-12-20

Family

ID=45404480

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010146618/07A RU2437195C1 (ru) 2010-11-16 2010-11-16 Система вентиляции электрической машины (варианты)

Country Status (3)

Country Link
EP (1) EP2642406A1 (ru)
RU (1) RU2437195C1 (ru)
WO (1) WO2012067538A1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2646856C2 (ru) * 2016-07-05 2018-03-12 Публичное акционерное общество "Силовые машины - ЗТЛ, ЛМЗ, Электросила, Энергомашэкспорт" (ОАО "Силовые машины") Устройство для охлаждения щеточно-контактного аппарата электрической машины
RU2655644C2 (ru) * 2013-05-29 2018-05-29 Спаль Аутомотиве С.Р.Л. Электрическая машина, крыльчатка и вентилятор

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3265912A (en) 1964-06-15 1966-08-09 Westinghouse Electric Corp Dynamoelectric machine
JPS62236340A (ja) 1986-04-07 1987-10-16 Hitachi Ltd 回転電機の固定子
SU1582279A1 (ru) * 1988-01-19 1990-07-30 Научно-Исследовательский Проектно-Конструкторский И Технологический Институт Завода "Сибэлектротяжмаш" Статор электрической машины
RU2095916C1 (ru) * 1996-03-22 1997-11-10 Владимир Григорьевич Шалаев Система вентиляции электрической машины
RU2095919C1 (ru) * 1996-07-11 1997-11-10 Владимир Григорьевич Шалаев Система вентиляции электрической машины
RU2246786C1 (ru) 2003-07-09 2005-02-20 Закрытое акционерное общество "Научно-производственное объединение "Ленинградский электромашиностроительный завод" (ЗАО "НПО"ЛЭЗ") Система охлаждения статора электрической машины
DE102007010674A1 (de) * 2007-03-02 2008-09-04 Alstom Technology Ltd. Rotierende elektrische Maschine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2655644C2 (ru) * 2013-05-29 2018-05-29 Спаль Аутомотиве С.Р.Л. Электрическая машина, крыльчатка и вентилятор
RU2646856C2 (ru) * 2016-07-05 2018-03-12 Публичное акционерное общество "Силовые машины - ЗТЛ, ЛМЗ, Электросила, Энергомашэкспорт" (ОАО "Силовые машины") Устройство для охлаждения щеточно-контактного аппарата электрической машины

Also Published As

Publication number Publication date
EP2642406A1 (en) 2013-09-25
WO2012067538A1 (ru) 2012-05-24

Similar Documents

Publication Publication Date Title
CN109698574B (zh) 电机
US3413499A (en) Generator air gap entrance baffle for cooling stator core end portions
US8648505B2 (en) Electrical machine with multiple cooling flows and cooling method
KR20100120267A (ko) 회전 전기 기계 및 로터
CN110445307B (zh) 定子分块、定子组件以及定子组件的冷却***
CN108880111B (zh) 具有增强的定子冷却和降低的风阻损失的发电机
JP6369145B2 (ja) 空冷モータ装置
CN111969767A (zh) 一种电机冷却***和电机
RU2437195C1 (ru) Система вентиляции электрической машины (варианты)
WO2008150199A1 (ru) Статор электрической машины
WO2018196003A1 (en) Motor ventilation structure and motor
US3514647A (en) Cooling arrangement for dynamoelectric machines
RU2438224C1 (ru) Система вентиляции электрической машины
JP2006050712A (ja) 回転電機およびその冷却方法
WO2016079806A1 (ja) 回転電機
KR20160065545A (ko) 공랭식 모터 냉각 장치
US2282283A (en) Dynamoelectric machine
RU2258295C2 (ru) Способ газового охлаждения электрической машины и электрическая машина
KR101702023B1 (ko) 전동기 냉각 시스템
RU2449451C1 (ru) Система вентиляции ротора электрической машины
RU2101836C1 (ru) Электрическая машина
US2760091A (en) Dynamo electric machine cooling
RU2524160C1 (ru) Способ газового охлаждения электрической машины и электрическая машина
US1893375A (en) Electrical machinery
RU2267214C2 (ru) Способ газового охлаждения электрической машины и электрическая машина с газовым охлаждением

Legal Events

Date Code Title Description
PC41 Official registration of the transfer of exclusive right

Effective date: 20170920