RU2411972C2 - Система и способ пожарной защиты - Google Patents

Система и способ пожарной защиты Download PDF

Info

Publication number
RU2411972C2
RU2411972C2 RU2008123173/12A RU2008123173A RU2411972C2 RU 2411972 C2 RU2411972 C2 RU 2411972C2 RU 2008123173/12 A RU2008123173/12 A RU 2008123173/12A RU 2008123173 A RU2008123173 A RU 2008123173A RU 2411972 C2 RU2411972 C2 RU 2411972C2
Authority
RU
Russia
Prior art keywords
room
fire protection
cathode
exhaust air
air
Prior art date
Application number
RU2008123173/12A
Other languages
English (en)
Other versions
RU2008123173A (ru
Inventor
Юлика БЛЕЙЛ (DE)
Юлика БЛЕЙЛ
Ларс ФРАМ (DE)
Ларс ФРАМ
Андреас ВЕСТЕНБЕРГЕР (DE)
Андреас ВЕСТЕНБЕРГЕР
Клаус ХОФФЬЯНН (DE)
Клаус ХОФФЬЯНН
Original Assignee
Эйрбас Дойчланд Гмбх
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Эйрбас Дойчланд Гмбх filed Critical Эйрбас Дойчланд Гмбх
Publication of RU2008123173A publication Critical patent/RU2008123173A/ru
Application granted granted Critical
Publication of RU2411972C2 publication Critical patent/RU2411972C2/ru

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C3/00Fire prevention, containment or extinguishing specially adapted for particular objects or places
    • A62C3/07Fire prevention, containment or extinguishing specially adapted for particular objects or places in vehicles, e.g. in road vehicles
    • A62C3/08Fire prevention, containment or extinguishing specially adapted for particular objects or places in vehicles, e.g. in road vehicles in aircraft
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C3/00Fire prevention, containment or extinguishing specially adapted for particular objects or places
    • A62C3/07Fire prevention, containment or extinguishing specially adapted for particular objects or places in vehicles, e.g. in road vehicles
    • A62C3/10Fire prevention, containment or extinguishing specially adapted for particular objects or places in vehicles, e.g. in road vehicles in ships
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C99/00Subject matter not provided for in other groups of this subclass
    • A62C99/0009Methods of extinguishing or preventing the spread of fire by cooling down or suffocating the flames
    • A62C99/0018Methods of extinguishing or preventing the spread of fire by cooling down or suffocating the flames using gases or vapours that do not support combustion, e.g. steam, carbon dioxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Emergency Management (AREA)
  • Business, Economics & Management (AREA)
  • Public Health (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Ocean & Marine Engineering (AREA)
  • Fuel Cell (AREA)
  • Fire-Extinguishing By Fire Departments, And Fire-Extinguishing Equipment And Control Thereof (AREA)

Abstract

В изобретении предлагается система пожарной защиты, которая имеет топливный элемент для выработки обогащенного азотом отработанного воздуха катода. Топливный элемент снабжают воздухом и топливом. Система включает трубы для подачи обогащенного азотом воздуха в помещение так, что содержание кислорода снижается, обеспечивая его пожаробезопасность. Система содержит устройство для измерения содержания кислорода и водорода в отработанном воздухе в трубах, содержит блок управления или регулирования для регулирования воздухоподачей на катод топливного элемента и для регулирования содержания кислорода в помещении за счет изменения лямбда катода топливного элемента. Отработанный воздух подают в защищаемое помещение. Способ пожарной защиты включает подачу воздуха снаружи в топливный элемент, который вырабатывает обогащенный азотом отработанный воздух, подачу этого воздуха в помещение так, что содержание кислорода в помещении понижается. При осуществлении способа применяется система пожарной защиты. 3 н. и 22 з.п. ф-лы, 9 ил.

Description

Область техники
Настоящее изобретение в общем имеет отношение к защите от пожара. Более конкретно, настоящее изобретение имеет отношение к системе пожарной защиты, предназначенной для снижения опасности пожара в помещении, к использованию такой системы пожарной защиты на летательном аппарате, к использованию такой системы пожарной защиты в здании, к использованию такой системы пожарной защиты на судне, к летательному аппарату, имеющему такую систему пожарной защиты, и к способу защиты от пожара в подвижном или стационарном помещении.
Предпосылки к созданию изобретения
Ориентировочно, вот уже более 40 лет, используют галогенированные углеводороды (Halon) для тушения пожара на борту летательного аппарата. Halon представляет собой частично или полностью галогенированные углеводороды, которые химически вступают в цепную реакцию с огнем и, следовательно, ведут к прерыванию реакции.
Общеизвестно, что Halon 1211 (хлор-бром-дифторо-метан для ручных огнетушителей) и Halon 1301 (бром-трифторо-метан для стационарных огнетушителей) способствуют образованию стратосферного озона и поэтому включены в материалы, которые запрещены Монреальским протоколом ООН.
Сущность изобретения
Желательно создать средство, обеспечивающее улучшенную противопожарную защиту в помещении.
В соответствии с настоящим изобретением предлагается система пожарной защиты, предназначенная для снижения опасности пожара (риска возгорания) в помещении, причем указанная система пожарной защиты содержит топливный элемент для выработки обогащенного азотом отработанного воздуха катода и систему труб для подачи обогащенного азотом отработанного воздуха катода в помещение, так что содержание кислорода в помещении может быть снижено таким образом, что опасность пожара в помещении может быть снижена.
Таким образом, может быть создана эффективная система для снижения опасности пожара в помещениях или на объектах, в которой используют обедненный кислородом и обогащенный азотом отработанный воздух системы топливных элементов. Указанным образом отработанный воздух бортовой внутренней системы топливных элементов может быть использован для пожаротушения или для снижения опасности пожара. Кроме того, за счет этого размеры огнетушителей могут быть уменьшены или даже огнетушители могут быть полностью исключены. Для этого могут быть использованы любые типы топливных элементов, такие как, например, щелочной топливный элемент (AFC), протонообменный топливный элемент (PEMFC), топливный элемент с использованием фосфорной кислоты (PAFC), топливный элемент с использованием расплавленного карбоната (MCFC), топливный элемент с использованием твердого оксида (SOFC), или прямой топливный элемент с использованием этилового/ метилового спирта (DAFC/DMFC).
При этом рабочая температура электролита не является важной, важен только состав отработанного воздуха катода. Он может содержать инертный газ, такой как азот, или другой инертный газ. Отработанный воздух может быть сухим или может содержать воду, в зависимости от типа топливного элемента и, при необходимости, от настроек системы.
Принимая во внимание инертные свойства азота, отработанный воздух особенно хорошо подходит для противопожарной защиты помещений.
В соответствии с другим вариантом настоящего изобретения предлагается использовать описанную систему пожарной защиты для снижения общего содержания кислорода и, следовательно, для снижения окисления в помещении. При хранении продуктов окисление воздухом может приводить к их порче, при этом содержащиеся в них жиры становятся прогорклыми. Кроме того, в случае применения предлагаемой системы может быть снижено использование антиоксидантных средств в пищевых продуктах и пластмассах, за счет чего может быть исключено образование радикалов.
В соответствии с еще одним вариантом настоящего изобретения описанная система пожарной защиты может быть использована для создания не содержащей микробов, стерильной атмосферы в помещении, так как рабочая температура топливных элементов обычно составляет около 80°С. Это особенно важно для хранения органических продуктов и для создания чистых помещений.
В соответствии с еще одним вариантом настоящего изобретения, описанная система пожарной защиты может быть использована для создания атмосферы со сниженным содержанием кислорода в помещении (на летательном аппарате), для медицинских и спортивных целей (например, для тренировки на высоте над уровнем моря). Вдыхание воздуха с пониженным содержанием кислорода приводит к обогащению крови гемоглобином (эритроцитами). При повышении содержания гемоглобина, больше кислорода может поступать в кровь.
Предложенная здесь система топливных элементов для снижения содержания кислорода может быть использована, например, в тренировочных залах, в спальных помещениях, в рабочих пространствах и в небольших устройствах, например, для снижения содержания кислорода в респираторных масках. За счет использования такой системы спортсмены могут улучшить свои достижения, а альпинисты могут подготовиться к длительному нахождению на больших высотах.
Количество и качество требующегося для противопожарной защиты отработанного воздуха с пониженным содержанием кислорода обычно зависит от конкретного защищаемого помещения. Например, такие факторы, как скорость обновления воздуха в помещении, свойства хранимых продуктов или присутствие людей являются решающими при осуществлении текущего контроля помещения и управления и регулирования системы пожарной защиты, предназначенной для снижения содержания кислорода с использованием топливных элементов.
В соответствии с еще одним вариантом настоящего изобретения, система пожарной защиты дополнительно имеет блок управления или регулирования, предназначенный для подстройки содержания кислорода в помещении.
Подстройка содержания кислорода может быть осуществлена за счет изменения значения лямбда катода топливного элемента. Значение лямбда представляет собой отношение количества кислорода, подаваемого в топливный элемент, к количеству кислорода, преобразуемого внутри топливного элемента. Это отношение можно подстраивать за счет регулирования воздухоподачи топливного элемента (например, при помощи воздуходувки). В том случае, когда содержание кислорода в отработанном газе катода является слишком высоким, воздухоподачу и, следовательно, значение лямбда следует снизить. Таким образом, содержание кислорода внутри помещения можно контролировать за счет подачи адекватного отработанного воздуха катода в помещение.
Следовательно, содержание кислорода можно подстраивать или изменять в зависимости от требований. Управление и регулирование производят полностью автоматически. Например, содержание кислорода можно подстроить, когда в помещение входят люди, так чтобы оно составляло около 15 об.%. За счет этого, с одной стороны, люди могут находиться в помещении, но, с другой стороны, опасность возгорания или опасность пожара по сравнению с обычным воздухом может быть значительно снижена. Система противопожарной защиты при этом может быть использована для защиты или превентивно.
С другой стороны, например, при помощи блока управления или регулирования, можно обеспечить, чтобы содержание кислорода всегда оставалось ниже заданного максимального значения, например, ниже 12 об.%, или еще ниже.
Само собой разумеется, что блок управления или регулирования может быть выполнен как только блок управления. Тогда регулирование может быть осуществлено вручную.
В соответствии с еще одним вариантом настоящего изобретения блок управления или регулирования предназначен для управления или регулирования по меньшей мере одного параметра, выбранного из группы, в которую входят воздухоподача на катод топливного элемента, топливоподача на анод топливного элемента и подача обогащенного азотом отработанного воздуха катода в помещение.
Таким образом, мощность топливного элемента можно регулировать в зависимости от потребностей, когда потребителям необходимо подавать больше или меньше топлива, больше или меньше воздуха или больше или меньше электроэнергии. Кроме того, поступление обогащенного азотом отработанного воздуха катода в помещение можно контролировать или регулировать, например, при помощи соответствующего клапана, управляемого блоком управления или регулирования.
В соответствии с еще одним вариантом настоящего изобретения, система пожарной защиты дополнительно содержит смеситель, который перемешивает отработанный воздух катода с окружающим воздухом, до подачи в помещение. Таким образом, содержание кислорода в отработанном воздухе катода может быть повышено до определенного уровня после выпуска с катода. Кроме того, смеситель позволяет охлаждать отработанный воздух катода, так что требования к теплообменнику снижаются или же он может быть исключен. Смесителем может управлять центральная система управления.
В соответствии с еще одним вариантом настоящего изобретения система пожарной защиты дополнительно содержит измерительное устройство, предназначенное для измерения по меньшей мере одного физического параметра, выбранного из группы, в которую входят содержание кислорода в помещении, содержание водорода в помещении, температура в помещении, давление в помещении, содержание влаги в помещении, и датчик для обнаружения характеристик пожара в помещении. Кроме того, система пожарной защиты содержит линию передачи данных, предназначенную для передачи измеренных физических параметров из измерительного устройства в блок управления или регулирования.
Таким образом, можно измерять физические параметры в помещении. Если, например, температура в помещении возрастает или если в нем образуется дым, то содержание кислорода может быть снижено за счет подачи отработанного воздуха катода, чтобы погасить начинающийся пожар. Аналогично, можно осуществлять текущий контроль давления. Если, например, давление превышает заданное значение, то может быть подан обогащенный азотом отработанный воздух катода, в котором параметры пожаротушения связаны с интенсивностью развития дыма. Автоматическое и постоянное поддержание заданного параметра является первоочередной задачей блока регулирования и управления системы пожарной защиты.
В соответствии с еще одним вариантом настоящего изобретения система пожарной защиты дополнительно содержит измерительное устройство для измерения по меньшей мере одного физического параметра, выбранного из группы, в которую входят содержание кислорода в отработанном воздухе в системе труб, содержание водорода в отработанном воздухе в системе труб, содержание диоксида углерода в отработанном воздухе в системе труб, содержание угарного газа в отработанном воздухе в системе труб, содержание оксида азота в отработанном воздухе в системе труб, объемный расход отработанного воздуха в системе труб, температура отработанного воздуха в системе труб, давление отработанного воздуха в системе труб и содержание влаги в отработанном воздухе в системе труб. Кроме того, система пожарной защиты может содержать линию передачи данных, предназначенную для передачи измеренных физических параметров из измерительного устройства в блок регулирования и управления.
В соответствии с еще одним вариантом настоящего изобретения система пожарной защиты дополнительно содержит клапан для выпуска отработанного воздуха катода из системы труб в окружающую среду. Если, например, содержание кислорода в отработанном воздухе в системе труб превышает заданное значение или падает ниже заданного значения, это может быть обнаружено при помощи измерительного устройства и передано в блок регулирования и управления, причем, при необходимости, клапан может быть открыт, чтобы подавать отработанный воздух не в помещение, а в окружающую среду.
В соответствии с еще одним вариантом настоящего изобретения система пожарной защиты дополнительно содержит клапан сброса давления, предназначенный для регулировки повышенного давления в помещении.
Если, например, давление в помещении превышает заданное пороговое значение или если разность между давлением внутри помещения и средой вокруг помещения превышает заданное значение, то, соответственно, воздух может быть выпущен в окружающую среду.
В соответствии с еще одним вариантом настоящего изобретения, система пожарной защиты дополнительно содержит компрессор для сжатия обогащенного азотом отработанного воздуха катода для того, чтобы повысить эффективность пожаротушения, и/или теплообменник для охлаждения обогащенного азотом отработанного воздуха катода.
За счет этого обогащенный азотом воздух катода может быть сжат или охлажден ранее его подачи в помещение.
В соответствии с еще одним вариантом настоящего изобретения система пожарной защиты дополнительно содержит конденсатор, предназначенный для конденсации воды из обогащенного азотом отработанного воздуха катода, и водяной бак для хранения сконденсированной воды.
За счет этого может быть получена отработанная вода катода, которая затем может быть направлена в бак для хранения. Из этого бака для хранения вода затем может быть подана, например, в источник воды летательного аппарата, или может быть использована в случае пожара для его гашения.
Может быть также предусмотрена прямая линия из конденсатора в водную систему летательного аппарата (без хранения сконденсированной воды в водяном баке).
Кроме того, также может быть предусмотрена подача воды из конденсатора в систему реформинга водорода, чтобы установка реформинга могла производить водород.
В соответствии с еще одним вариантом настоящего изобретения система пожарной защиты содержит кондиционер для поддержания заданного состояния воздуха в помещении. За счет этого воздух может быть отобран, охлажден и вновь подан в помещение, без воздействия на содержание кислорода в помещении. Кроме того, кондиционер может быть использован для обеспечения заданного состояния отработанного воздуха топливного элемента ранее его подачи в помещение. Таким образом, например, после конденсации и ранее подачи в помещение, может быть установлен необходимый уровень температуры воздуха.
В соответствии с еще одним вариантом настоящего изобретения система пожарной защиты дополнительно содержит линию, предназначенную для отвода отработанного воздуха катода топливного элемента из помещения, за счет чего содержание кислорода в помещении может быть дополнительно снижено.
Этим отводом воздуха, например, можно управлять при помощи блока управления и регулирования, когда необходимо дополнительно понизить содержание кислорода в помещении, чтобы дополнительно повысить противопожарную защиту. В других случаях (или одновременно) топливный элемент может получать внешний воздух или также воздух из салона самолета.
В соответствии с еще одним вариантом настоящего изобретения блок управления или регулирования служит для управления или регулирования теплообменника, компрессора, смесителя, клапана сброса давления, стравливающих клапанов, кондиционера, а также для подачи воды в установку реформинга водорода.
Таким образом, в зависимости от требований, температура обогащенного азотом отработанного газа катода, вводимого в помещение, может быть снижена соответствующим образом. Кроме того, может быть подстроена степень сжатия воздухоподачи анода, воздухоподачи катода или обогащенного азотом отработанного воздуха катода, вводимого в помещение.
В соответствии с еще одним вариантом настоящего изобретения отработанный воздух катода может быть подан на другие топливные элементы, так что отработанный воздух с одного катода служит воздухоподачей для других топливных элементов. Это ведет к дополнительному снижению содержания кислорода на выходе соединенных друг с другом топливных элементов.
В соответствии с еще одним вариантом системы пожарной защиты в соответствии с настоящим изобретением отработанный воздух катода также может быть подан на дополнительное устройство для снижения содержания кислорода. Для этого может быть использована, например, мембрана фракционирования воздуха. Она разделяет отработанный воздух катода на два потока: обогащенный кислородом воздух и обогащенный азотом воздух. Обогащенный кислородом воздух выпускают в атмосферу, а оставшийся обогащенный азотом воздух может быть подан в помещение.
В соответствии с еще одним вариантом настоящего изобретения требующуюся для системы пожарной защиты электрическую и тепловую энергию получают непосредственно от топливного элемента.
Таким образом, не требуется использовать внешний источник энергии. Система может работать автономно и вырабатывать энергию для собственных нужд.
В соответствии с еще одним примерным вариантом настоящего изобретения помещением, в котором снижена опасность пожара, является помещение на летательном аппарате.
В соответствии с еще одним вариантом настоящего изобретения описанную здесь систему пожарной защиты используют для противопожарной защиты помещения на летательном аппарате.
В соответствии с еще одним вариантом настоящего изобретения описанную здесь систему пожарной защиты используют для противопожарной защиты помещения в здании.
В соответствии с еще одним примерным вариантом настоящего изобретения описанную здесь систему (пожарной защиты) используют для общего снижения содержания кислорода, чтобы имитировать высоту над уровнем моря и уменьшать окисление (окисление продуктов) в помещении.
Кроме того, в соответствии с настоящим изобретением предлагается летательный аппарат, который содержит описанную здесь систему пожарной защиты, предназначенную для противопожарной защиты помещения на летательном аппарате.
Более того, в соответствии с еще одним примерным вариантом настоящего изобретения предлагается способ противопожарной защиты, в котором обогащенный азотом отработанный воздух катода получают при помощи топливного элемента и затем обогащенный азотом отработанный воздух катода вводят в помещение, чтобы понизить содержание кислорода в помещении, для того, чтобы снизить опасность пожара.
Таким образом, предлагается способ, при помощи которого может быть обеспечена улучшенная противопожарная защита в помещении летательного аппарата. В этом случае не требуется использовать другие системы пожаротушения, такие как системы с использованием галогенированных углеводородов (Halon). Кроме того, некоторые области летательного аппарата, такие как электронные стойки или небольшие скрытые области, могут быть эффективно защищены от возникновения пожара за счет снижения содержания кислорода в этих областях.
В соответствии с еще одним примерным вариантом настоящего изобретения в помещении измеряют физические параметры, такие как температура в помещении, давление в помещении, содержание кислорода в помещении, содержание влаги в помещении, содержание водорода в помещении, или образование дыма в помещении. Эти измеренные параметры затем могут быть переданы из измерительного устройства на блок управления или регулирования, для подстройки содержания кислорода в помещении. Содержание кислорода в помещении может быть построено за счет подачи отработанного воздуха катода в помещение. Содержание кислорода в отработанном воздухе катода может быть построено за счет управления значением лямбда катода при помощи блока управления. Кроме того, смеситель может повышать содержание кислорода или блок разделения воздуха может дополнительно снижать содержание кислорода в отработанном воздухе катода, подаваемом в помещение.
В соответствии с еще одним примерным вариантом настоящего изобретения измеряют физические параметры в системе труб, такие как, например, содержание кислорода в отработанном воздухе, содержание водорода в отработанном воздухе, содержание диоксида углерода в отработанном воздухе, содержание угарного газа в отработанном воздухе, содержание оксида азота в отработанном воздухе, объемный расход отработанного воздуха, температура отработанного воздуха, давление отработанного воздуха и содержание влаги в отработанном воздухе. Кроме того, система пожарной защиты может содержать линию передачи данных, предназначенную для передачи измеренных физических параметров из измерительного устройства в блок регулирования и управления.
За счет этого можно подстраивать содержание кислорода в помещении в соответствии с реальными условиями в помещении.
Дополнительные примерные варианты настоящего изобретения изложены в зависимых пунктах формулы изобретения.
Далее предпочтительные примерные варианты настоящего изобретения будут описаны со ссылкой на схематичные чертежи, не обязательно приведенные в реальном масштабе, на которых аналогичные детали имеют одинаковые позиционные обозначения.
Краткое описание чертежей
На фиг.1 схематично показана блок-схема системы пожарной защиты в соответствии с примерным вариантом настоящего изобретения.
На фиг.2 схематично показана блок-схема системы пожарной защиты в соответствии с другим примерным вариантом настоящего изобретения.
На фиг.3 схематично показана структурная схема системы пожарной защиты в соответствии с примерным вариантом настоящего изобретения.
На фиг.4 схематично показана структурная схема системы пожарной защиты в соответствии с другим примерным вариантом настоящего изобретения.
На фиг.5 схематично показана структурная схема системы пожарной защиты в соответствии с еще одним примерным вариантом настоящего изобретения.
На фиг.6 схематично показана структурная схема системы пожарной защиты в соответствии с еще одним примерным вариантом настоящего изобретения.
На фиг.7 схематично показана структурная схема системы пожарной защиты в соответствии с еще одним примерным вариантом настоящего изобретения.
На фиг.8 схематично показана структурная схема системы пожарной защиты в соответствии с еще одним примерным вариантом настоящего изобретения.
На фиг.9 схематично показана структурная схема системы пожарной защиты в соответствии с еще одним примерным вариантом настоящего изобретения.
Подробное описание изобретения
На фиг.1 схематично показана блок-схема системы пожарной защиты, предназначенной для снижения риска возгорания в помещении, например, в салоне самолета (летательного аппарата), выполненной в соответствии с примерным вариантом настоящего изобретения. Как это показано на фиг.1, система 100 пожарной защиты имеет топливный элемент или батарею 1 топливных элементов, которую снабжают на стороне впуска соответствующими исходными материалами 5, 9 и которая вырабатывает электрическую энергию 101, тепловую энергию 102 и воздух 2 с уменьшенной долей кислорода.
Водяной пар может быть добавлен в воздух и топливный элемент, в зависимости от конструкции топливного элемента 1. Затем воздух 2 с уменьшенным содержанием кислорода подают для целей противопожарной защиты по соответствующей линии 16 в защищаемое помещение.
На фиг.2 схематично показана блок-схема системы 100 пожарной защиты в соответствии с другим вариантом настоящего изобретения. В системе, показанной на фиг.2, отработанный воздух 2 разделяют при помощи конденсатора 19 на воду 20 и сухой, обогащенный азотом (обедненный кислородом) воздух 202. В этом случае только сухой обогащенный азотом воздух 202 служит в качестве инертного защитного газа, который подают по соответствующей линии 16 в защищаемое помещение.
Все помещения и объекты могут быть "сделаны инертными" за счет подачи отработанного воздуха топливного элемента, или все возгорания в помещениях и на объектах могут быть потушены при помощи отработанного воздуха катода. При снижении содержания кислорода ниже ориентировочно 15 об.%, возникает ограничение, связанное с тем, что эти помещения и объекты не должны служить для постоянного нахождения людей и животных. При снижении содержания кислорода ниже ориентировочно 17 об.%, вероятность возгорания может быть значительно снижена, однако при этом в таких помещениях возможно более длительное нахождение людей. Снижение содержания кислорода позволяет снизить опасность пожара или взрыва.
Использование отработанного газа топливного элемента является безвредным для окружающей среды и не токсичным.
При использовании системы топливных элементов для получения электрического тока, тепла и/или воды, обедненный кислородом воздух удаляют в качестве побочного продукта.
Система 100 пожарной защиты может быть использована как на транспортных средствах или на летательных аппаратах, так и в стационарных применениях, например, в зданиях.
На фиг.3 и на фиг.4 схематично показаны структурные схемы системы 100 пожарной защиты в соответствии с другими примерными вариантами настоящего изобретения. В качестве топливного элемента 1 могут быть использованы любые типы топливных элементов. Кроме того, могут быть использованы множество топливных элементов 1, которые, например, соединены вместе для образования батареи топливных элементов, или (для резервирования) установлены в различных местах (см. системы 501, 502, 503 топливных элементов и помещения 504, 505 на фиг.4). Указанным образом может быть дополнительно повышена надежность предложенной здесь системы 100 пожарной защиты.
В качестве топливного элемента 1 может быть использован, например, так называемый щелочной топливный элемент (AFC), протонообменный топливный элемент (PEMFC), топливный элемент с использованием фосфорной кислоты (PAFC), топливный элемент с использованием расплавленного карбоната (MCFC), топливный элемент с использованием твердого оксида (SOFC), или прямой топливный элемент с использованием этилового/метилового спирта (DAFC/DMFC). Однако следует иметь в виду, что могут быть использованы и другие типы топливных элементов.
Как это показано на фиг.3, топливный элемент 1 получает на стороне анода топливо 3, а на стороне катода воздух 4.
Топливо 3, которое подают на анод 31, может быть различным в зависимости от типа топливного элемента. Для целей настоящего изобретения неважно, какой тип топлива используют. Например, в качестве топлива 3 может быть использован водород, который получают, например, за счет реформинга из углеводородов, имеющихся в топливе летательного аппарата. Для реформинга водорода может потребоваться вода, которая может поступать на установку для реформинга по питательной линии из баков хранения воды.
Топливоподачу 5 контролируют и регулируют при помощи блока 6 измерения, управления и регулирования. Для измерения используют датчик блока 6 измерения, который измеряет, например, объем, температуру и/или давление, или также массу, причем блок 6 затем производит обработку измеренных физических параметров, чтобы на этом основании осуществлять затем соответствующее управление или регулирование.
Измеренные данные могут быть переданы по линии 27 на центральный блок 23 управления и регулирования, который затем производит соответствующие подстройки топливоподачи 5, например, за счет регулировки соответствующих клапанов в линии топливоподачи 5.
Для того, чтобы довести топливо 3 до уровня температуры и давления топливного элемента 1, при необходимости могут быть использованы теплообменник 7 и/или компрессор 8, подключенные к топливному элементу 1.
Воздухоподачу 9 на стороне катода 32 топливного элемента контролируют и регулируют аналогично топливоподаче 5, при помощи блока 10 измерения, управления и регулирования. При этом измеряемыми параметрами также могут быть объем, температура, давление, масса или массовый расход, а также значение лямбда (избыток воздуха) или чистота подаваемого воздуха.
И в этом случае измеренные данные могут быть переданы по линии 26 на центральный блок 23 управления и регулирования, который затем производит соответствующую регулировку клапана или другого аналогичного элемента в линии воздухоподачи 9.
Кроме того, фильтр 11, воздуходувка 12, теплообменник 13 или компрессор 14 могут быть подключены индивидуально или в любой комбинации к топливному элементу 1 и к блоку 23 управления и регулирования.
При воздухоподаче 9 важно, чтобы воздух содержал азот. На летательном аппарате, например, может быть использован внешний воздух или воздух салона.
Существует также возможность подачи воздуха по линии 15 из помещения 25 или от объекта 25, на которые был подан обогащенный азотом отработанный воздух 2 катода, вновь на топливный элемент 1. Указанным образом порция кислорода в помещении 25 может быть дополнительно снижена, в результате чего противопожарная защита становится еще эффективнее.
Линия 15 и другие средства 4 подачи воздуха могут контролироваться или регулироваться при помощи центрального блока 23 управления и регулирования.
Важно, чтобы отработанный газ 2 катода имел более низкое содержание кислорода и более высокое содержание азота, чем воздухоподача 9 на стороне катода. В зависимости от типа топливного элемента, отработанный воздух катода содержит полученную в виде продукта воду, когда реакция водород/кислород протекает на стороне катода.
Этот отработанный воздух 2 имеет инертные свойства за счет его увеличенной порции азота, что приводит к тому, что пожар не может возникать или по меньшей мере может распространяться намного медленнее, чем в нормальных условиях.
Например, отработанный воздух 2 катода со скоростью преобразования кислорода (лямбда) 2 (что означает, что 50% поданного кислорода вступают в реакцию в топливном элементе 1 с водородом с образованием воды) имеет содержание кислорода около 10.5 об.%. Нормальный воздух имеет содержание кислорода около 21 об.%.
Этот отработанный воздух может быть подан непосредственно по системе 16 труб в помещение или на объект 25, что приводит к снижению содержания кислорода в помещении или на объекте 25.
При помощи измерительных устройств 401, 403 (см. фиг.4), непрерывно контролируют отработанный воздух катода, производя текущий контроль по меньшей мере одного физического параметра, выбранного из группы, в которую входят содержание кислорода, содержание водорода, давление, температура, содержание влаги, объемный расход, содержание диоксида углерода, содержание угарного газа и содержание оксида азота. Другие измерительные точки 402, 404, 405 могут быть расположены, например, в системе 16 труб, до подачи в помещение 25 или на впуск анода или на впуск катода топливного элемента. Измеренные данные передают на центральный блок 23 управления и регулирования. В зависимости от ситуации выпускные клапаны могут переключать воздухоподачу в помещение или выпускать отработанный воздух в окружающую среду.
При помощи компрессора 17 и/или теплообменника 18, обогащенный азотом отработанный воздух 2 катода может быть сжат и/или охлажден, ранее его подачи в помещение или на объект 25.
Как уже было указано здесь выше, в зависимости от типа топливного элемента, обогащенный азотом отработанный воздух 2 катода может содержать воду, если это необходимо. В этом случае может быть использован конденсатор 19 (в дополнение к компрессору 17 и теплообменнику 18 или вместо них). Конденсатор 19 конденсирует воду, которая поступает в водяной бак 20 или поступает непосредственно во внешнюю водную систему 201. Водной системой 20 может быть бортовая система внутреннего потребления, а также система 32 пожаротушения. Этой дополнительной системой 32 пожаротушения можно управлять при помощи управляющего регулятора 23. При наличии установки 405 для реформинга водорода, сконденсированная вода может быть подана в процесс реформинга.
Полученный слегка влажный или полностью сухой воздух, в зависимости от степени конденсации, как уже было указано здесь выше, теперь может быть подан к источнику возгорания в помещении, непосредственно или через компрессор 21.
Содержание кислорода в воздухе в помещении 25 может быть снижено до заданного содержания. В зависимости от вида использования, содержание кислорода может быть различным.
При содержании кислорода 15 объем. %, многие материалы не могут гореть. Однако при этом содержании кислорода вход людей в помещение все еще возможен.
Например, блок 23 управления и регулирования может быть запрограммирован так, чтобы содержание кислорода в помещении 25 удерживалось постоянным на уровне 15 об.%. Однако возможны и другие виды программирования. Например, блок 23 управления и регулирования может быть запрограммирован так, чтобы содержание кислорода в помещении 25 всегда лежало ниже регулируемого порогового значения. Если происходит приближение к пороговому значению снизу, то при необходимости могут быть подключены дополнительные топливные элементы или увеличено питание топливного элемента и, следовательно, может быть увеличен объемный расход отработанного воздуха катода.
Для этого помещение 25 может иметь измерительное устройство 22, которое подключено к блоку 23 управления и регулирования (при помощи линии 28). Измерительное устройство 22 служит для постоянного измерения и текущего контроля содержания кислорода и, при необходимости, дополнительных параметров, таких как, например, давление, температура, образование дыма и содержание водорода в помещении 25.
Кроме того, предусмотрен редукционный клапан 24, который позволяет регулировать степень повышенного давления.
Измерительное устройство 22 непрерывно измеряет содержание кислорода, температуру и давление. Соответствующая информация передается на блок 23 управления или регулирования.
Появление дыма можно также обнаруживать визуально, например, с использованием видеокамеры. Полученные изображения подвергаются электронной оценки и при необходимости передаются в кабину экипажа, так чтобы пилот мог оценить ситуацию в помещении 25.
Кроме того, может быть предусмотрен кондиционер, который отбирает воздух из помещения 25, нагревает или охлаждает его, и вновь подает воздух в помещение. За счет этого, например, при чрезмерном повышении температуры в помещении, воздух больше не подают снаружи в помещение. За счет этого можно поддерживать постоянным содержание кислорода и можно контролировать температуру. Кроме того, кондиционер также может быть использован для регулировки температуры в линии 16 подачи.
Блок 23 управления и регулирования производит регулирование и/или управление, в частности, воздухоподачей 9, чтобы подстраивать содержание кислорода в отработанном воздухе, топливоподачей 5, подачей 2 обогащенного азотом отработанного воздуха катода, и производит управление и/или регулирование всех клапанов, теплообменников, компрессоров, смесителей, кондиционеров и воздуходувок, предусмотренных в системе 100 пожарной защиты.
Системой управления и регулирования можно управлять по линии 29. Линию 16 подачи из помещение 25 можно регулировать при помощи клапана 30.
Кроме того, электрическая и тепловая энергия, которая требуется в системе, например, для компрессоров, теплообменника или кондиционера, может быть получена от топливного элемента 1, от внешнего источника (не показан на фиг.3) или от их комбинации.
На фиг.6 схематично показано последовательное соединение топливных элементов 601, 602. Отработанный воздух катода топливного элемента 601 служит в качестве воздухоподачи для другого топливного элемента 602. За счет этого можно дополнительно понизить содержание кислорода в отработанном воздухе катода второго топливного элемента 602. Такое техническое решение возможно только в ограниченной степени, так как топливные элементы требуют наличия определенного содержания кислорода, подводимого к катоду, чтобы не "задохнуться" при слишком малом содержании кислорода. Линия подачи от одного топливного элемента к другому, а также линия подачи от последнего топливного элемента 602 в помещение 603, могут содержать измерительные устройства, компрессоры и теплообменники, как это показано на фиг.3.
На фиг.7 показана структурная схема еще одной системы пожарной защиты. В этом случае, отработанный воздух 701 катода направляют на дополнительное устройство 702 для снижения содержания кислорода, такое как, например, мембрана фракционирования воздуха. За счет этого можно дополнительно понизить содержание кислорода в отработанном воздухе катода, ранее его подачи в помещение 703. Мембрана фракционирования воздуха разделяет воздух на обогащенный кислородом поток воздуха и на обогащенный азотом поток воздуха. Обогащенный кислородом поток воздуха выпускают в окружающую среду, а обогащенный азотом поток воздуха направляют в помещение.
Принципы снижения содержания кислорода при помощи топливных элементов 601 показаны на фиг.8. Преимущества снижения содержания кислорода, которые используют для противопожарной защиты, хранения продуктов, имитации высоты над уровнем моря, и во многих других применениях, могут быть дополнены за счет характеристик топливных элементов. Топливные элементы работают бесшумно, с малыми выбросами загрязняющие веществ, и позволяют очень эффективно вырабатывать электрический ток и теплоту. В сочетании со всеми применениями со снижением содержания кислорода, топливный элемент позволяет создать передовую систему выработки энергии и передовую систему повышения безопасности. Электрический ток и теплоту можно использовать для местных потребностей. Отработанный газ позволяет снижать содержание кислорода в помещениях 801. Помещения 801 защищают от пожара и в них снижают порчу хранимых продуктов за счет окисления. Дополнительное преимущество создается за счет рабочей температуры топливного элемента, которая составляет по меньшей мере 70°С, так что отработанный газ можно рассматривать как почти стерильный и не содержащий микробов.
Топливный элемент может вырабатывать энергию, обеспечивать противопожарную защиту, имитировать высоту над уровнем моря и улучшать условия хранения продуктов в одной системе.
Структурная схема автономной системы для выработки энергии и противопожарной защиты, которая найдет дополнительное применение в областях спорта, медицины и логистики, показана на фиг.9. Ток может быть получен возобновляемым образом различными путями и подан на электролизер 901 для выработки водорода и кислорода.
Ток может быть получен, например, с использованием фотоэлектрической энергии 902, водной энергии 903, энергии 904 ветра или другой энергии 905. Соответствующий генератор 906 (например, гидроэлектростанция или ветротурбина) подает ток на электролизер 901.
Электролизер позволяет вырабатывать водород и кислород из воды. Кислород может быть использован, например, в промышленных применениях или выпущен в окружающую среду. Полученный водород может быть направлен на хранение 907 или может быть подан непосредственно в топливный элемент 908. Кроме электролизера, альтернативно, водород может быть получен при помощи установки 909 для реформинга, получающей питание от источника 911 биогаза, от источника 912 углеводородов или от источника 913 природного газа. Кислород может быть получен из хранилища 910.
В дополнение к водороду, топливный элемент потребляет воздух, который подают из источника 914 воздуха. Выработанная энергия в виде тепловой и электрической энергии может быть подана потребителю 915 тепловой энергии или потребителю 916 электрической энергии, или подана в сеть. Аналогично, потребителем 923 может быть использована выработанная вода. Известны различные возможности использования обедненного кислородом воздуха 917, в том числе, например, использование для противопожарной защиты 919, для имитации 920 высоты над уровнем моря и для медицинских целей 921, или для снижения содержания кислорода для хранения пищевых продуктов или пластмасс 922. Обедненный кислородом воздух разделяют от полученной воды в разделительном устройстве 918.
Несмотря на то, что были описаны предпочтительные варианты осуществления изобретения, совершенно ясно, что в него специалистами в данной области могут быть внесены изменения и дополнения, которые не выходят за рамки формулы изобретения.

Claims (25)

1. Система пожарной защиты для снижения опасности пожара в помещении, содержащая топливный элемент (1) для выработки обогащенного азотом, отработанного воздуха катода; систему (16) труб для подачи обогащенного азотом отработанного воздуха катода в помещение (25), так что содержание кислорода в помещении (25) снижается, таким образом, что опасность пожара в помещении (25) снижается; измерительное устройство для измерения физического параметра, выбранного из группы, в которую входят содержание кислорода в отработанном воздухе в системе труб, и содержание водорода в отработанном воздухе в системе труб; и блок (23) управления или регулирования, для подстройки содержания кислорода в помещении (25) за счет изменения значения лямбда катода топливного элемента; причем блок (23) управления или регулирования служит для управления или регулирования воздухоподачей (9) на катод топливного элемента (1).
2. Система пожарной защиты по п.1, которая дополнительно содержит блок (23) управления или регулирования для подстройки содержания кислорода в помещении (25).
3. Система пожарной защиты по п.2, в которой блок (23) управления или регулирования служит для управления или регулирования, по меньшей мере, одного параметра, выбранного из группы, в которую входят воздухоподача (9) на катод топливного элемента (1), топливоподача (5) на анод топливного элемента (1) и подача обогащенного азотом отработанного воздуха катода в помещение (25).
4. Система пожарной защиты по п.1, которая дополнительно содержит первое измерительное устройство (6, 10, 22) для измерения, по меньшей мере, одного физического параметра, выбранного из группы, в которую входят содержание кислорода в помещении (25), содержание водорода в помещении (25), температура в помещении (25), давление в помещении (25), и образование дыма в помещении (25); линию (26, 27, 28) передачи данных, предназначенную для передачи измеренных физических параметров от первого измерительного устройства (22) на блок (23) регулирования и управления.
5. Система пожарной защиты по п.4, которая дополнительно содержит второе измерительное устройство для измерения физического параметра, выбранного из группы, в которую входят содержание кислорода в отработанном воздухе в системе труб, содержание водорода в отработанном воздухе в системе труб, содержание диоксида углерода в отработанном воздухе в системе труб, содержание угарного газа в отработанном воздухе в системе труб, содержание оксида азота в отработанном воздухе в системе труб, объемный расход отработанного воздуха в системе труб, температура отработанного воздуха в системе труб, давление отработанного воздуха в системе труб, и содержание влаги в отработанном воздухе в системе труб.
6. Система пожарной защиты по п.5, которая дополнительно содержит линию передачи данных, предназначенную для передачи измеренных физических параметров из первого или второго измерительного устройства на блок управления или регулирования.
7. Система пожарной защиты по п.1, которая дополнительно содержит стравливающий клапан для выпуска отработанного воздуха катода в окружающую среду.
8. Система пожарной защиты по п.1, которая дополнительно содержит клапан (23) сброса давления, предназначенный для регулировки повышенного давления в помещении (25).
9. Система пожарной защиты по п.1, которая дополнительно содержит, по меньшей мере, один компонент, выбранный из группы, в которую входят компрессор (17, 21) для сжатия обогащенного азотом отработанного воздуха катода, теплообменник (18) для охлаждения обогащенного азотом отработанного воздуха катода, и смеситель для перемешивания обогащенного азотом отработанного воздуха катода с окружающим воздухом.
10. Система пожарной защиты по п.1, которая дополнительно содержит конденсатор (19), предназначенный для конденсации воды из обогащенного азотом отработанного воздуха катода; и водяной бак (20) для хранения сконденсированной воды.
11. Система пожарной защиты по п.1, которая дополнительно содержит кондиционер для регулирования температуры в помещении.
12. Система пожарной защиты по п.1, которая дополнительно содержит линию (15) подачи, предназначенную для подачи на катод топливного элемента (1) воздуха из помещения (25) для дополнительного принижения содержания кислорода в помещении (25).
13. Система пожарной защиты по п.1, в которой блок (23) регулирования и управления дополнительно служит для управления или регулирования теплообменника (18), компрессора (8, 14, 17, 21), редукционного клапана (24), кондиционера, стравливающего клапана и смесителя, а также для подачи воды на установку для реформинга водорода.
14. Система пожарной защиты по п.1, в которой электрическую и тепловую энергию, требующуюся в системе пожарной защиты, получают непосредственно от топливного элемента (1).
15. Система пожарной защиты по п.1, которая дополнительно содержит второй топливный элемент (602) или мембрану фракционирования воздуха, соединенную с первым топливным элементом (1) для дальнейшего снижения содержания кислорода в отработанном воздухе катода.
16. Система пожарной защиты по п.1, в которой помещение представляет собой помещение на летательном аппарате.
17. Применение системы пожарной защиты по одному из пп.1-16 для противопожарной защиты помещения (25) на летательном аппарате.
18. Применение системы пожарной защиты по одному из пп.1-16 для противопожарной защиты в помещении (25) в здании.
19. Применение системы пожарной защиты по одному из пп.1-16 для противопожарной защиты помещения (25) на судне.
20. Применение системы пожарной защиты по одному из пп.1-16 для общего снижения содержания кислорода в помещении для занятия спортом, в помещении для медицинского применения или в помещении для хранения продуктов.
21. Применение по п.20, при котором воздух катода со сниженным содержанием кислорода подают в респираторную маску для дыхания воздухом катода со сниженным содержанием кислорода.
22. Летательный аппарат, который содержит систему пожарной защиты по одному из пп.1-16 для противопожарной защиты помещения (25) на летательном аппарате.
23. Способ пожарной защиты в помещении (25), включающий в себя следующие операции: подачу воздуха снаружи от помещения (25) в топливный элемент (1); выработку обогащенного азотом отработанного воздуха катода при помощи топливного элемента (1); подачу обогащенного азотом отработанного воздуха катода в помещение (25), так что содержание кислорода в помещении (25) понижается и опасность пожара в помещении (25) снижается; измерение физического параметра, выбранного из группы, в которую входят содержание кислорода в отработанном воздухе в системе труб и содержание водорода в отработанном воздухе в системе труб; подстройку содержания кислорода в помещении (25) при помощи блока (23) управления или регулирования за счет изменения значения лямбда катода топливного элемента; причем блок (23) управления или регулирования служит для управления или регулирования воздухоподачи (9) на катод топливного элемента (1).
24. Способ по п.23, который дополнительно включает в себя операцию подстройки содержания кислорода в помещении (25).
25. Способ по п.23 или 24, который дополнительно включает в себя следующие операции: измерение, по меньшей мере, одного физического параметра, выбранного из группы, в которую входят содержание кислорода в помещении (25), содержание водорода в помещении, температура в помещении (25), содержание влаги в помещении, давление в помещении (25), и обнаружение опасности пожара в помещении (25); и передача измеренных физических параметров из измерительного устройства (22) в блок (23) управления или регулирования, для регулирования содержания кислорода в помещении (25), за счет управления значением лямбда катода топливного элемента.
RU2008123173/12A 2005-11-10 2006-11-09 Система и способ пожарной защиты RU2411972C2 (ru)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102005053692A DE102005053692B3 (de) 2005-11-10 2005-11-10 Brandschutz mit Brennstoffzellenabluft
DE102005053692.1 2005-11-10
US73840005P 2005-11-18 2005-11-18
US60/738,400 2005-11-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
RU2010143674/08A Division RU2565493C2 (ru) 2005-11-10 2006-11-09 Система и способ пожарной защиты

Publications (2)

Publication Number Publication Date
RU2008123173A RU2008123173A (ru) 2009-12-20
RU2411972C2 true RU2411972C2 (ru) 2011-02-20

Family

ID=37562789

Family Applications (2)

Application Number Title Priority Date Filing Date
RU2010143674/08A RU2565493C2 (ru) 2005-11-10 2006-11-09 Система и способ пожарной защиты
RU2008123173/12A RU2411972C2 (ru) 2005-11-10 2006-11-09 Система и способ пожарной защиты

Family Applications Before (1)

Application Number Title Priority Date Filing Date
RU2010143674/08A RU2565493C2 (ru) 2005-11-10 2006-11-09 Система и способ пожарной защиты

Country Status (9)

Country Link
US (2) US8256524B2 (ru)
EP (2) EP2210645B1 (ru)
JP (2) JP5376953B2 (ru)
CN (2) CN101304786B (ru)
BR (1) BRPI0618472A2 (ru)
CA (1) CA2628139C (ru)
DE (2) DE102005053692B3 (ru)
RU (2) RU2565493C2 (ru)
WO (1) WO2007054314A1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2575206C2 (ru) * 2011-09-02 2016-02-20 Фенвал Контролз Оф Джэпэн, Лтд. Система обнаружения дыма всасывающего типа
RU2673123C2 (ru) * 2013-10-31 2018-11-22 Зодиак Аэротекникс Способ и устройство для снабжения инертным газом топливного бака

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2625200C (en) 2005-11-10 2015-05-26 Airbus Deutschland Gmbh Fuel cell system for extinguishing fires
DE102005053692B3 (de) 2005-11-10 2007-01-11 Airbus Deutschland Gmbh Brandschutz mit Brennstoffzellenabluft
DE102007046381B4 (de) 2007-09-27 2011-07-28 Airbus Operations GmbH, 21129 Brennstoffzellensystem mit Saugbetrieb für ein Luftfahrzeug, Verfahren zum Betrieb des Brennstoffzellensystems und Flugzeug mit einem solchen Brennstoffzellensystem
DE102008013150B4 (de) 2008-03-07 2012-01-26 Airbus Operations Gmbh Mischsystem und Verfahren zur Inertisierung eines Gasvolumens sowie deren Verwendung
ITGE20090046A1 (it) * 2009-07-08 2011-01-09 Bruno Garbarino Sistema di inertizzazione per locali a rischio di incendio e/o esplosione, quali locali di alloggiamento di apparati e/o motori termici, celle a combustibile, apparati elettrici e simili
DE102009054886A1 (de) * 2009-12-17 2011-06-22 Airbus Operations GmbH, 21129 Brandschutzsystem, Luft- oder Raumfahrzeug sowie Verfahren zum Eindämmen und Unterdrücken eines Brandes
DE102010005695A1 (de) * 2010-01-25 2011-07-28 Airbus Operations GmbH, 21129 Autarkes Monument in der Flugzeug-Druckkabine mit dezentraler Betriebsstoffversorgung und effizienter Energiewandlung
CN101968244A (zh) * 2010-10-21 2011-02-09 广西国杰斯消防科技有限公司 一种能持续防止需氧火灾发生的空气调节***
CN104487141A (zh) * 2012-03-19 2015-04-01 祖迪雅克航空技术公司 用于防火和/或防爆的燃料电池装置
EP2712013B1 (en) * 2012-09-20 2018-08-15 Airbus Operations GmbH Fuel cell system for an aircraft, method for operating a fuel cell system in an aircraft and aircraft with such a fuel cell system
FR2998422B1 (fr) * 2012-11-16 2017-01-13 Snecma Installation electrique a pile a combustible refroidie comprenant une machine thermique a absorption
DE102012222020B4 (de) * 2012-11-30 2022-03-31 Airbus Operations Gmbh System zum Versorgen eines Flugzeugs mit Inertgas, Verfahren zum Versorgen eines Flugzeugs mit Inertgas, Verwendung einer Membran und Flugzeug
DE202013011963U1 (de) * 2013-01-14 2015-01-05 Deutsches Zentrum für Luft- und Raumfahrt e.V. Brennstoffzellensystem
DE102013100803B4 (de) * 2013-01-28 2021-04-29 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren zum Bereitstellen von sauerstoffarmer Luft, Brennstoffzellenvorrichtung, Brennstoffzellensystem und Flugzeug
WO2014186880A1 (en) * 2013-05-24 2014-11-27 Hydrogenics Corporation System and method for controlling voltage of a fuel cell
GB2519959A (en) 2013-11-01 2015-05-13 Airbus Operations Ltd Dehumidifier
DE102014103554B4 (de) 2014-03-14 2016-01-07 Eisenhuth Gmbh & Co. Kg Verfahren und Vorrichtung zur Gewinnung von Stickstoff aus Luft
EP2979731B1 (en) 2014-07-29 2018-05-30 Airbus Operations GmbH Supply system and method for providing electric energy, oxygen depleted air and water as well and aircraft having such a supply system
US10343003B2 (en) * 2014-10-02 2019-07-09 The Boeing Company Aircraft fire suppression system and method
BR112017015358A2 (pt) * 2015-01-22 2018-01-16 Zodiac Aerotechnics dispositivos de célula de combustível para prevenção de incêndio a bordo de uma aeronave
JP5838491B1 (ja) * 2015-02-13 2016-01-06 株式会社フクハラ 高純度加圧窒素ガス生成システム並びに高純度加圧窒素ガス生成方法
US10312536B2 (en) 2016-05-10 2019-06-04 Hamilton Sundstrand Corporation On-board aircraft electrochemical system
EP3454929B1 (en) * 2016-05-13 2023-08-30 Lynntech, Inc. Hypoxia training device
US10300431B2 (en) * 2016-05-31 2019-05-28 Hamilton Sundstrant Corporation On-board vehicle inert gas generation system
DE102016007751A1 (de) 2016-06-24 2017-12-28 Diehl Aerospace Gmbh Verfahren und Vorrichtung zum Inertisieren eines Sauerstoff-enthaltenden Gases
US10307708B2 (en) 2016-06-24 2019-06-04 Hamilton Sundstrand Corporation Fuel tank system and method
CN112256002B (zh) * 2016-10-24 2023-10-17 深圳市大疆创新科技有限公司 控制方法、控制设备和无人机
US10427800B2 (en) 2016-10-31 2019-10-01 Hamilton Sundstrand Corporation Air separation system for fuel stabilization
US10150571B2 (en) 2016-11-10 2018-12-11 Hamilton Sundstrand Corporation On-board aircraft reactive inerting dried gas system
DE102017001056A1 (de) 2017-02-04 2018-08-09 Diehl Aerospace Gmbh Verfahren und Vorrichtung zur Erzeugung von elektrischer Energie
US10265561B2 (en) * 2017-02-16 2019-04-23 The Boeing Company Atmospheric air monitoring for aircraft fire suppression
US11260346B2 (en) 2018-06-25 2022-03-01 Hamilton Sundstrand Corporation Inerting system
US11530048B2 (en) 2019-04-04 2022-12-20 Hamilton Sundstrand Corporation Electrochemical inert gas and power generating system and method
BR112021023498A2 (pt) 2019-05-24 2022-02-08 Alakai Tech Corporation Sistema, método e aparelho de transferência de energia térmica multimodos integrados para aeronave de múltiplos rotores elétricos de combustível limpo
JP7335746B2 (ja) 2019-07-22 2023-08-30 東京瓦斯株式会社 燃料電池システム
US11132891B2 (en) 2019-08-27 2021-09-28 Honeywell International Inc. Self-testing fire sensing device
CN110985097B (zh) * 2019-12-20 2021-09-07 安徽鹰龙工业设计有限公司 一种煤矿井下火灾发生时自救阻燃装置
JP7434438B2 (ja) 2022-07-06 2024-02-20 エア・ウォーター防災株式会社 酸素低減システム
DE102022211066A1 (de) 2022-10-19 2024-04-25 Siemens Mobility GmbH Schienenfahrzeug mit Brennstoffzellenantrieb
CN115957461A (zh) * 2022-11-28 2023-04-14 北京国家新能源汽车技术创新中心有限公司 一种灭火装置及燃料电池***

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1651930A1 (ru) 1988-12-19 1991-05-30 Всесоюзный научно-исследовательский институт противопожарной обороны Способ тушени пожаров электронного оборудовани в шкафах
RU1839095C (ru) 1990-01-23 1993-12-30 Научно-производственное объединение машиностроени Устройство дл тушени пожара
JP3267997B2 (ja) * 1992-01-31 2002-03-25 株式会社東芝 燃料電池発電プラント
RU2074758C1 (ru) 1993-03-16 1997-03-10 Товарищество с ограниченной ответственностью "Меком" Устройство для тушения и предотвращения пожара
US5799652A (en) * 1995-05-22 1998-09-01 Hypoxico Inc. Hypoxic room system and equipment for Hypoxic training and therapy at standard atmospheric pressure
US7900709B2 (en) * 2000-12-28 2011-03-08 Kotliar Igor K Hypoxic aircraft fire prevention and suppression system with automatic emergency oxygen delivery system
JPH09276428A (ja) * 1996-04-08 1997-10-28 Sekiko Ryo 火災の予防と消火方法及びシステム
DE19625559C1 (de) * 1996-06-26 1997-10-09 Daimler Benz Aerospace Ag Verfahren zur Brandbekämpfung und Vorrichtung zu seiner Durchführung
US20020040940A1 (en) * 1998-03-18 2002-04-11 Wagner Ernst Werner Inerting method and apparatus for preventing and extinguishing fires in enclosed spaces
DE19811851C2 (de) 1998-03-18 2001-01-04 Wagner Alarm Sicherung Inertisierungsverfahren zur Brandverhütung und -löschung in geschlossenen Räumen
CA2256887C (en) 1998-12-21 2008-07-08 Indoor Air Technologies Inc. Environment control system for aircraft having interior condensation problem reduction, cabin air quality improvement, fire suppression and fire venting functions
US6560991B1 (en) * 2000-12-28 2003-05-13 Kotliar Igor K Hyperbaric hypoxic fire escape and suppression systems for multilevel buildings, transportation tunnels and other human-occupied environments
ES2269432T3 (es) * 2000-04-17 2007-04-01 Igor K. Kotliar Sistemas de hipoxicos para suprimir incendios y composiciones respirables para apagar fuegos.
US7043934B2 (en) * 2000-05-01 2006-05-16 University Of Maryland, College Park Device for collecting water from air
FR2822713B1 (fr) * 2001-04-02 2003-05-16 Air Liquide Procede et dispositif de traitement d'un feu dans un compartiment d'avion
GB2374007A (en) * 2001-04-04 2002-10-09 Kidde Plc Fire / explosion protection system and method, using inert gas produced in low temperature catalytic oxidation of organic fuel
DE10152964C1 (de) * 2001-10-26 2003-08-21 Airbus Gmbh Löschsystem zur Löschung eines innerhalb der Kabine oder eines Frachtraumes eines Passagierflugzeuges ausgebrochenen Feuers
FI20020001A (fi) 2002-01-02 2003-07-03 Marioff Corp Oy Palonsammutusmenetelmä ja -laitteisto
US7165625B2 (en) * 2002-01-31 2007-01-23 Julius Long Fire extingushing system
DE10205373B4 (de) * 2002-02-09 2007-07-19 Aloys Wobben Brandschutz
JP4098540B2 (ja) * 2002-03-19 2008-06-11 株式会社日本自動車部品総合研究所 燃料電池システム
JP3938508B2 (ja) 2002-03-29 2007-06-27 能美防災株式会社 充水式消火設備の消火配管の防錆方法
JP2004022487A (ja) * 2002-06-20 2004-01-22 Nissan Motor Co Ltd 燃料電池システム
KR100504503B1 (ko) * 2003-01-14 2005-08-01 엘지전자 주식회사 공기조화시스템
JP4085843B2 (ja) * 2003-03-03 2008-05-14 株式会社大林組 電力供給システム及び電力供給システムの運転方法
JP3903115B2 (ja) 2003-05-27 2007-04-11 消防庁長官 火災防止システム
WO2005007273A1 (de) 2003-07-11 2005-01-27 Axel Jahn Verfahren und vorrichtung zur klimatisierung eines raumes mit einem luftgemisch mit abgesenktem sauerstoffpartialdruck
DE10343342B4 (de) * 2003-07-11 2008-10-16 Jahn, Axel, Dr. Verfahren und Vorrichtung zur Klimatisierung eines Raumes mit einem Luftgemisch mit abgesenktem Sauerstoffpartialdruck
UA61850C2 (en) 2003-08-05 2005-09-15 Public Corp M M Fedorov Scient Method for operation of a mine nitrogen-compressor unit
SI1550482T1 (sl) * 2003-12-29 2010-06-30 Amrona Ag Inertizacijski postopek za gašenje požarov
RU2253492C1 (ru) 2004-01-21 2005-06-10 Военный инженерно-технический университет Способ объемного тушения пожара и устройство для его реализации
FR2870459B1 (fr) 2004-05-19 2006-08-25 Airbus France Sas Dispositif d'extinction de feu par injection d'un gaz genere par la combustion d'un bloc pyrotechnique
JP4876435B2 (ja) * 2005-05-20 2012-02-15 パナソニック株式会社 固体高分子形燃料電池システムおよびその運転方法
CA2625200C (en) * 2005-11-10 2015-05-26 Airbus Deutschland Gmbh Fuel cell system for extinguishing fires
DE102005053692B3 (de) 2005-11-10 2007-01-11 Airbus Deutschland Gmbh Brandschutz mit Brennstoffzellenabluft

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2575206C2 (ru) * 2011-09-02 2016-02-20 Фенвал Контролз Оф Джэпэн, Лтд. Система обнаружения дыма всасывающего типа
RU2673123C2 (ru) * 2013-10-31 2018-11-22 Зодиак Аэротекникс Способ и устройство для снабжения инертным газом топливного бака

Also Published As

Publication number Publication date
CN101304786A (zh) 2008-11-12
RU2010143674A (ru) 2012-05-10
EP2210645A1 (en) 2010-07-28
EP1945314A1 (en) 2008-07-23
CA2628139C (en) 2013-04-09
BRPI0618472A2 (pt) 2011-08-30
DE102005053692B3 (de) 2007-01-11
US20100018723A1 (en) 2010-01-28
US8256524B2 (en) 2012-09-04
US8567516B2 (en) 2013-10-29
US20120292058A1 (en) 2012-11-22
EP1945314B1 (en) 2010-05-26
JP5596761B2 (ja) 2014-09-24
WO2007054314A1 (en) 2007-05-18
RU2565493C2 (ru) 2015-10-20
CN102247671A (zh) 2011-11-23
JP2013062250A (ja) 2013-04-04
RU2008123173A (ru) 2009-12-20
CN101304786B (zh) 2012-02-22
EP2210645B1 (en) 2011-10-05
DE602006014571D1 (de) 2010-07-08
JP5376953B2 (ja) 2013-12-25
JP2009515310A (ja) 2009-04-09
CA2628139A1 (en) 2007-05-18

Similar Documents

Publication Publication Date Title
RU2411972C2 (ru) Система и способ пожарной защиты
RU2410143C2 (ru) Система и способ пожаротушения
CN101312769B (zh) 用于灭火的燃料电池***
US10164278B2 (en) Nitrogen enriched air generation and fuel tank inerting system
US20080202774A1 (en) Method of producing hypoxic environments in enclosed compartments employing fuel cell technology
CA2985884C (en) Recirculation fuel cell
US10673082B2 (en) System and method for fuel cell cathode gas humidification
CN117919632A (zh) 一种储能电站用冷却灭火抑爆喷射***和方法

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner