RU2434744C2 - Способ кислородно-флюсовой резки огнеупора и устройство для его осуществления - Google Patents

Способ кислородно-флюсовой резки огнеупора и устройство для его осуществления Download PDF

Info

Publication number
RU2434744C2
RU2434744C2 RU2010100297/02A RU2010100297A RU2434744C2 RU 2434744 C2 RU2434744 C2 RU 2434744C2 RU 2010100297/02 A RU2010100297/02 A RU 2010100297/02A RU 2010100297 A RU2010100297 A RU 2010100297A RU 2434744 C2 RU2434744 C2 RU 2434744C2
Authority
RU
Russia
Prior art keywords
oxygen
injector
feeder
mixture
refractory
Prior art date
Application number
RU2010100297/02A
Other languages
English (en)
Other versions
RU2010100297A (ru
Inventor
Виктор Вениаминович Дябин (RU)
Виктор Вениаминович Дябин
Юрий Васильевич Крюков (RU)
Юрий Васильевич Крюков
Игорь Андреевич Чабан (RU)
Игорь Андреевич Чабан
Евгений Георгиевич Марченко (RU)
Евгений Георгиевич Марченко
Original Assignee
Открытое акционерное общество "Западно-Сибирский металлургический комбинат"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Западно-Сибирский металлургический комбинат" filed Critical Открытое акционерное общество "Западно-Сибирский металлургический комбинат"
Priority to RU2010100297/02A priority Critical patent/RU2434744C2/ru
Publication of RU2010100297A publication Critical patent/RU2010100297A/ru
Application granted granted Critical
Publication of RU2434744C2 publication Critical patent/RU2434744C2/ru

Links

Landscapes

  • Nozzles (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

Изобретение относится к области металлургии, а именно к способам горячего ремонта огнеупорной кладки печей, и может быть использовано в любой другой отрасли промышленности для термитной и кислородно-флюсовой резки неметаллических материалов. Способ резки огнеупора включает согласованное регулирование подачи газов по технологическим трубопроводам (8, 9) двумя потоками на нагретую поверхность ремонтируемой кладки, ее размягчение до пластического состояния с образованием высокотемпературного расплава. Первый из потоков, содержащий кислород, проходит через инжектор (12) и копье (14), второй, содержащий псевдоожиженную смесь, проходит через питатель (1), инжектор (12) и копье (14). Подачу второго потока в питатель (1) осуществляют через аэратор (6) и в качестве газа-носителя используют, или сжатый воздух, или азот, или кислород. В качестве смеси для псевдоожижения используют термитную смесь, состоящую из алюминия, кремния и предварительно прокаленных оксидов железа. Резку огнеупора осуществляют струей смеси, полученной из двух потоков после смешивания в инжекторе. Технический результат состоит в создании оптимальных условий для термитной резки огнеупора с целью удаления дефектов кладки за счет многостадийного использования тепла, создаваемого компонентами термитной смеси в ходе окислительно-восстановительных реакций, а также за счет повышения степени гомогенизации псевдоожиженной кислородно-порошковой струи, выходящей из инжектора. 2 н.п. ф-лы, 1 ил.

Description

Изобретение относится к области металлургии, а именно к способам горячего ремонта огнеупорной кладки печей, и может быть использовано в любой другой отрасли промышленности для кислородно-флюсовой резки неметаллических материалов.
Известны способы кислородно-флюсовой или термитной резки бетона и железобетона, которые работают по схеме с внешней подачей флюса к резаку. Флюс к резаку в этих способах подается сжатым воздухом или, например, азотом, а в качестве расходных материалов, например, в установке УКФР-6М используются: горючий газ - пропан-бутан или метан; окислитель - кислород; флюсонесущий газ (газ-носитель) - осушенный и обезжиренный воздух по ГОСТ 17433-80 (от компрессора) или азот; флюс - железный порошок марки ПЖВ или ПЖР ГОСТ 9849-86 с частицами 120-180 мкм. Кроме того, также способы использованы в установках «ДОНМЕТ» и УГПР (ЗАО «МИДАСОТ») (Миронов В.А., Бойко М.Ю. Применение металлических порошков при кислородно-флюсовой резке материалов. Рижский технический университет, г.Рига, Латвия).
К недостаткам этих способов следует отнести то, что в них при резке всегда применяется подогревающее пламя и используются дополнительно горючие газы (метан, пропан или бутан), а в устройствах, как правило, порошкообразный флюс вдувается в режущую струю кислорода на срезе сопла копья-горелки, что приводит к нестабильности процесса резки материала.
Также известна установка для кислородной резки (заявка 95110012 RU, 29.06.1995, опубл. 20.09.1996). Сущность резки кислородным копьем заключается в прожигании отверстий струей кислорода, причем расходуемым материалом служит не только порошок флюса и кислород, но и материал самого копья.
Недостатком порошково-копьевой резки является отсутствие регулировки подачи порошка в копье, а также то, что сгорает само копье, а для удаления расплавленных остатков разрезаемого материала (бетона или огнеупора) необходимы манипуляции с копьем, которым нужно производить вращательные и возвратно-поступательные движения, чтобы удалить расплав.
Наиболее близкими к заявляемому способу и устройству является способ горячего ремонта огнеупорной кладки нагревательных печей методом керамической наплавки и устройство для его осуществления. Способ керамической наплавки включает подачу кислорода и смеси из огнеупорного наполнителя и горючей составляющей на нагретую до температуры не менее 600°С поверхность кладки, согласованное регулирование подачи чистого кислорода и смеси, расплавление огнеупорных составляющих факелом с температурой 2000-3000°С, размягчение поверхности ремонтируемой кладки до пластического состояния и их сплавление с образованием монолитной структуры при затвердевании. Подачу кислорода осуществляют двумя потоками, один из которых направляют в питатель для псевдоожижения и обогащения смеси из огнеупорного наполнителя и горючей составляющей, а другой - в инжектор, затем псевдоожиженную и обогащенную смесь подают по технологическому трубопроводу через инжектор и наплавочное копье на поверхность ремонтируемой кладки. А устройство для осуществления способа содержит питатель, технологический трубопровод, линию подачи кислорода и регулирующие устройства. Линия подачи кислорода разделена через разветвитель потока на два технологических трубопровода, один из которых подключен к питателю, а другой через дополнительно установленный инжектор подключен к наплавочному копью через технологический трубопровод подачи готовой смеси, при этом питатель в нижней его части соединен с инжектором посредством технологического трубопровода для подачи псевдоожиженной и обогащенной смеси с размещенным на нем отсечным краном, причем в верхней части питателя смонтирован загрузочный люк-крышка с клапаном безопасности, а в нижней - газораспределительная решетка (Патент RU №2291201, С21С 5/44, F27D 1/16, опубл. 2007.01.10).
Недостатком существующего способа горячего ремонта является невозможность резки выступающих частей огнеупорной кладки, т.е. дефектов (наплывов, выступов и пр.), ввиду недостаточной термичности смесей и невысоких температур расплавов. Недостатком существующего устройства является высокое газодинамическое сопротивление газораспределительной решетки, что не позволяет обеспечить поступление порошковой псевдоожиженной смеси в стехиометрическом соотношении для осуществления процесса термитной резки для удаления дефектов кладки.
Задачей настоящего изобретения является создание оптимальных условий для кислородно-флюсовой резки огнеупора с целью удаления дефектов кладки за счет многостадийного использования тепла, создаваемого компонентами термитной смеси в ходе окислительно-восстановительных реакций, а также за счет повышения степени гомогенизации псевдоожиженной кислородно-порошковой струи, выходящей из инжектора.
Поставленная задача решается следующим образом.
В предлагаемом способе кислородно-флюсовой резки огнеупора, включающем согласованное регулирование подачи газов по технологическим трубопроводам двумя потоками на нагретую поверхность ремонтируемой кладки, ее размягчение до пластического состояния с образованием высокотемпературного расплава, первый из потоков, содержащий кислород, проходит через инжектор и копье, второй, содержащий псевдоожиженную смесь, проходит через питатель, инжектор и копье, согласно изобретению, подачу второго потока в питатель осуществляют через аэратор и в качестве газа-носителя используют, или сжатый воздух, или азот, или кислород, при этом в качестве смеси для псевдоожижения используют термитную смесь, состоящую из алюминия, кремния и предварительно прокаленных оксидов железа, а резку огнеупора осуществляют струей смеси, полученной из двух потоков после смешивания в инжекторе.
А в заявляемом устройстве для кислородно-флюсовой резки огнеупора, содержащем питатель со смонтированным в верхней части загрузочным люком-крышкой с клапаном безопасности, регулирующие устройства и технологические трубопроводы для подачи газов, соединенные через инжектор посредством трубопровода подачи готовой смеси с копьем, при этом первый трубопровод непосредственно соединен с инжектором, а второй подключен к нему через питатель посредством трубопровода для подачи псевдоожиженной смеси с размещенным на нем отсечным краном, согласно изобретению, питатель снабжен аэратором, установленным в его нижней части, и футерован изнутри пористым огнеупором.
Новый технический результат от использования данного способа кислородно-флюсовой резки огнеупора при помощи устройства для его осуществления заключается в том, что при создании псевдоожиженного состояния порошковой смеси, состоящей из термитных составляющих, а именно алюминия, кремния и оксидов железа, сгорающих в присутствии кислорода, их частицы гомогенизируются, что позволяет последовательно осуществлять следующие экзотермические реакции:
- горение частиц алюминия и кремния в присутствии кислорода при контакте этих частиц с поверхностью раскаленной кладки;
- реакции СВС (самораспространяющегося высокотемпературного синтеза) с образованием оксидов алюминия и кремния и получение восстановленного железа;
- повторное окисление ранее восстановленного железа.
Суммарная термичность реакций, т.е. количество тепла на единицу массы порошкообразной термитной смеси, достаточна для расплавления матрицы огнеупора, а наличие струи кислорода позволяет удалять расплав из зоны разреза.
Вышеуказанный технический результат от использования изобретения заключается в следующем. Осуществление подачи газов двумя потоками: первым потоком, содержащим кислород и проходящим через инжектор и копье, и вторым потоком, содержащим псевдоожиженную смесь, образованную смешением газа-носителя в виде, или сжатого воздуха, или азота, или кислорода и термитной смеси, состоящим из алюминия, кремния и предварительно прокаленных оксидов железа (для исключения самовоспламенения в случае попадания масла), проходящим через питатель, инжектор и копье, обеспечивает получение равномерного потока псевдоожиженной кислородом порошковой струи из смеси, обладающей высокой тепловой эффективностью и позволяющей производить разрезание огнеупора, удаляя тем самым дефекты кладки косовых печей. Кроме того, предлагаемое устройство имеет простую конструкцию, удобную в эксплуатации и надежную в работе.
Техническая сущность изобретения заключается в следующем.
Подача газа-носителя в питатель, осуществляемая через аэратор, позволяет разрыхлить термитную смесь, способствуя лучшему ее псевдоожижению. Подача псевдоожиженной смеси второго потока в инжектор и ее последующее перемешивание с дополнительным количеством кислорода первого потока в инжекторе позволяет регулировать необходимое соотношение между газообразным кислородом и твердыми горючими составляющими, представленными алюминием и кремнием. Кислород в качестве газа-носителя порошкообразных частиц смеси во втором потоке используют при низкой термичности смеси, сжатый воздух и азот - при повышенной. Таким образом, подача готовой струи смеси через копье на разрезаемый огнеупор обеспечивает высокую тепловую эффективность (термичность процесса), что в свою очередь позволяет получить расплав огнеупора кладки.
В устройстве для кислородно-флюсовой резки огнеупора загрузочный люк-крышка с клапаном безопасности, смонтированный в верхней части питателя, позволяет производить загрузку термитной смеси, а также предотвращает попадание в питатель замасленных веществ, способных самовозгораться в присутствии кислорода. Инжектор обеспечивает бесперебойную и равномерную доставку смеси по трубопроводу подачи готовой смеси через копье к месту разреза огнеупора. Аэратор, смонтированный в нижней части питателя, создает эффект псевдоожижения термитной смеси газом-носителем: или сжатым воздухом, или кислородом, или азотом. Питатель, футерованный изнутри пористым огнеупором (например, синтезированным огнеупором, выполненным из смеси СВС, первоначально содержащим Сr2O3, В2O3 и Аl в определенных соотношениях, которая после ее инициирования и спекания превращается в пористый диборид хрома), обеспечивает повышение эффективности и безопасности псевдоожижения термитной смеси при несанкционированном попадании жиров и масел в процессе ее загрузки через люк-крышку. Подача газов по технологическим трубопроводам регулируется вентилями, а подача псевдоожиженной смеси - отсечным краном.
Предлагаемое техническое решение поясняется чертежом, где изображено устройство для кислородно-флюсовой резки огнеупора.
Устройство содержит питатель 1, футерованный пористым огнеупором 2, который снабжен люком-крышкой 3, на котором установлен клапан безопасности 4 и натяжной винт 5, в нижней части питателя 1 расположен аэратор 6 и крышка 7. Технологические трубопроводы 8 и 9 предназначены для подачи газов, трубопровод 8 - для подачи кислорода, трубопровод 9 - для подачи газа-носителя. Трубопровод 10, предназначенный для подачи псевдоожиженой смеси, с расположенным на нем отсечным краном 11 соединен с инжектором 12, который через трубопровод 13 для подачи готовой смеси присоединен к копью 14. Контрольный манометр 15 установлен в верхней части питателя 1, манометры 16 и 17 и регулирующие устройства 18 и 19 расположены на трубопроводах 8 и 9 соответственно.
Способ кислородно-флюсовой резки огнеупора реализуется в предлагаемом устройстве следующим образом.
В питатель 1, футерованный пористым огнеупором 2, загружается смесь из предварительно прокаленных оксидов железа (например, железной окалины) и кремния и алюминия (горючих составляющих). Клапан безопасности 4, представляющий собой пружину, установленный на люке-крышке 3, прижимает его. Запирание люка-крышки 3 производится натяжным винтом 5. Регулируя натяжение винта 5 по показаниям манометра 15, производят настройку клапана безопасности 4 на «критическое давление». При достижении давления в питателе 1 больше «критического» происходит сброс газа-носителя (кислорода, сжатого воздуха или азота) в атмосферу по периметру примыкания люка-крышки 3 к горловине люка через неплотности примыкания во всех случаях нештатных ситуаций (забивка линии подачи смеси к наплавочному копью, возгорание смеси на конце копья), которые связаны с возрастанием давления в питателе 1. Крышка 7 служит для возможности замены аэратора 6. Кислород поступает на трубопровод 8 к инжектору 12, а газ-носитель - на трубопровод 9 к питателю 1, где он проходит через аэратор 6, и перемешивается с термитной смесью, образуя псевдоожиженную смесь. Регулирование подачи кислорода на трубопровод 8 осуществляют регулирующим устройством 18 (вентилем), а регулирование подачи газа-носителя на трубопровод 9 производят регулирующим устройством 19. Регулирование в обоих случаях производится по показаниям контрольных манометров 16 и 17, расположенных на трубопроводах 8 и 9. По этим показаниям изменяют количество кислорода, подаваемого к инжектору 12, и количество газа-носителя к питателю 1 через аэратор 6. Для прекращения процесса резки огнеупора первоначально прекращают подачу газа-носителя вентилем 19, а затем подачу псевдоожиженной смеси отсечным краном 11, размещенным на трубопроводе 10 для подачи псевдоожиженной смеси, и в последнюю очередь закрывают подачу кислорода вентилем 18.
Пример. Реализацию способа кислородно-флюсовой резки осуществляют при горячем ремонте поверхности огнеупорной кладки коксовой печи, имеющей «заужение» на выходе коксового пирога и разогретой до рабочей температуры 1000-1100°С. Сначала готовят сухую термитную смесь следующим образом: горючие составляющие - алюминиевую пудру, кремний кристаллический (крупностью от 0 до 1 мм) и оксиды железа, например железную окалину метизного производства (крупностью от 0 до 1 мм), предварительно прокаленную от следов масла при температуре около 1000°С и далее остуженную до комнатной температуры, перемешивают и засыпают в питатель, футерованный пористым огнеупором. Затем по технологическим трубопроводам подают газы двумя потоками на нагретую до температуры 1000-1100°С поверхность ремонтируемой кладки. Первый из потоков, содержащий кислород, проходит через инжектор и копье, а второй поток, содержащий газ-носитель - сжатый воздух, подаваемый через аэратор в питатель, взаимодействует с компонентами термитной смеси, образуя псевдоожиженную порошковую смесь, также проходит через инжектор и копье. В инжекторе происходит смешивание этих двух потоков с образованием готовой псевдоожиженной порошково-кислородной смеси. Далее эта готовая смесь поступает в копье и выходящей из него струей смеси осуществляют кислородно-флюсовую резку участка огнеупорной кладки отопительного простенка (вертикала), смещенного относительно своей оси в камеру коксования на 8-10 мм. При контакте мелкодисперсных частиц горючих составляющих струи готовой смеси с раскаленной огнеупорной кладкой происходят многостадийные экзотермические реакции в кислородной атмосфере: воспламенение за счет физического тепла кладки, затем включение механизма твердофазного СВС (железная окалина + кремний + алюминий) с образованием оксидов алюминия, кремния и восстановленного железа, которое, вторично окисляясь в потоке кислорода, выделяет дополнительное тепло. В результате этих реакций на поверхности срезаемого огнеупора образуются легкоплавкие соединения продуктов реакции с огнеупором. Огнеупор постепенно «размывается», стекая вниз под действием сил тяжести, т.к. при локальном выделении тепла развиваются температуры свыше 3000°С в атмосфере кислорода.
При использовании способа кислородно-флюсовой резки огнеупора заявляемым устройством регулирование поступления потоков газов и псевдоожиженной смеси по технологическим трубопроводам в инжектор и копье дает возможность регулировать скорость их подачи в строгом соответствии со скоростью протекания окислительно-восстановительных реакций и создать оптимальные условия, которые соответствуют необходимым стехиометрическим соотношениям горючих составляющих, оксидов железа и кислорода в зоне реакции, а также синхронизировать протекающие химические реакции со скоростью удаления расплава огнеупора.
Применение предлагаемого способа кислородно-флюсовой резки огнеупора и устройства для его осуществления промышленно применимо, позволяет без охлаждения динасовой кладки коксовых печей проводить горячие ремонты, осуществлять кислородно-флюсовую резку огнеупора и удалять дефекты кладки при необходимости сохранения геометрических размеров камер коксования.

Claims (2)

1. Способ кислородно-флюсовой резки огнеупора, включающий согласованное регулирование подачи газов по технологическим трубопроводам двумя потоками на нагретую поверхность ремонтируемой кладки, ее размягчение до пластического состояния с образованием высокотемпературного расплава, при этом первый из потоков, содержащий кислород, подают через инжектор и копье, а второй, содержащий псевдоожиженную смесь, - через питатель, инжектор и копье, причем подачу второго потока в питатель осуществляют через аэратор и в качестве газа-носителя используют или сжатый воздух, или азот, или кислород, в качестве смеси для псевдоожижения используют термитную смесь, состоящую из алюминия, кремния и предварительно прокаленного оксида железа, а резку огнеупора осуществляют струей смеси, полученной из двух потоков после смешивания в инжекторе.
2. Устройство для кислородно-флюсовой резки огнеупора, содержащее питатель со смонтированным в верхней части загрузочным люком-крышкой с клапаном безопасности, регулирующие устройства и технологические трубопроводы для подачи газов, соединенные через инжектор посредством трубопровода подачи готовой смеси с копьем, при этом первый трубопровод непосредственно соединен с инжектором, а второй - подключен к нему через питатель посредством трубопровода для подачи псевдоожиженной смеси с размещенным на нем отсечным краном, причем питатель снабжен аэратором, установленным в его нижней части, и футерован изнутри пористым огнеупором.
RU2010100297/02A 2010-01-11 2010-01-11 Способ кислородно-флюсовой резки огнеупора и устройство для его осуществления RU2434744C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010100297/02A RU2434744C2 (ru) 2010-01-11 2010-01-11 Способ кислородно-флюсовой резки огнеупора и устройство для его осуществления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010100297/02A RU2434744C2 (ru) 2010-01-11 2010-01-11 Способ кислородно-флюсовой резки огнеупора и устройство для его осуществления

Publications (2)

Publication Number Publication Date
RU2010100297A RU2010100297A (ru) 2011-07-20
RU2434744C2 true RU2434744C2 (ru) 2011-11-27

Family

ID=44752063

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010100297/02A RU2434744C2 (ru) 2010-01-11 2010-01-11 Способ кислородно-флюсовой резки огнеупора и устройство для его осуществления

Country Status (1)

Country Link
RU (1) RU2434744C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2528295C1 (ru) * 2013-01-30 2014-09-10 Межрегиональное общественное учреждение "Институт инженерной физики" Устройство для кислородно-флюсовой резки

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Глизманенко Д.Л. Сварка и резка металлов. - М.: Высшая школа, 1974,с.223-228. *
Сварка. Резка. Контроль. Справочник/Под редакц. Алешина Н.П. и др., т.1. - М.: Машиностроение, 2004,с.536. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2528295C1 (ru) * 2013-01-30 2014-09-10 Межрегиональное общественное учреждение "Институт инженерной физики" Устройство для кислородно-флюсовой резки

Also Published As

Publication number Publication date
RU2010100297A (ru) 2011-07-20

Similar Documents

Publication Publication Date Title
US11248787B2 (en) Consumable tip burners, submerged combustion melters including same, and methods
CN102131941B (zh) 烧结矿的制造方法及烧结机
JP2009532661A (ja) 酸素燃料燃焼及び空気燃料燃焼の一体化
US7549858B2 (en) Combustion with variable oxidant low NOx burner
WO2012106084A2 (en) Enhanced plasma gasifiers for producing syngas
EA026227B1 (ru) Вертикальная погружная фурма
RU2699114C2 (ru) Плавильный аппарат погружного горения
CN103534339B (zh) 移动床反应器
RU2434744C2 (ru) Способ кислородно-флюсовой резки огнеупора и устройство для его осуществления
RU2453608C2 (ru) Способ производства расплавленного чугуна
CN106232835B (zh) 竖式炉和操作所述竖式炉的方法
RU2627091C2 (ru) Управляемая инжекция твердых частиц
JP2008291358A (ja) 焼結鉱の製造方法および焼結機
GB2103959A (en) Repairing refractory substrates
SK367392A3 (en) Method of working of industrial furnaces
JP5504619B2 (ja) 焼結鉱の製造方法
US6571721B1 (en) Ash melting apparatus
RU2291201C1 (ru) Способ керамической наплавки и устройство для его осуществления
RU2788662C1 (ru) Способ производства минеральной изоляции
JP7348467B2 (ja) 高炉の操業方法及び銑鉄の製造方法
JP5428194B2 (ja) 焼結機
CN114616349B (zh) 基于电炉的铁水的制造方法
JP6160839B2 (ja) 焼結機の保温炉への酸素富化方法とその保温炉
RU2340855C1 (ru) Способ сжигания углеводородного топлива в вагранке
KR790001008B1 (ko) 폐기물 처리장치의 탭홀에서의 고화방지 방법

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200112