RU2425209C2 - Способ обработки карбонатных и карбонатсодержащих пластов (варианты) - Google Patents

Способ обработки карбонатных и карбонатсодержащих пластов (варианты) Download PDF

Info

Publication number
RU2425209C2
RU2425209C2 RU2009106546/03A RU2009106546A RU2425209C2 RU 2425209 C2 RU2425209 C2 RU 2425209C2 RU 2009106546/03 A RU2009106546/03 A RU 2009106546/03A RU 2009106546 A RU2009106546 A RU 2009106546A RU 2425209 C2 RU2425209 C2 RU 2425209C2
Authority
RU
Russia
Prior art keywords
water
solution
waste
lignosulfonate
hydrochloric acid
Prior art date
Application number
RU2009106546/03A
Other languages
English (en)
Other versions
RU2009106546A (ru
Inventor
Вадим Евгеньевич Андреев (RU)
Вадим Евгеньевич Андреев
Юрий Алексеевич Котенев (RU)
Юрий Алексеевич Котенев
Олег Анатольевич Пташко (RU)
Олег Анатольевич Пташко
Геннадий Семенович Дубинский (RU)
Геннадий Семенович Дубинский
Ривнер Фазылович Ганиев (RU)
Ривнер Фазылович Ганиев
Леонид Ефимович Украинский (RU)
Леонид Ефимович Украинский
Ринат Раисович Хузин (RU)
Ринат Раисович Хузин
Олег Владиславович Каптелинин (RU)
Олег Владиславович Каптелинин
Антон Вадимович Андреев (RU)
Антон Вадимович Андреев
Максим Юрьевич Котенев (RU)
Максим Юрьевич Котенев
Original Assignee
Вадим Евгеньевич Андреев
Юрий Алексеевич Котенев
Олег Анатольевич Пташко
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Вадим Евгеньевич Андреев, Юрий Алексеевич Котенев, Олег Анатольевич Пташко filed Critical Вадим Евгеньевич Андреев
Priority to RU2009106546/03A priority Critical patent/RU2425209C2/ru
Publication of RU2009106546A publication Critical patent/RU2009106546A/ru
Application granted granted Critical
Publication of RU2425209C2 publication Critical patent/RU2425209C2/ru

Links

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

Изобретение относится к нефтегазодобывающей промышленности, а именно к добыче нефти и газа из неоднородных обводняющихся пластов на любой стадии разработки газовых и нефтяных месторождений. По одному варианту в способе обработки карбонатных и карбонатсодержащих пластов путем закачки в пласт через скважину гелеобразующего кислотного раствора, содержащего отход производства синтетического цеолита, лигносульфонат -ЛС, соляную кислоту -СК и воду, в качестве отхода используют жидкий отход производства синтетического цеолита NaX и/или NaA+NaA-У, закачку осуществляют в две стадии с продавкой в пласт водой и остановкой на время гелеобразования, используя на первой стадии указанный раствор при следующем соотношении компонентов, мас.%: указанный отход 50,0-60,0, ЛС 0,5-5,0, СК 7,0-12,0, вода - остальное, на второй стадии - указанный раствор при следующем соотношении компонентов, мас.%: указанный отход 20,0-40,0, ЛС 0,5-5,0, СК 10,0-15,0, вода - остальное. По другому варианту в способе обработки указанных пластов путем закачки в пласт через скважину гелеобразующего кислотного раствора, содержащего отход производства синтетического цеолита, ЛС, СК и воду, в качестве отхода используют жидкий отход производства синтетического цеолита NaX и/или NaA+NaA-У при следующем соотношении компонентов, мас.%: указанный отход 20,0-40,0, ЛС 0,5-5,0, СК 10,0-15,0, вода - остальное, и предварительно проводят последовательную закачку 7-12%-ного раствора СК, первого буфера пресной воды, жидкого отхода производства указанного выше цеолита, содержащего 2-5 мас.% ЛС, второго буфера пресной воды, 7-12%-ного раствора СК и продавку водой в объеме НКТ и устьевой обвязки оборудования. Изобретение развито в зависимых пунктах. Технический результат - повышение эффективности обработки пластов и расширение температурных границ применения способа. 2 н. и 8 з.п. ф-лы, 3 табл.

Description

Изобретение относится к нефтегазодобывающей промышленности, а именно к добыче нефти и газа из неоднородных обводняющихся пластов на любой стадии разработки газовых и нефтяных месторождений, в частности к способам с применением реагентов, кислот и гелеобразующих составов на основе силикатов.
Изобретение может быть использовано для повышения эффективности обработки призабойной зоны карбонатного и карбонатсодержащего пласта за счет более качественной изоляции обводнившихся порово-трещинных транспортных каналов и увеличения глубины проникновения кислоты в пласт.
Солянокислотные обработки (СКО) являются основным способом воздействия на карбонатные пласты. Основными недостатками солянокислотных обработок являются уменьшение эффективности с ростом кратности воздействия и низкая эффективность или отсутствие положительного эффекта в обводненных пластах. Эффективность СКО можно увеличить за счет увеличения глубины проникновения обрабатывающего состава в пласт с сохранением его растворяющих и разъедающих свойств, что, в свою очередь, достигается уменьшением скорости растворения породы в кислоте и использованием соляной кислоты в комбинации с водоизолирующими композициями.
Известен способ обработки карбонатного пласта, по которому в пласт закачивают обратную эмульсию, затем чередующиеся между собой порции кислоты и гидрофобизирующего агента. В качестве гидрофобизирующего состава в пласт закачивают 20%-ный углеводородный раствор смыленного таллового пека [А.С. СССР №1624134, МКИ Е21В 43/27, опубл. 30.01.1991]. Этот способ имеет недостаточную эффективность, кислота реагирует с карбонатами довольно быстро и глубина обработки недостаточна, продукты реакции извлекаются с сильным осложнением из-за эмульгирования, снижение обводнения продукции скважины при такой обработке незначительно.
Известен способ обработки пластов, в котором используется состав, включающий соляную кислоту и жидкое стекло [В.И.Кудинов, Б.М.Сучков. "Методы повышения производительности скважин", Самара: Кн. изд-во, 1996, с.95]. Основным недостатком его является невысокая эффективность, связанная с малой глубиной проникновения кислотного состава в пласт из-за большой скорости реакции с карбонатной породой.
Таким образом, для повышения эффективности обработки важно доставить кислоту не прореагировавшей как можно глубже в пласт. Известно, что замедлителями скорости реакции растворения карбоната в соляной кислоте являются алюмосиликаты (нефелин, сиенитовый концентрат или цеолит) и лигносульфонаты (сухие или жидкие лигносульфонаты, лигнотин и др.). Известны способы обработки пластов с использованием кислотного состава, снижающего скорость растворения карбоната в 10-50 раз (в зависимости от глубины реакции) [Лозин Е.В., Хлебников В.Н. Применение коллоидных реагентов для повышения нефтеотдачи. - Уфа, изд. БашНИПИнефть, 2003]. Использование высокоминерализованной воды (плотностью более 1100 кг/м3) или ее смеси с метанолом позволяет использовать кислотный состав в осенне-зимний период и дополнительно замедлять скорость растворения карбонатов.
Известен способ регулирования проницаемости неоднородного пласта, включающий двухстадийную закачку в пласт через скважину гелеобразующего кислотного раствора, продавку его в пласт водой и остановку на время гелеобразования, с использованием гелеобразующего раствора в виде кислотного раствора алюмосиликата или жидкого стекла, причем на первой стадии закачивают указанный гелеобразующий раствор с концентрацией выше порога гелеобразования, а на второй стадии закачивают тот же раствор с концентрацией ниже порога гелеобразования [патент РФ №2184841, Е21В 43/22, опубл. 10.07.2002].
Наиболее близким по сущности и достигаемому результату является способ регулирования проницаемости неоднородного пласта, включающий закачку в пласт через скважину гелеобразующего кислотного раствора, продавку его в пласт водой и остановку на время гелеобразования, с использованием гелеобразующего раствора, содержащего, мас.%: алюмосиликат (в пересчете на сухое вещество) 0,5-10,0, лигносульфонат (в пересчете на сухое вещество) 0,5-10,0, соляная кислота - остальное, причем алюмосиликаты могут быть использованы природные или синтетические, в том числе и отходы производства цеолитов - цеолитные шламы, соляную кислоту готовят смешением концентрированной кислоты с пресной или минерализованной водой [патент РФ №2194157, Е21В 43/22, опубл. 10.12.2002].
Эти способы недостаточно эффективны, так как снижение обводненности продукции скважины невелико из-за недостаточной плотности образующегося геля и недостаточной глубины проникновения активной кислоты, есть технологические затруднения при приготовлении рабочих растворов на скважине.
Целью изобретения является повышение эффективности обработки трещиновато-пористых карбонатных и карбонатсодержащих пластов и расширение температурных границ применения способа за счет более качественной изоляции обводнившихся порово-трещинных транспортных каналов, увеличения глубины проникновения кислоты в пласт и охвата призабойной зоны пласта воздействием.
Поставленная цель достигается тем, что в способе обработки карбонатных и карбонатсодержащих пластов, включающем закачку в пласт через скважину гелеобразующего кислотного раствора, содержащего отход производства синтетического цеолита, лигносульфонат, соляную кислоту и воду, что в качестве указанного отхода используют жидкий отход производства синтетического цеолита NaX и/или NaA+NaA-У, закачку осуществляют в две стадии с продавкой в пласт водой и остановкой на время гелеобразования, используя на первой стадии указанный раствор при следующем соотношении его компонентов, мас.%:
Указанный отход 50,0-60,0
Лигносульфонат 0,5-5,0
Соляная кислота 7,0-12,0
Вода остальное
а на второй стадии - указанный раствор при следующем соотношении его компонентов, мас.%:
Указанный отход 20,0-40,0
Лигносульфонат 0,5-5,0
Соляная кислота 10,0-15,0
Вода остальное
Причем смешивание раствора соляной кислоты и указанного отхода с добавкой лигносульфоната осуществляют на устье путем закачки через волновой смеситель, установленный на устье скважины, башмак насосно-компрессорных труб оборудуют гидравлическим волновым генератором и закачку всех растворов в пласт ведут через этот гидравлический волновой генератор, используемая для продавки вода дополнительно содержит метанол при следующем соотношении компонентов, мас.%:
Метанол 50-60
Вода минерализованная, ρ=1,1-1,24 г/см3 остальное
используемый на втором этапе указанный раствор дополнительно содержит 20-32 мас.% метанола.
Поставленная цель также достигается тем, что по другому варианту в способе обработки карбонатных и карбонатсодержащих пластов, включающем закачку в пласт через скважину гелеобразующего кислотного раствора, содержащего отход производства синтетического цеолита, лигносульфонат, соляную кислоту и воду, в качестве указанного отхода используют жидкий отход производства синтетического цеолита NaX и/или NaA+NaA-У при следующем соотношении компонентов, мас.%:
Указанный отход 20,0-40,0
Лигносульфонат 0,5-5,0
Соляная кислота 10,0-15,0
Вода остальное
и предварительно проводят последовательную закачку 7-12%-ного раствора соляной кислоты, первого буфера пресной воды, жидкого отхода производства синтетического цеолита NaX и/или NaA+NaA-У, содержащего 2-5% лигносульфоната, второго буфера пресной воды, 7-12%-ного раствора соляной кислоты и продавку водой в объеме насосно-компрессорных труб и устьевой обвязки оборудования.
Причем при больших объемах закачиваемых растворов выполняют 2-4 цикла последовательных закачек в указанной последовательности с продавкой после последней части раствора соляной кислоты, башмак насосно-компрессорных труб оборудуют гидравлическим волновым генератором и закачку всех растворов в пласт ведут через этот гидравлический волновой генератор, используемая для продавки вода дополнительно содержит метанол при следующем соотношении компонентов, мас.%:
Метанол 50-60
Вода минерализованная, ρ=1,1-1,24 г/см3 остальное
указанный раствор дополнительно содержит 20-32 мас.% метанола.
Отличие заявляемого способа от известного заключается в том, что используется кислотный гелеобразующий раствор в виде кислотного раствора силиката натрия и сульфата натрия, с остаточным содержанием алюмосиликатов, являющегося жидким отходом производства синтетического цеолита NaX (по ТУ 38.10281-88) и/или NaA и NaA-У (по ТУ 2163-003-05766557-97), содержащим систему Na2O, Al2O3, SiO2, H2O, в этот раствор сделана добавка поверхностно-активного вещества лигносульфоната, причем на первой стадии закачивают кислотный гелеобразующий раствор с концентрацией силиката натрия, обеспечивающей создание более плотного и менее проницаемого геля, а на второй стадии закачивают тот же раствор с концентрацией силиката натрия, замедляющей процесс растворения карбонатов соляной кислотой, кислотный гелеобразующий раствор содержит дополнительно лигносульфонат, для упрочнения геля и усиления сцепления его с поверхностью порово-трещинного пространства, а на второй стадии лигносульфонат участвует в замедлении реакции кислоты с карбонатами, дополнительно обеспечивая более глубокое проникновение в пласт активной кислоты. Снижение концентрации химического реагента в последующей оторочке и использование различия физико-химических свойств растворов гелеобразователя при концентрациях гелеобразователя выше и ниже порога гелеобразования известно (патент РФ 2184841), однако заявляемая совокупность существенных признаков, а именно использование в качестве гелеобразователя и далее для замедления реакции кислоты нового компонента - жидкого отхода производства синтетического цеолита NaX (по ТУ 38.10281-88) и/или NaA и NaA-У (по ТУ 2163-003-05766557-97), ранее не использовавшегося, и добавление лигносульфоната позволяет одним и тем же химическим реагентам на первом этапе более значительно уменьшать проницаемость высокопроницаемых зон и пропластков, а на втором этапе - повышать проницаемость низко- и среднепроницаемых, не охваченных фильтрацией, участков неоднородного пласта. Кроме того, предложенная последовательность операций в сочетании с применяемыми веществами ранее не использовалась. На основании вышеизложенного можно сделать вывод о соответствии заявляемого способа критерию «изобретательский уровень».
Для приготовления замедленной кислотной и гелеобразующей композиции использовались:
- жидкий отход производства синтетического цеолита NaX (по ТУ 38.10281-88) и/или (NaA и NaA-У) (по ТУ 2163-003-05766557-97), содержащий систему Na2O, Al2O3, SiO2, H2O, представляющий собой раствор с содержанием силиката натрия 6,5-12,0 мас.%, сульфата натрия 3,5-8,5 мас.%, алюмосиликата натрия в виде примесей до 1,5 мас.%;
- поверхностно-активное вещество - лигносульфонат;
- соляная кислота, выпускаемая по ТУ 212204200203306-98.
Были проведены лабораторные эксперименты для определения необходимых концентраций компонентов обрабатывающих растворов на разных стадиях технологического процесса обработки пласта. При добавлении силиката натрия в состав раствора соляной кислоты получаются два типа растворов (табл.1) - замедленная соляная кислота (с концентрацией силиката натрия 4% и менее, опыты №№1-11) и гелеобразующий состав (с концентрацией силиката натрия 5% и более, опыты №№12-22).
Таблица 1
Влияние содержания силиката натрия (СН) и соляной кислоты в растворе на процесс гелеобразования (избыток карбоната - не менее 50%, t=20°C)
№ опыта Концентрация, % Результаты № опыта Концентрация, % Результаты
СН HCl СН HCl
1 2 10 Взвесь 12 6 6 Часть объема - взвесь, часть - гель
2 3 10 Взвесь 13 6 10 Плотный гель
3 4 10 Взвесь 14 7 10 Плотный гель
4 5 10 Взвесь 15 8 10 Плотный гель
5 2 12 Взвесь 16 9 10 Плотный гель
6 3 15 Взвесь 17 12 10 Плотный гель
7 4 12 Взвесь 18 7 7 Плотный гель
8 5 15 Взвесь 19 8 8 Плотный гель
9 3 3 Взвесь 20 9 9 Плотный гель
10 4 4 Взвесь 21 10 10 Плотный гель
11 5 5 Часть объема - взвесь, часть - гель 22 12 12 Плотный гель
Лигносульфонат наряду с силикатами замедляет реакцию соляной кислоты с карбонатной породой. Поэтому применение лигносульфоната совместно с силикатом позволит увеличить глубину, а значит и эффективность обработки. Механизм совместного замедляющего действия на реакцию соляной кислоты с карбонатами силиката и лигносульфоната состоит в следующем. Коллоидная и полимерная природа растворов силикатов и лигносульфонатов в соляной кислоте приводит к тому, что уменьшается скорость диффузии ионов водорода в растворе. В результате взаимодействия кислотного раствора силиката и лигносульфоната с карбонатами на поверхности пор и трещин образуется защитный гелеобразный слой, что сопровождается снижением скорости реакции кислоты с карбонатной или карбонатсодержащей породой. Лигносульфонат увеличивает адгезию геля на поверхности порово-трещинного пространства и плотность слоя геля на этой поверхности.
Добавка лигносульфоната повышает прочность образующегося геля и соответственно его водоизолирующие свойства. Лигносульфонат, обладая свойствами ПАВ, увеличивает прочность сцепления образующегося геля с поверхностью порово-трещинного пространства. Наличие лигносульфоната повышает вязкость гелеобразующего раствора, и он поступает в наиболее крупные трещины и поры, что придает способу селективность воздействия. Наличие поверхностно-активного вещества в кислотном растворе обеспечивает снижение поверхностного натяжения на границе раздела фал и более глубокое проникновение кислотного раствора в пласт.
Добавление метанола в замедленный кислотный раствор и продавочный раствор с одной стороны понижает температуру замерзания растворов, что расширяет границы применимости способа в сторону более низких отрицательных температур, с другой стороны наличие метанола в кислотном растворе дополнительно замедляет реакцию кислоты с карбонатами, увеличивая глубину кислотной обработки, и при этом облегчает очистку призабойной зоны от продуктов реакции при вызове притока и отработке скважины на факел, кроме того, метанол является ингибитором гидратообразования. То есть применение метанола в данном случае дает комплексный положительный эффект.
Испытания способа обработки карбонатных и карбонатсодержащих пластов проводились на установке УИПК-1М. Модель пласта была представлена образцами керна с размером 030 мм, длиной 1=40 мм. Результаты опытов с кислотным гелеобразующим составом на основе соляной кислоты и отхода производства синтетического цеолита NaX и NaA, содержащим силикат натрия, и дополнительно лигносульфонат представлены в табл.2.
Таблица 2
Оценка степени водоизоляции при использовании в способе обработки карбонатных и карбонатсодержащих пластов состава, содержащего соляную кислоту, отход производства синтетического цеолита NaX и NaA и лигносульфонат.
№ опыта Состав раствора Проницаемость керна до обработки, по воде, 10-3 мкм2 Градиент давления при определении проницаемости, МПа/м После обработки
Проницаемость по воде, 10-3 мкм2/кратность уменьшения Градиент давления, при котором возникла фильтрация, МПа/м /кратность возрастания градиента давления
1 №13 табл.1 113 1.8 4,9/23,1 2,8/1,5
2 №16 табл.1 119 1.8 5,7/20,9 2,9/1,6
3 №13 табл.1+0,5% лигносульфонат 137 1,8 4,6/29,8 3,6/2,0
4 №16 табл.1+0,5% лигносульфонат 121 1,8 4,0/30,2 3,8/2,1
5 №13 табл.1+2,0% лигносульфонат 194 1,8 6,2/31,3 3,7/2,1
6 №16 табл.1+2,0% лигносульфонат 197 1,8 6,1/32,3 3,7/2,1
7 №13 табл.1+5,0% лигносульфонат 312 1,8 9,4/33,2 4,0/2,2
8 №16 табл.1+5,0% лигносульфонат 328 1,8 9,7/33,8 4,2/2,3
9 Прототип (нефелин 8%+HCl 8%) 189 1,8 10,8/17,5 2,5/1,4
10 Прототип (нефелин 8%+HCl 8%) 123 1,8 9,2/13,4 2,0/1,1
По данным табл.1 и 2 видно, что в зависимости от концентрации компонентов состав, предлагаемый для использования в способе обработки карбонатных и карбонатсодержащих пластов, проявляет свойства гелеобразующего состава, способного изолировать приток воды, или замедленного кислотного состава, что позволяет комплексно решить задачу водоизоляции и интенсификации притока нефти и газа в скважину. А также видно, что водоизоляционные возможности предлагаемого способа выше, чем у прототипа (табл.2).
По физико-химическим показателям натрийсиликатсодержащий состав соответствует требованиям и значениям, приведенным в таблице 3.
Таблица 3
Наименование показателя Значение Метод испытания
1. Внешний вид Слабомутная жидкость от коричневого до темно-коричневого цвета визуально
2. Плотность при 20°С, кг/м3 1,0-1,25 ГОСТ 18995.7-73
3. Массовая концентрация сульфата натрия, г/дм3, в пределах 35-85 ГОСТ 27025-86
4. Массовая концентрация оксида кремния (IV), г/дм3 40-80 ГОСТ 27025-86
5. Массовая концентрация оксида натрия, г/дм3, в пределах 25-40 ГОСТ 27025-86
Закачка составляющих обрабатывающего раствора (раствора соляной кислоты и жидкого отхода производства синтетического цеолита NaX, и/или NaA и NaA-У с добавкой лигносульфоната) через волновой смеситель, установленный на устье скважины [Ганиев Р.Ф., Украинский Л.Е., Андреев В.Е., Котенев Ю.А. Проблемы и перспективы волновой технологии многофазных систем в нефтяной и газовой промышленности. - СПб.: ООО «Недра», 2008. - 214 с. С.83, 176-177] позволяет достигнуть высокой степени перемешивания компонентов и однородности при большой скорости закачки, что позволяет сократить время подготовительных работ и достигнуть большей эффективности обработки. При этом волновое воздействие по существующему гидравлическому каналу (колонна насосно-компрессорных труб) будет передаваться на забой скважины и на призабойную зону пласта, что, в свою очередь, также положительно сказывается на эффективности обработки [Ганиев Р.Ф., Украинский Л.Е., Андреев В.Е., Котенев Ю.А. Проблемы и перспективы волновой технологии многофазных систем в нефтяной и газовой промышленности. - СПб.: ООО «Недра», 2008. - 214 с.].
Когда башмак насосно-компрессорных труб оборудуют гидравлическим волновым генератором и закачку всех растворов в пласт ведут через этот волновой генератор, достигается высокая степень перемешивания компонентов и однородности получаемого в призабойной зоне раствора, естественно это позволяет сократить время подготовительных работ. Однако параллельно с этим происходит волновое воздействие на призабойную зону пласта, позволяющее более тщательно заполнить порово-трещинное пространство породы гелеобразующим составом и создать более плотный и непроницаемый гелевый экран (барьер), а на стадии кислотного воздействия за счет волновых эффектов происходит лучшее проникновение кислотного раствора в пласт, и тогда обработке подвергается большая зона вокруг скважины, которая ранее не была охвачена фильтрацией. Названные процессы кратно увеличивают эффективность водоизоляции и кислотной обработки для интенсификации притока нефти и газа [Ганиев Р.Ф., Украинский Л.Е., Андреев В.Е., Котенев Ю.А. Проблемы и перспективы волновой технологии многофазных систем в нефтяной и газовой промышленности. - СПб.: ООО «Недра», 2008. - 214 с.].
Пример 1. Для обработки выбрана добывающая нефтяная скважина, эксплуатирующая обводненный пласт толщиной 15 м, кровля пласта находится на глубине 2020 м. Пористость пласта m=0,2. Скважина обсажена эксплуатационной колонной 146 мм, спущены насосно-компрессорные трубы (НКТ) диаметром 73 мм до глубины 2000 м. Пластовое давление 20,5 МПа, пластовая температура 78°С. Определенная в начале работ приемистость пласта равна 280 м3/сут при 12 МПа.
Приготовили первый рабочий раствор: насосным агрегатом ЦА-320 в технологическую емкость закачали 9 м3 жидкого отхода производства синтетического цеолита NaX, кислотным агрегатом СИН-32 закачали 6 м3 23% раствора соляной кислоты с одновременным перемешиванием по круговой схеме при помощи насосного агрегата ЦА-320, добавили 250 кг лигносульфоната и перемешивали в течение 30 мин. по круговой схеме при помощи насосного агрегата ЦА-320.
Обвязали устьевую арматуру с насосным агрегатом ЦА-320. При открытом затрубном пространстве (соединено в циркуляционную емкость) последовательно закачали: 2 м3 пресной (технической) воды, 5 м3 приготовленного первого рабочего раствора состава, мас.%: жидкий отход производства синтетического цеолита NaX 60,0, лигносульфонат 1.7, соляная кислота 9,2, вода 29,1; закрыли затрубное пространство и последовательно закачали: 10 м3 указанного приготовленного первого рабочего раствора, 7 м3 технической воды. Устье скважины загерметизировали и оставили скважину в покое на 48 часов, для гелеобразования.
Приготовили второй рабочий раствор (раствор замедленной кислоты): насосным агрегатом ЦА-320 в технологическую емкость закачали 6 м3 жидкого отхода производства синтетического цеолита NaX и 9,1 м3 пресной воды, кислотным агрегатом СИН-32 закачали 14,9 м3 23% раствора соляной кислоты с одновременным перемешиванием по круговой схеме при помощи насосного агрегата ЦА-320, добавили 200 кг лигносульфоната и перемешивали в течение 30 минут по круговой схеме при помощи насосного агрегата ЦА-320.
Обвязали устьевую арматуру с насосным агрегатом ЦА-320. Спрессовали нагнетательную линию давлением 18 МПа. При открытом затрубном пространстве (соединено в циркуляционную емкость) последовательно закачали: 6 м3 приготовленного второго рабочего раствора состава, мас.%: жидкий отход производства синтетического цеолита NaX 20,0, лигносульфонат 0,7, соляная кислота 13,7, вода 65,6: закрыли затрубное пространство и последовательно закачали: 24 м3 приготовленного указанного второго рабочего раствора, 6,7 м3 технической воды. Устье скважины загерметизировали и оставили скважину в покое на 2 часа, для реакции.
Нагнетанием инертных газов в затрубное пространство компрессором СД-9 понизили уровень жидкости в скважине. Запустили скважину для очистки призабойной зоны пласта от продуктов реакции на факел и отработали на шайбах ⌀8÷12 мм в течение 36 ч. Далее скважину запустили в шлейф для эксплуатации. Поступления воды в ствол скважины нет. Дебит скважины увеличился на 23%.
Пример 2. Для обработки выбрана добывающая нефтяная скважина, эксплуатирующая обводненный пласт толщиной 18 м, кровля пласта находится на глубине 1980 м. Пористость пласта m=0,2. Скважина обсажена эксплуатационной колонной 146 мм, спущены насосно-компрессорные трубы (НКТ) диаметром 73 мм до глубины 1990 м. Пластовое давление 20 МПа, пластовая температура 78°С. Определенная в начале работ приемистость пласта равна 300 м3/сут при 12 МПа.
Установили на устье и присоединили к трубному пространству волновой смеситель, к нему присоединили две напорные линии для подачи реагентов и обвязали первую с насосным агрегатом ЦА-320, вторую с кислотным агрегатом СИН-32. Приготовили раствор жидкого отхода производства синтетического цеолита NaA и NaA-У с лигносульфонатом, для чего насосным агрегатом ЦА-320 в технологическую емкость закачали 24 м3 жидкого отхода производства синтетического цеолита NaA и NaA-У (соотношении 1:1), добавили 800 кг лигносульфоната и перемешивали в течение 15 минут по круговой схеме при помощи насосного агрегата ЦА-320. Далее через волновой смеситель в скважину одновременно закачали при открытом затрубном пространстве (соединено в циркуляционную емкость) 2,4 м3 23% соляной кислоты (кислотным агрегатом СИН-32) и 3,6 м3 производства синтетического цеолита NaA и NaA-У с добавкой лигносульфоната (насосным агрегатом ЦА-320); закрыли затрубное пространство и одновременно закачали 13,6 м3 23% соляной кислоты (кислотным агрегатом СИН-32) и 20,4 м3 жидкого отхода производства синтетического цеолита NaA и NaA-У с добавкой лигносульфоната (насосным агрегатом ЦА-320); затем продавили 6,5 м3 технической воды. Устье скважины загерметизировали и оставили скважину в покое на 36 часов для гелеобразования.
Приготовили раствор жидкого отхода производства синтетического цеолита NaA и NaA-У (в соотношении 1:1) с лигносульфонатом, для чего насосным агрегатом ЦА-320 в технологическую емкость закачали 15 м3 жидкого отхода производства синтетического цеолита NaA и NaA-У и 8 м3 пресной воды, добавили 900 кг лигносульфоната и перемешивали в течение 15 мин по круговой схеме при помощи насосного агрегата ЦА-320. Далее через волновой смеситель в скважину одновременно закачали при открытом затрубном пространстве (соединено в циркуляционную емкость) 3,7 м3 23% соляной кислоты (кислотным агрегатом СИН-32) и 2,3 м3 раствора жидкого отхода производства синтетического цеолита NaA и NaA-У с добавкой лигносульфоната (насосным агрегатом ЦА-320); закрыли затрубное пространство и одновременно закачали 33,3 м3 23% соляной кислоты (кислотным агрегатом СИН-32) и 20,1 м3 жидкого отхода производства синтетического цеолита NaA и NaA-У с добавкой лигносульфоната (насосным агрегатом ЦА-320); затем продавили 6,5 м3 технической воды.
Устье скважины загерметизировали и оставили скважину в покое на 1,5 ч для реакции.
Нагнетанием инертных газов в затрубное пространство компрессором СД-9 понизили уровень жидкости в скважине. Запустили скважину для очистки призабойной зоны пласта от продуктов реакции на факел и отработали на шайбах ⌀8÷12 мм в течение 36 ч. Далее скважину запустили в шлейф для эксплуатации. Поступления воды в ствол скважины нет. Дебит скважины увеличился на 29%.
Пример 3. Для обработки выбрана добывающая газовая скважина, эксплуатирующая обводненный пласт толщиной 19 м, кровля пласта находится на глубине 2080 м. Пористость пласта m=0,24. Скважина обсажена эксплуатационной колонной 168 мм, спущены насосно-компрессорные трубы (НКТ) диаметром 73 мм до глубины 2060 м. Пластовое давление 21,2 МПа, пластовая температура 79°С. Определенная в начале работ приемистость пласта равна 380 м3/сут при 12,3 МПа.
Присоединили к трубному пространству через тройник две напорные линии для подачи реагентов и обвязали первую с насосным агрегатом ЦА-320, вторую с кислотным агрегатом СИН-32. Приготовили водометанольный раствор для продавки, для чего в емкость закачали 3 м3 (56 мас.%) минерализованной воды с р=1,14 г/см3 и 3,5 м3 (44 мас.%) метанола, перемешали в течение 5 минут. Приготовили раствор жидкого отхода производства синтетического цеолита NaX+NaA (в соотношении 1:1) с лигносульфонатом, для чего насосным агрегатом ЦА-320 в технологическую емкость закачали 20 м3 жидкого отхода производства синтетического цеолита NaA, добавили 1 тонну лигносульфоната с одновременным перемешиванием и перемешивали в течение 20 мин по круговой схеме при помощи насосного агрегата ЦА-320. Одновременно с этим приготовили 20 м 12% раствора соляной кислоты, для чего во вторую технологическую емкость закачали 9,9 м3 пресной воды и агрегатом СИН-32 закачали 10,1 м3 23% раствора соляной кислоты (товарная соляная кислота) и перемешивали в течение 10 мин по круговой схеме при помощи кислотного агрегата СИН-32. Далее в скважину закачали при открытом затрубном пространстве (соединено в циркуляционную емкость) 6,2 м3 12% соляной кислоты (кислотным агрегатом СИН-32), закрыли затрубное пространство и закачали последовательно: 3,8 м3 12% соляной кислоты (12 мас.% кислоты и 88 мас.% воды); 0,5 м3 пресной воды; 20 м3 (25 мас.%) жидкого отхода производства синтетического цеолита NaX с добавкой 5 мас.% лигносульфоната (насосным агрегатом ЦА-320); 0,5 м3 пресной воды; 10 м3 12% (…12 мас.% кислоты и …88 мас.% воды) соляной кислоты (кислотным агрегатом СИН-32) и 6,5 м3 водометанольного раствора (насосным агрегатом ЦА-320). Устье скважины загерметизировали и оставили скважину в покое на 10 ч для гелеобразования.
Приготовили 60 м3 замедленного кислотного раствора, для чего насосным агрегатом ЦА-320 в технологическую емкость закачали 18 м3 жидкого отхода производства синтетического цеолита NaX и 5 м3 пресной воды; в эту же технологическую емкость закачали 37 м3 23% соляной кислоты (кислотным агрегатом СИН-32) и перемешивали в течение 20 мин по круговой схеме при помощи насосного агрегата ЦА-320; затем добавили 800 кг лигносульфоната и перемешивали в течение 15 мин по круговой схеме при помощи насосного агрегата ЦА-320 (мас.%: 30 отхода, 14,2… кислоты, …54,5 воды и 1,3… лигносульфоната). Приготовили водометанольный раствор для продавки, для чего в емкость закачали 3 м3 (…56 мас.%) минерализованной воды с р=1,14 г/см3 и 3,5 м3 (…44 мас.%) метанола, перемешали в течение 5 мин. Далее в скважину закачали при открытом затрубном пространстве (соединено в циркуляционную емкость) 6,2 м3 замедленного кислотного раствора (кислотным агрегатом СИН-32); закрыли затрубное пространство и закачали 53,8 м замедленного кислотного раствора (кислотным агрегатом СИН-32), затем продавили 6,5 м3 водометанольного раствора. Устье скважины загерметизировали и оставили скважину в покое на 2 часа для реакции.
Нагнетанием инертных газов в затрубное пространство компрессором СД-9 понизили уровень жидкости в скважине. Запустили скважину для очистки призабойной зоны пласта от продуктов реакции на факел и отработали на шайбах ⌀8÷14 мм в течение 60 ч. Далее скважину запустили в шлейф для эксплуатации. Поступления воды в ствол скважины нет. Дебит скважины увеличился на 33,4%.
Пример 4. Для обработки выбрана добывающая нефтяная скважина, эксплуатирующая обводненный пласт толщиной 16 м, кровля пласта находится на глубине 2120 м. Пористость пласта m=0,21. Скважина обсажена эксплуатационной колонной 146 мм, спущены насосно-компрессорные трубы (НКТ) диаметром 73 мм до глубины 2128 м, башмак НКТ оборудован волновым генератором типа СГГК (конструкция НЦ НВМТ РАН). Пластовое давление 21 МПа, пластовая температура 78°С. Определенная в начале работ приемистость пласта равна 240 м3/сут при 11,8 МПа.
Приготовили первый рабочий раствор: насосным агрегатом ЦА-320 в технологическую емкость закачали 10 м3 жидкого отхода производства синтетического цеолита NaX+NaA+NaA-Y, кислотным агрегатом СИН-32 закачали 6 м3 23% раствора соляной кислоты с одновременным перемешиванием по круговой схеме при помощи насосного агрегата ЦА-320, добавили 640 кг лигносульфоната и перемешивали в течение 30 мин по круговой схеме при помощи насосного агрегата ЦА-320 (мас.%: 60,0 отхода, …10,0 кислоты, 26,0… воды и …4,0 лигносульфоната).
Обвязали устьевую арматуру с насосным агрегатом ЦА-320. При открытом затрубном пространстве (соединено в циркуляционную емкость) последовательно закачали: 2 м3 пресной (технической) воды, 6,4 м3 приготовленного первого рабочего раствора; закрыли затрубное пространство и последовательно закачали: 9,6 м3 приготовленного первого рабочего раствора, 7 м3 технической воды. Устье скважины загерметизировали и оставили скважину в покое на 48 ч для гелеобразования.
Приготовили второй рабочий раствор (раствор замедленной кислоты): насосным агрегатом ЦА-320 в технологическую емкость закачали 12,8 м3 жидкого отхода производства синтетического цеолита NaX+NaA+NaA-Y и 1,9 м3 пресной воды, кислотным агрегатом СИН-32 закачали 17,3 м3 23% раствора соляной кислоты с одновременным перемешиванием по круговой схеме при помощи насосного агрегата ЦА-320, добавили 200 кг лигносульфоната и перемешивали в течение 30 мин по круговой схеме при помощи насосного агрегата ЦА-320 (мас.%: 40,0… отхода, …12,4 кислоты, …47,0 воды и …0,6 лигносульфоната).
Обвязали устьевую арматуру с насосным агрегатом ЦА-320. При открытом затрубном пространстве (соединено в циркуляционную емкость) последовательно закачали: 6,4 м3 приготовленного раствора; закрыли затрубное пространство и последовательно закачали: 24 м3 приготовленного второго рабочего раствора, 7 м3 технической воды. Устье скважины загерметизировали и оставили скважину в покое на 2 часа для реакции.
Нагнетанием инертных газов в затрубное пространство компрессором СД-9 понизили уровень жидкости в скважине. Запустили скважину для очистки призабойной зоны пласта от продуктов реакции на факел и отработали на шайбах ⌀8÷12 мм в течение 40 ч. Далее скважину запустили в шлейф для эксплуатации. Поступления воды в ствол скважины нет. Дебит скважины увеличился на 30,2%.
Пример 5. Для обработки выбрана добывающая газовая скважина, эксплуатирующая обводненный пласт толщиной 40 м, кровля пласта находится на глубине 3080 м. Пористость пласта m=0,25. Скважина обсажена эксплуатационной колонной 168 мм, спущены насосно-компрессорные трубы (НКТ) диаметром 89 мм до глубины 3111 м, башмак НКТ оборудован волновым генератором типа СГГК (конструкция НЦ НВМТ РАН). Пластовое давление 29,5 МПа, пластовая температура 91°С. Определенная в начале работ приемистость пласта равна 420 м3/сут при 13 МПа.
Присоединили к трубному пространству через тройник две напорные линии для подачи реагентов и обвязали первую с насосным агрегатом ЦА-320, вторую с кислотным агрегатом СИН-32. Приготовили раствор жидкого отхода производства синтетического цеолита NaX с лигносульфонатом, для чего насосным агрегатом ЦА-320 в технологическую емкость закачали 60 м3 жидкого отхода производства синтетического цеолита NaX, добавили 1600 кг лигносульфоната с одновременным перемешиванием и перемешивали в течение 20 мин по круговой схеме при помощи насосного агрегата ЦА-320. Одновременно с этим приготовили 60 м3 10% раствора соляной кислоты, для чего во вторую технологическую емкость закачали 35,4 м3 пресной воды и агрегатом СИН-32 закачали 24,6 м3 23% раствора соляной кислоты (товарная соляная кислота) и перемешивали в течение 10 мин по круговой схеме при помощи кислотного агрегата СИН-32. Далее в скважину закачали при открытом затрубном пространстве (соединено в циркуляционную емкость) 10 м3 12% соляной кислоты (кислотным агрегатом СИН-32) 0,5 м3 пресной воды; 3,5 м3 жидкого отхода производства синтетического цеолита NaX с добавкой лигносульфоната (насосным агрегатом ЦА-320); закрыли затрубное пространство и закачали последовательно: 16,5 м3 жидкого отхода производства синтетического цеолита NaX с добавкой лигносульфоната (насосным агрегатом ЦА-320); 0,5 м3 пресной воды; 20 м3 12% соляной кислоты (кислотным агрегатом СИН-32); 0,5 м3 пресной воды; 20 м3 жидкого отхода производства синтетического цеолита NaX с добавкой лигносульфоната (насосным агрегатом ЦА-320); 0,5 м3 пресной воды; 20 м3 12% соляной кислоты (кислотным агрегатом СИН-32); 0,5 м3 пресной воды; 20 м3 жидкого отхода производства синтетического цеолита NaX с добавкой лигносульфоната (насосным агрегатом ЦА-320); 0,5 м3 пресной воды; 10 м3 12%) соляной кислоты и 14,5 м3 технической воды (насосным агрегатом ЦА-320). Устье скважины загерметизировали и оставили скважину в покое на 12 ч для гелеобразования.
Приготовили 70 м3 замедленного кислотного раствора, для чего насосным агрегатом ЦА-320 в технологическую емкость закачали 14 м3 жидкого отхода производства синтетического цеолита NaX и 18 м3 пресной воды; в эту же технологическую емкость закачали 38 м3 23% соляной кислоты (кислотным агрегатом СИН-32) и перемешивали в течение 20 мин по круговой схеме при помощи насосного агрегата ЦА-320; затем добавили 1 тонну лигносульфоната и перемешивали в течение 16 мин по круговой схеме при помощи насосного агрегата ЦА-320. Далее в скважину закачали при открытом затрубном пространстве (соединено в циркуляционную емкость) 14 м3 замедленного кислотного раствора (кислотным агрегатом СИН-32); закрыли затрубное пространство и закачали 56 м3 замедленного кислотного раствора (кислотным агрегатом СИН-32), затем продавили 14,5 м3 технической воды. Устье скважины загерметизировали и оставили скважину в покое на 2,5 ч для реакции.
Нагнетанием инертных газов в затрубное пространство компрессором СД-9 понизили уровень жидкости в скважине. Запустили скважину для очистки призабойной зоны пласта от продуктов реакции на факел и отработали на шайбах ⌀8÷14 мм в течение 72 ч. Далее скважину запустили в шлейф для эксплуатации. Поступления воды в ствол скважины нет. Дебит скважины увеличился на 35,8%.
Пример 6. Для обработки выбрана добывающая газовая скважина, эксплуатирующая обводненный пласт толщиной 38 м, кровля пласта находится на глубине 3240 м. Пористость пласта m=0,26. Скважина обсажена эксплуатационной колонной 168 мм, спущены насосно-компрессорные трубы (НКТ) диаметром 89 мм до глубины 3260 м, башмак НКТ оборудован волновым генератором типа СГГК (конструкция НЦ НВМТ РАН). Пластовое давление 30,5 МПа, пластовая температура 91°С. Определенная в начале работ приемистость пласта равна 460 м3/сут при 13 МПа.
Присоединили к трубному пространству через тройник две напорные линии для подачи реагентов и обвязали первую с насосным агрегатом ЦА-320, вторую с кислотным агрегатом СИН-32. Приготовили водометанольный раствор для продавки, для чего в емкость закачали 5,2 м3 минерализованной воды с ρ=1,15 г/см3 и 9,8 м3 метанола (42,8… и 57.2… мас.% соответственно), перемешали в течение 5 мин. Приготовили раствор жидкого отхода производства синтетического цеолита NaA и NaA-У (в соотношении 0,5:1,5 соответственно) с лигносульфонатом, для чего насосным агрегатом ЦА-320 в технологическую емкость закачали 60 м3 жидкого отхода производства синтетического цеолита NaA и NaA-У, добавили 2 тонны лигносульфоната с одновременным перемешиванием и перемешивали в течение 20 мин по круговой схеме при помощи насосного агрегата ЦА-320. Одновременно с этим приготовили 60 м3 9% раствора соляной кислоты, для чего во вторую технологическую емкость закачали 38 м3 пресной воды и агрегатом СИН-32 закачали 22 м3 23% раствора соляной кислоты (товарная соляная кислота) и перемешивали в течение 10 мин по круговой схеме при помощи кислотного агрегата СИН-32. Далее в скважину закачали при открытом затрубном пространстве (соединено в циркуляционную емкость) 10 м3 9% соляной кислоты (кислотным агрегатом СИН-32) 0,5 м3 пресной воды; 4,2 м3 жидкого отхода производства синтетического цеолита NaA и NaA-У с добавкой лигносульфоната (насосным агрегатом ЦА-320) (мас.%: 9,0… кислоты, 39.3… воды, 50.0… отхода и 1,7… лигносульфоната); закрыли затрубное пространство и закачали последовательно: 15,8 м3 жидкого отхода производства синтетического цеолита NaA и NaA-У с добавкой лигносульфоната (насосным агрегатом ЦА-320); 0,5 м3 пресной воды; 20 м3 9% соляной кислоты (кислотным агрегатом СИН-32); 0,5 м3 пресной воды; 20 м3 жидкого отхода производства синтетического цеолита NaA и NaA-У с добавкой лигносульфоната (насосным агрегатом ЦА-320); 0,5 м3 пресной воды; 20 м3 9% соляной кислоты (кислотным агрегатом СИН-32); 0,5 м3 пресной воды; 20 м3 жидкого отхода производства синтетического цеолита NaA и NaA-У с добавкой лигносульфоната (насосным агрегатом ЦА-320); 0,5 м3 пресной воды; 10 м3 9% соляной кислоты и 15 м3 водометанольного раствора (насосным агрегатом ЦА-320). Устье скважины загерметизировали и оставили скважину в покое на 14 ч для гелеобразования.
Приготовили водометанольный раствор для продавки, для чего в емкость закачали 5,2 м3 минерализованной воды с ρ=1,15 г/см3 и 9,8 м3 метанола, перемешали в течение 5 мин. Приготовили 80 м3 замедленного кислотного раствора, для чего насосным агрегатом ЦА-320 в технологическую емкость закачали 16 м3 жидкого отхода производства синтетического цеолита NaA и NaA-У (в соотношении …1:…1) и 18 м3 метанола; в эту же технологическую емкость закачали 46 м3 23% соляной кислоты (кислотным агрегатом СИН-32) и перемешивали в течение 20 мин по круговой схеме при помощи насосного агрегата ЦА-320; затем добавили 1 тонну лигносульфоната и перемешивали в течение 16 мин по круговой схеме при помощи насосного агрегата ЦА-320. Далее в скважину закачали при открытом затрубном пространстве (соединено в циркуляционную емкость) 14,7 м3 замедленного кислотного раствора (кислотным агрегатом СИН-32); закрыли затрубное пространство и закачали 65,3 м3 замедленного кислотного раствора (кислотным агрегатом СИН-32), затем продавили 15 м3 водометанольного раствора. Устье скважины загерметизировали и оставили скважину в покое на 2,5 ч для реакции.
Нагнетанием инертных газов в затрубное пространство компрессором СД-9 понизили уровень жидкости в скважине. Запустили скважину для очистки призабойной зоны пласта от продуктов реакции на факел и отработали на шайбах ⌀8÷14 мм в течение 72 ч. Далее скважину запустили в шлейф для эксплуатации. Поступления воды в ствол скважины нет. Дебит скважины увеличился на 38%.
Таким образом, приведенные примеры реализации изобретения показывают его соответствие критерию «практическая применимость».
Способ успешно опробован на обводненных скважинах в летний и зимний периоды, при температурах от -25°С до +25°С, и показал положительные результаты, его применение позволило получить дополнительную добычу нефти и газа, а также экономию от уменьшения отбора попутной воды.
Способ рекомендуется для обработки скважин, разрабатывающих обводненные трещиновато-пористые коллектора, имеющих высокую поглотительную способность.

Claims (10)

1. Способ обработки карбонатных и карбонатсодержащих пластов, включающий закачку в пласт через скважину гелеобразующего кислотного раствора, содержащего отход производства синтетического цеолита, лигносульфонат, соляную кислоту и воду, отличающийся тем, что в качестве указанного отхода используют жидкий отход производства синтетического цеолита NaX и/или NaA+NaA-У, закачку осуществляют в две стадии с продавкой в пласт водой и остановкой на время гелеобразования, используя на первой стадии указанный раствор при следующем соотношении компонентов, мас.%:
Указанный отход 50,0-60,0 Лигносульфонат 0,5-5,0 Соляная кислота 7,0-12,0 Вода остальное,

а на второй стадии - указанный раствор при следующем соотношении компонентов, мас.%:
Указанный отход 20,0-40,0 Лигносульфонат 0,5-5,0 Соляная кислота 10,0-15,0 Вода остальное
2. Способ по п.1, отличающийся тем, что смешивание раствора соляной кислоты и указанного отхода с добавкой лигносульфоната осуществляют на устье путем закачки через волновой смеситель, установленный на устье скважины.
3. Способ по п.1, отличающийся тем, что башмак насосно-компрессорных труб оборудуют гидравлическим волновым генератором и закачку всех растворов в пласт ведут через этот гидравлический волновой генератор.
4. Способ по любому из пп.1-3, отличающийся тем, что используемая для продавки вода дополнительно содержит метанол при следующем соотношении компонентов, мас.%:
Метанол 50-60 Вода минерализованная, ρ=1,1-1,24 г/см3 остальное
5. Способ по любому из пп.1-4, отличающийся тем, что используемый на втором этапе указанный раствор дополнительно содержит 20-32 мас.% метанола.
6. Способ обработки карбонатных и карбонатсодержащих пластов, включающий закачку в пласт через скважину гелеобразующего кислотного раствора, содержащего отход производства синтетического цеолита, лигносульфонат, соляную кислоту и воду, отличающийся тем, что в качестве указанного отхода используют жидкий отход производства синтетического цеолита NaX и/или NaA+NaA-У при следующем соотношении компонентов, мас.%:
Указанный отход 20,0-40,0 Лигносульфонат 0,5-5,0 Соляная кислота 10,0-15,0 Вода остальное,

и предварительно проводят последовательную закачку 7-12%-ного раствора соляной кислоты, первого буфера пресной воды, жидкого отхода производства синтетического цеолита NaX и/или NaA+NaA-У, содержащего 2-5 мас.% лигносульфоната, второго буфера пресной воды, 7-12%-ного раствора соляной кислоты и продавку водой в объеме насосно-компрессорных труб и устьевой обвязки оборудования.
7. Способ по п.6, отличающийся тем, что при больших объемах закачиваемых растворов выполняют 2-4 цикла последовательных закачек в указанной последовательности с продавкой после последней части раствора соляной кислоты.
8. Способ по п.6 или 7, отличающийся тем, что башмак насосно-компрессорных труб оборудуют гидравлическим волновым генератором и закачку всех растворов в пласт ведут через этот гидравлический волновой генератор.
9. Способ по любому из пп.6-8, отличающийся тем, что используемая для продавки вода дополнительно содержит метанол при следующем соотношении компонентов, мас.%:
Метанол 50-60 Вода минерализованная, ρ=1,1-1,24 г/см3 остальное
10. Способ по любому из пп.6-9, отличающийся тем, что указанный раствор дополнительно содержит 20-32 мас.% метанола.
RU2009106546/03A 2009-02-24 2009-02-24 Способ обработки карбонатных и карбонатсодержащих пластов (варианты) RU2425209C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2009106546/03A RU2425209C2 (ru) 2009-02-24 2009-02-24 Способ обработки карбонатных и карбонатсодержащих пластов (варианты)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009106546/03A RU2425209C2 (ru) 2009-02-24 2009-02-24 Способ обработки карбонатных и карбонатсодержащих пластов (варианты)

Publications (2)

Publication Number Publication Date
RU2009106546A RU2009106546A (ru) 2010-08-27
RU2425209C2 true RU2425209C2 (ru) 2011-07-27

Family

ID=42798536

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009106546/03A RU2425209C2 (ru) 2009-02-24 2009-02-24 Способ обработки карбонатных и карбонатсодержащих пластов (варианты)

Country Status (1)

Country Link
RU (1) RU2425209C2 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2502868C1 (ru) * 2012-06-19 2013-12-27 Общество с ограниченной ответственностью "Научно-исследовательский институт природных газов и газовых технологий - Газпром ВНИИГАЗ" Способ кислотной обработки призабойной зоны скважины в карбонатном пласте
RU2525244C1 (ru) * 2013-10-14 2014-08-10 Открытое акционерное общество "Татнефть" им. В.Д. Шашина Способ уменьшения обводненности продукции нефтедобывающей скважины
GB2616071A (en) * 2022-02-28 2023-08-30 Swellfix Uk Ltd Materials and compositions for reservoir stimulation treatment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2502868C1 (ru) * 2012-06-19 2013-12-27 Общество с ограниченной ответственностью "Научно-исследовательский институт природных газов и газовых технологий - Газпром ВНИИГАЗ" Способ кислотной обработки призабойной зоны скважины в карбонатном пласте
RU2525244C1 (ru) * 2013-10-14 2014-08-10 Открытое акционерное общество "Татнефть" им. В.Д. Шашина Способ уменьшения обводненности продукции нефтедобывающей скважины
GB2616071A (en) * 2022-02-28 2023-08-30 Swellfix Uk Ltd Materials and compositions for reservoir stimulation treatment
WO2023161661A1 (en) * 2022-02-28 2023-08-31 Swellfix Uk Limited Materials and compositions for reservoir stimulation treatment

Also Published As

Publication number Publication date
RU2009106546A (ru) 2010-08-27

Similar Documents

Publication Publication Date Title
US10526529B2 (en) Treatment fluids comprising viscosifying agents and methods of using the same
US10526530B2 (en) Flooding operations employing chlorine dioxide
RU2523316C1 (ru) Способ гидравлического разрыва пласта
CN111534290B (zh) 一种储层保护钻井液用解水锁剂及其制备和使用方法
CN109577909B (zh) 一种特低渗透油田选择性泡沫凝胶堵水调剖方法
NO20120459A1 (no) Bronnbehandlingsfluid-blandinger og bruk av slike
CN108049855A (zh) 一种适用于砂岩储层改造的多氢酸施工工艺
RU2425209C2 (ru) Способ обработки карбонатных и карбонатсодержащих пластов (варианты)
RU2485306C1 (ru) Способ гидравлического разрыва пласта в скважине
RU2338768C1 (ru) Реагент для изоляции притока пластовых вод
RU2416025C1 (ru) Способ гидравлического разрыва и крепления пластов, сложенных рыхлыми несцементированными породами
RU2368769C2 (ru) Способ обработки призабойной зоны пласта
RU2515675C1 (ru) Способ изоляции водопритока в нефтедобывающую скважину
RU2465446C1 (ru) Способ добычи нефти в порово-трещиноватых коллекторах, снижающий обводненность продукции скважин
RU2456444C2 (ru) Способ кислотной обработки призабойной зоны нефтяного пласта
RU2405926C1 (ru) Способ проведения ремонтно-изоляционных работ в условиях больших поглощений
CN111594124A (zh) 一种浅层致密油藏渗吸压裂方法、浅层致密油藏用压裂体系、免排渗吸压裂液
RU2463436C1 (ru) Способ восстановления герметичности эксплуатационной колонны
RU2536529C1 (ru) Способ селективной изоляции обводненных интервалов нефтяного пласта
RU2495229C1 (ru) Способ проведения водоизоляционных работ в скважине
CN108913110B (zh) 一种低渗油藏岩层表面改性减阻方法
RU2519262C1 (ru) Способ изоляции пластов цементосиликатными растворами
US20180327647A1 (en) Petrified cellulosic materials as additives to treatment fluids
RU2425957C1 (ru) Способ изоляции водопритока в скважину
RU2307146C2 (ru) Состав для изоляции обводненных нефтяных коллекторов

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20120225