RU2407755C2 - Способ получения водных латексов как связующих - Google Patents

Способ получения водных латексов как связующих Download PDF

Info

Publication number
RU2407755C2
RU2407755C2 RU2007144200/05A RU2007144200A RU2407755C2 RU 2407755 C2 RU2407755 C2 RU 2407755C2 RU 2007144200/05 A RU2007144200/05 A RU 2007144200/05A RU 2007144200 A RU2007144200 A RU 2007144200A RU 2407755 C2 RU2407755 C2 RU 2407755C2
Authority
RU
Russia
Prior art keywords
mixture
free radical
radical mechanism
koh
olefinic unsaturated
Prior art date
Application number
RU2007144200/05A
Other languages
English (en)
Other versions
RU2007144200A (ru
Inventor
Тонни ВИЛЛЕМС (DE)
Тонни ВИЛЛЕМС
Маттье БАРРЕР (DE)
Маттье БАРРЕР
Кок-Фар ЛИ (DE)
Кок-Фар ЛИ
Франк ТЕЗЗАРИ (DE)
Франк ТЕЗЗАРИ
Штефан ВИГГЕРХАУЗ (DE)
Штефан ВИГГЕРХАУЗ
Поль БРЮИЛАН (BE)
Поль БРЮИЛАН
Эрик К. ХАУЗЕ (US)
Эрик К. ХАУЗЕ
Original Assignee
Е.И.Дюпон Де Немур Энд Компани
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Е.И.Дюпон Де Немур Энд Компани filed Critical Е.И.Дюпон Де Немур Энд Компани
Publication of RU2007144200A publication Critical patent/RU2007144200A/ru
Application granted granted Critical
Publication of RU2407755C2 publication Critical patent/RU2407755C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D151/00Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • C09D151/003Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/02Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of acids, salts or anhydrides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • C08F265/06Polymerisation of acrylate or methacrylate esters on to polymers thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D151/00Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Paints Or Removers (AREA)
  • Polymerisation Methods In General (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Изобретение относится к способу получения водных латексов как связующих многостадийной эмульсионной полимеризацией в водной фазе. Проводят полимеризацию по свободнорадикальному механизму смеси А олефиновых ненасыщенных мономеров и нейтрализуют кислотные группы образованного полимера. Смесь А олефиновых ненасыщенных мономеров включает, по крайней мере, один мономер с, по меньшей мере, одной кислотной группой в количестве, соответствующем кислотному числу смеси А от 10 до 100 мг КОН/г и от 0,5 до 5 вес.%, и по меньшей мере, один олефиновый полиненасыщенный мономер в водной фазе. Причем нейтрализация не начинается до тех пор, пока, по меньшей мере, 90 вес.% мономеров смеси А не будет полимеризовано полностью. Затем проводят полимеризацию, по меньшей мере, одной смеси В олефиновых ненасыщенных мономеров в присутствии продукта, полученного из смеси А. Смесь В включает, по крайней мере, один мономер с, по меньшей мере, одной кислотной группой в количестве, соответствующем кислотному числу смеси В или каждой из смесей В от 0 до ниже 5 мг КОН/г, по меньшей мере, один мономер с, по меньшей мере, одной гидроксильной группой в количестве, соответствующем гидроксильному числу смеси В или каждой из смесей В от 0 до меньше 5 мг КОН/г. Смесь В включает также, по меньшей мере, один олефиновый полиненасыщенный мономер в количестве от 0,5 до 5 вес.%, относительно смеси В или каждой из смесей В. Соотношение по весу смеси А, по меньшей мере, к одной смеси В составляет от 15:85 до 85:15. Способ позволяет получить связующее для получения грунтовочных/прозрачных покрытий, которые могут наноситься на различные субстраты. 6 з.п. ф-лы, 2 табл.

Description

Область техники
Настоящее изобретение относится к способу получения водных латексов как связующих; водным латексам как связующим, полученным этим способом; и также к их применению в качестве связующих в композициях водных покрытий.
Уровень техники
Патент ЕР 300612 А1 раскрывает частицы водных полимеров, имеющих структуру типа ядро-оболочка со сшитым ядром и стабилизирующей оболочкой с группами солей, используемых в качестве связующих в водных грунтовках для получения грунтовочных/прозрачных двухслойных покрытий. Из раздела «Примеры» патентной заявки ЕР 300612 А1 очевидно, что частицы полимеров типа ядро-оболочка получают путем проведения в начальной стадии эмульсионной полимеризации смеси олефиновых ненасыщенных мономеров, полимеризующихся по свободнорадикальному механизму, такая смесь содержит олефиновые полиненасыщенные мономеры, но без мономеров с кислотной функциональной группой, и затем в присутствии полимера, полученного в результате эмульсионной полимеризации, проводят эмульсионную полимеризацию мономерной смеси, которая содержит мономеры с кислотной функциональной группой, но не олефиновых полиненасыщенных мономеров, с последующей нейтрализацией кислотных групп.
Патентная заявка WO 01/72909 раскрывает водные эмульсионные полимеры, используемые в качестве связующих в водных грунтовках, которые применяются для получения грунтовочных/прозрачных двухслойных покрытий, эти эмульсионные полимеры получают путем эмульсионной полимеризации первой смеси мономеров, содержащей олефиновые ненасыщенные мономеры с функциональной кислотной группой и неолефиновые полиненасыщенные мономеры, нейтрализации кислотных групп эмульсионного полимера, полученного таким способом, и последующей эмульсионной полимеризации второй смеси мономеров, содержащей олефиновые полиненасыщенные мономеры, в присутствии полученного на предыдущей стадии эмульсионного полимера.
Патентная заявка US 5403894 раскрывает водные дисперсии полимеров со структурой ядро-оболочка, из которых можно выделить частицы полимера со структурой ядро-оболочка в виде редисперсного порошка, подходящего для использования в качестве модификатора цемента. Водные дисперсии полимеров типа ядро-оболочка получают с помощью эмульсионной полимеризации первой смеси мономеров, содержащей олефиновые полиненасыщенные мономеры и олефиновые ненасыщенные мономеры с кислотной функциональной группой, нейтрализации кислотных групп эмульсионного полимера, полученного таким способом, и последующей эмульсионной полимеризации второй смеси мономеров, содержащей олефиновые полиненасыщенные мономеры, в присутствии полученного на предыдущей стадии эмульсионного полимера. Вторая смесь мономеров в этом случае содержит неолефиновые полиненасыщенные мономеры. Не упоминалось и не предполагалось, что водные дисперсии полимеров типа ядро-оболочка могут использоваться в качестве связующих в водных грунтовках, использующихся для получения грунтовочных/прозрачных двухслойных покрытий.
К настоящему моменту известно, что эмульсионные полимеры, которые, в частности, подходят для использования в качестве связующих в водных грунтовках полезных для получения грунтовочных/прозрачных двухслойных покрытий, можно получить, если вышеуказанные эмульсионные полимеры получают многостадийной эмульсионной полимеризацией, то есть олефиновые полиненасыщенные мономеры сополимеризуются на всех стадиях эмульсионной полимеризации и олефиновые ненасыщенные мономеры с кислотными группами сополимеризуются на первой стадии эмульсионной полимеризации и если, после завершения первой стадии эмульсионной полимеризации, кислотные группы нейтрализуются. Использование олефиновых полиненасыщенных мономеров на всех стадиях эмульсионной полимеризации гарантирует, что полимерный продукт, образованный на каждой стадии эмульсионной полимеризации, демонстрирует сшитую структуру или даже гелеобразную структуру.
Сущность изобретения
Настоящее изобретение относится к способу получения водных латексов как связующих путем многостадийной эмульсионной полимеризации в водной фазе, включающему следующие стадии:
1) свободнорадикальную полимеризацию смеси А олефиновых ненасыщенных мономеров, полимеризующихся по свободнорадикальному механизму, содержащей, по крайней мере, один мономер с, по меньшей мере, одной кислотной группой в количестве, соответствующем кислотному числу смеси А от 10 до 100 мг KOH/г, и от 0,5 до 5 вес.%, по меньшей мере, одного олефинового полиненасыщенного мономера, в водной фазе,
2) нейтрализацию кислотных групп полимера, образованного на стадии (1), и
3) свободнорадикальную полимеризацию, по меньшей мере, одной смеси В олефиновых ненасыщенных мономеров, полимеризующихся по свободнорадикальному механизму, содержащей, по крайней мере, один мономер с, по меньшей мере, одной кислотной группой в количестве, соответствующем кислотному числу смеси В или любого соединения из смесей В от 0 до ниже 5 мг КОН/г, по меньшей мере, один мономер с, по меньшей мере, одной гидроксильной группой в количестве, соответствующем гидроксильному числу смеси В или любого соединения из смесей В от 0 до меньше 5 мг КОН/г, и, по меньшей мере, одного олефинового полиненасыщенного мономера в количестве от 0,5 до 5 вес.%, относительно смеси В или любого соединения из смесей В, в присутствии продукта, полученного на стадии (2),
в которой соотношение по весу смеси А, по меньшей мере, к одной смеси В составляет от 15:85 до 85:15 и в которой нейтрализация не начинается на стадии (2) до тех пор, пока, по меньшей мере, 90 вес.% мономеров смеси А не будет полимеризовано полностью.
Под термином «водные латексы как связующие» подразумеваются водно-дисперсные эмульсионные полимеры, то есть частицы водно-дисперсных полимеров, полученные путем эмульсионной полимеризации олефиновых ненасыщенных мономеров, полимеризующихся по свободнорадикальному механизму, причем вышеуказанные эмульсионные полимеры используются в качестве пленкообразующих связующих в композициях водорастворимых покрытий, в частности в водорастворимых грунтовках грунтовочных/прозрачных покрытий.
Подробное описание вариантов осуществления настоящего изобретения
В способе, соответствующем настоящему изобретению, водные латексы как связующие получают путем многостадийной, предпочтительно двухстадийной, полимеризации, то есть смеси А и В олефиновых ненасыщенных мономеров, которые будут полимеризоваться по свободнорадикальному механизму, полимеризуются в обычных условиях, известных специалистам в области свободнорадикальной полимеризации, представленной в водной эмульсии, то есть используя один или несколько эмульгаторов и с добавлением одного или нескольких инициаторов, которые обладают способностью к термической диссоциации до свободных радикалов. Для того чтобы гарантировать образование сшитых или даже гелеобразных структур в полимерных продуктах, получающихся на каждой стадии эмульсионной полимеризации, на каждой стадии эмульсионной полимеризации используются и сополимеризуются олефиновые полиненасыщенные мономеры. Продолжительность эмульсионной полимеризации (время, взятое для распределения смесей А и В в водной первоначальной загрузке, плюс продолжительность нейтрализации на стадии (2) плюс продолжительность постполимеризационной фазы) составляет, например, от 1 до 10 часов. Температура полимеризации в водной фазе составляет, например, от 50 до 95°С.
Эмульгатор (эмульгаторы) используется в обычном количестве, например, от 0,1 до 3 вес.%, относительно суммы веса смесей А и В и может первоначально вводиться и/или добавляться как компонент смесей А и В и/или добавляться параллельно к пропорционально распределенным смесям А и В. Примерами использующихся эмульгаторов являются традиционные катионные, анионные и неионные эмульгаторы, которые можно использовать в контексте эмульсионной полимеризации, такие как, например, хлорид цетилтриметиламмония, бромид бензилдодецилдиметиламмония, додецилсульфат натрия, додецилбензосульфонате натрия, монолауриловый эфир полиэтиленгликоля. Следует удостовериться, что катионные и анионные эмульгаторы не используются вместе.
Инициатор (инициаторы), который обладает способностью к термической диссоциации до свободных радикалов (свободнорадикальные инициаторы), используется в обычном количестве, например, от 0,02 до 2 вес.% относительно суммы веса А и В, и может добавляться одновременно к пропорционально распределенным смесям А и В. Водорастворимый свободнорадикальный инициатор (инициаторы) может добавляться как таковой, как компонент смесей А и В, но, в частности, как водный раствор. Хотя свободнорадикальный инициатор (инициаторы) может первоначально вводиться и/или добавляться, как только добавление мономеров закончено. Также возможно добавить инициатор (инициаторы) полностью до пропорционального распределения смесей А и В. Свободнорадикальный инициатор (инициаторы) предпочтительно является водорастворимым. Примерами использующихся свободнорадикальных инициаторов являются перекись водорода, пероксодисульфаты, такие как пероксидисульфаты натрия, калия и аммония, соли аммония 4,4'-азобис(4-цианопентановой кислоты), 2,2'-азобис(2-метил-N-1,1-бис(гидроксиметил)этил)пропионамид, 2,2'-азобис(2-метил-N-2-гидроксиэтил)пропионамид, а также традиционные системы окислительно-восстановительных инициаторов, известных специалистам в этой области, такие как перекись водорода/аскорбиновая кислота возможно в комбинации с каталитическими солями металлов, такими как соли железа, меди или хрома.
Смеси мономеров А и В, которые должны полимеризоваться по свободнорадикальному механизму в соответствии со стадиями процесса (1) и (3), соответственно распределяются, то есть добавляются, как это обычно происходит при эмульсионных полимеризациях, в водную первоначальную загрузку, температура которой в целом уже отрегулирована до температуры полимеризации. Следовательно, стадии процесса (1) и (3) включают соответственное распределение смесей А и В и начинаются при запуске конкретного соотношения. Смеси А и В соответственно распределяются одна за другой в соответствии с последующими стадиями процесса (1) и (3), в которых пропорциональное распределение одной или нескольких смесей В начинают со стадии (3), но сразу же после завершения стадии (2), то есть на самом раннем этапе, когда 90 вес.% мономеров смеси А уже полимеризовалось полностью и нейтрализацию, в соответствии со стадией (2), выполнили. Степень, по которой берется завершение полимеризации, можно легко найти с помощью определения твердого остатка. Таким образом, пропорциональное распределение, по меньшей мере, одной смеси В в водной первоначальной загрузке можно начать самое раннее после соответствующего распределения 90% смеси А и последующего добавления нейтрализующего агента на стадии (2), что соответствует случаю очень высокой скорости полимеризации с виртуально мгновенной 100% полимеризационной конверсией. Однако в целом смесь А изначально пропорционально распределена в целом объеме во время стадии (1), после которой добавляют нейтрализующий агент на стадии (2), когда смесь А мономеров, по меньшей мере, на 90% полимеризована, предпочтительно полностью, и только после этого, на стадии (3), по меньшей мере, одна смесь В пропорционально распределяется.
Кислотные группы полимера, полученного на стадии процесса (1), нейтрализуются, при использовании традиционных щелочных нейтрализующих агентов, таких как аммоний и, в частности, амины и/или аминоспирты, такие как, например, триэтиламин, диметилизопропиламин, диметилэтаноламин, диметилизопропаноламин и 2-амино-2-метил-1-пропанол.
Основные нейтрализующие агенты добавляют в соответствии со степенью нейтрализации, например, от 10 до 100%. Степень нейтрализации 100% в данном случае соответствует стехиометрической нейтрализации каждой кислотной группы в полимере, возникающем из смеси А. Например, степень нейтрализации выбирают в зависимости от содержания твердого вещества водного латекса как связующего, полученного после завершения способа, в соответствии с настоящим изобретением, и также зависит от кислотного числа смеси А. В общем случае низкая степень нейтрализации выбирается в случае повышенных кислотных чисел и повышенного содержания твердого вещества и наоборот.
Термин «смесь», использованный по отношению к смесям А и В, не исключает отдельного соответствующего распределения определенных мономеров, то есть мономеры также могут быть пропорционально распределены индивидуально или как две или больше разных смесей только некоторых мономеров. Однако предпочтительно, чтобы пропорционально распределялись реальные смеси А и В. Смеси А и В можно также пропорционально распределять в виде преэмульсий.
Соотношение по весу смеси А, по меньшей мере, к одной смеси В составляет 15:85 до 85:15.
Смесь А содержит, по меньшей мере, один олефиновый ненасыщенный мономер, полимеризующийся по свободнорадикальному механизму с, по меньшей мере, одной кислотной группой, особенно в количестве, соответствующем кислотному числу смеси А от 10 до 100 мг КОН/г, и 0,5 до 5 вес.%, по меньшей мере, одного олефинового полиненасыщенного мономера, полимеризующегося по свободнорадикальному механизму.
Примерами олефинового ненасыщенного мономера, полимеризующегося по свободнорадикальному механизму с, по меньшей мере, одной кислотной группой, являются, в частности, олефиновые ненасыщенные мономеры, включающие карбоксильные группы, такие как, например, (мет)акриловую, итаконовую, кротоновую, изокротоновую, аконитовую, малеиновую и фумаровую кислоту, (полу-) сложные эфиры малеиновой и фумаровой кислот и карбоксиалкильные сложные эфиры (мет)акриловой кислоты, например, бета-карбоксиэтилакрилат и продукты присоединения карбоксиалкил(мет)акрилатов к карбоновым ангидридам, такие как, например, моно-2-(мет)акрилоилоксиэтиловый сложный эфир фталевой кислоты. Предпочтительной является (мет)акриловая кислота.
В описании настоящего изобретения и формуле изобретения используется термин «(мет)акриловый». Он означает акриловое и/или метакриловое соединение.
Примерами олефиновых полиненасыщенных мономеров, полимеризующихся по свободнорадикальному механизму, являются дивинилбензол, ди(мет)акрилат гександиола, ди(мет)акрилат этилен- и пропиленгликоля, ди(мет)акрилат 1,3- и 1,4-бутандиола, винил(мет)акрилат, аллил(мет)акрилат, диаллилфталат, три(мет)акрилат глицерина, три(мет)акрилат триметилолпропана, тетра(мет)акрилат пентаэритритола, ди(мет)акрилат ди- и трипропиленгликоля, бис(мет)акриламид гексаметилена. Другими примерами являются соединения, которые можно получить путем конденсации или предпочтительно путем реакции присоединения дополнительных соединений, которые в каждом случае, кроме одной или нескольких олефиновых двойных связей, содержат одну или несколько добавочных групп на молекулу. Добавочные функциональные группы индивидуальных дополнительных соединений включают пары взаимно дополняющих реактивных групп, в частности группы, которые способны реагировать друг с другом с целью возможной конденсации или реакции присоединения.
Примерами олефиновых полиненасыщенных мономеров, полимеризующихся по свободнорадикальному механизму, полученных путем конденсации, являются продукты реакции, образованные из (мет)акриловых мономеров с алкоксисилановой функциональной группой после гидролиза с выделением спирта и образованием силоксановых мостиков. Другими примерами являются продукты реакции, образовавшиеся из гидроксиалкил(мет)акрилатов и олефиновых ненасыщенных изоцианатов, блокированных по изоцианатной группе, такие как изоцианатоалкил(мет)акрилат или м-изопропенил-альфа,альфа-диметилбензилизоцианат, с выделением блокирующего агента и образованием уретановых групп.
Примерами олефиновых полиненасыщенных мономеров, полимеризующихся по свободнорадикальному механизму, полученных путем реакции присоединения, являются продукты присоединения, образованные из гидроксиалкил(мет)акрилатов и олефиновых ненасыщенных изоцианатов, таких как изоцианатоалкил(мет)акрилат или м-изопропенил-альфа, альфа-диметилбензилизоцианат с образованием уретановой группы, или продукты реакции, образованные с помощью присоединения через открытие кольца эпоксигруппы ненасыщенных эпоксисоединений на карбоксильную группу ненасыщенной кислоты, с образованием эфирной группы и гидроксильной группы, такие как, например, продукт присоединения, образованный из глицидил(мет)акрилата и (мет)акриловой кислоты.
Кроме, по меньшей мере, одного олефинового ненасыщенного мономера, полимеризующегося по свободнорадикальному механизму с, по меньшей мере, одной кислотной группой, и, по меньшей мере, одного олефинового полиненасыщенного мономера, полимеризующегося по свободнорадикальному механизму, смесь А также содержит один или несколько дополнительных олефиновых ненасыщенных мономеров, полимеризующихся по свободнорадикальному механизму. Они могут включать функциональные группы, или функциональные группы могут отсутствовать, и также они могут использоваться в комбинации.
Примерами олефиновых ненасыщенных мономеров, полимеризующихся по свободнорадикальному механизму, без функциональных групп, использующихся в смеси А, являются моновинил ароматические соединения, такие как стирол, винилтолуол; виниловые простые эфиры и виниловые сложные эфиры, такие как винилацетат, винилверсалат; диалкиловые сложные эфиры малеиновой, фумаровой, тетрагидрофталевой кислоты; но, в частности, (цикло)алкил(мет)акрилаты, такие как метил(мет)акрилат, этил(мет)акрилат, пропил(мет)акрилат, бутил(мет)акрилат, изобутил(мет)акрилат, трет-бутил(мет)акрилат, гексил(мет)акрилат, циклогексил(мет)акрилат, этилгексил(мет)акрилат, децил(мет)акрилат, додецил(мет)акрилат, гексадецил(мет)акрилат, лаурил(мет)акрилат и изоборнил(мет)акрилат.
Примерами олефиновых ненасыщенных мономеров, полимеризующихся по свободнорадикальному механизму, с функциональными группами, на которые можно ссылаться, являются, в частности, олефиновые ненасыщенные мономеры с, по меньшей мере, одной гидроксильной группой, такие как аллиловый спирт, но, в частности, гидроксиалкил(мет)акрилаты, такие как, например, гидроксиэтил(мет)акрилат и гидроксипропил(мет)акрилаты, гидроксибутил(мет)акрилаты, изомерные относительно положения гидроксильной группы. Другими дополнительными примерами являются моно(мет)акрилат глицерина, продукты присоединения (мет)акриловой кислоты к моноэпоксидам, такие как, например, глицидил сложный эфир версатиковой кислоты, и продукты присоединения глицидил(мет)акрилата к монокарбоновым кислотам, такие как, например, уксусная кислота или пропионовая кислота.
Если смесь А содержит, по меньшей мере, один олефиновый ненасыщенный мономер, полимеризующийся по свободнорадикальному механизму с, по меньшей мере, одной гидроксильной группой, которая может давать преимущество, их отношение в смеси А лежит в пределе относительно гидроксильного числа смеси А ниже 60 мг КОН/г, в частности, от 5 до 30 мг КОН/г.
Например, смесь А может состоять из
а) 0,5-5 вес.%, по меньшей мере, одного олефинового полиненасыщенного мономера, полимеризующегося по свободнорадикальному механизму,
b) вес.% содержания, соответствующего кислотному числу смеси А от 10 до 100 мг КОН/г, например, выше 1-20 вес.%, по меньшей мере, одного олефинового ненасыщенного мономера, полимеризующегося по свободнорадикальному механизму с, по меньшей мере, одной кислотной группой,
c) от 55 до менее 98,5 вес.%, по меньшей мере, одного олефинового ненасыщенного мономера, полимеризующегося по свободнорадикальному механизму, без функциональных групп, и
d) вес.% содержания, соответствующего гидроксильному числу смеси А от 0 до менее 60 мг КОН/г, например, от 0 до 20 вес.%, по меньшей мере, одного олефинового ненасыщенного мономера, полимеризующегося по свободнорадикальному механизму с, по меньшей мере, одной гидроксильной группой,
в которой содержание весовых процентов доводят до 100 вес.%.
В частности, смесь А может состоять из
a) 0,5-3 вес.%, по меньшей мере, одного олефинового полиненасыщенного мономера, полимеризующегося по свободнорадикальному механизму,
b) количества в пределе от свыше 1 до 10 вес.% и соответствующего кислотному числу смеси А от 10 до 100 мг КОН/г, по меньшей мере, одного олефинового ненасыщенного мономера, полимеризующегося по свободнорадикальному механизму с, по меньшей мере, одной кислотной группой,
c) от 77 до менее 97,5 вес.%, по меньшей мере, одного олефинового ненасыщенного мономера, полимеризующегося по свободнорадикальному механизму, без функциональных групп, и
d) количества в пределе от свыше 1 до 10 вес.%, и соответствующего гидроксильному числу смеси А от 5 до 30 мг КОН/г, по меньшей мере, одного олефинового ненасыщенного мономера, полимеризующегося по свободнорадикальному механизму с, по меньшей мере, одной гидроксильной группой,
в которой содержание весовых процентов доводят до 100 вес.%.
В описании изобретения и формуле изобретения упоминается, по меньшей мере, одна смесь В. Если используется более чем одна смесь В, то они могут быть соответственно распределены одновременно или последовательно. Предпочтительно использовать только одну смесь В, в этом случае способ в соответствии с настоящим изобретением является двухстадийной эмульсионной полимеризацией, в которой смесь А полимеризуется на стадии (1) и смесь В полимеризуется на стадии (3).
Предпочтительно только одна смесь В, или в случае, когда две или более смесей В, каждая из смесей В содержит, по меньшей мере, один олефиновый ненасыщенный мономер, полимеризующийся по свободнорадикальному механизму с, по меньшей мере, одной кислотной группой, в количестве, соответствующем кислотному числу смеси менее 5 г КОН/г, по меньшей мере, один олефиновый полиненасыщенный мономер, полимеризующийся по свободнорадикальному механизму с, по меньшей мере, одной гидроксильной группой, в количестве, соответствующем гидроксильному количеству смеси от менее 5 мг КОН/г, и 0,5-5 вес.%, по меньшей мере, одного олефинового полиненасыщенного мономера, полимеризующегося по свободнорадикальному механизму. Смесь В или смеси В предпочтительно не содержат ни олефиновых ненасыщенных мономеров, полимеризующихся по свободнорадикальному механизму с, по меньшей мере, одной кислотной группой, ни олефиновых ненасыщенных мономеров, полимеризующихся по свободнорадикальному механизму с, по меньшей мере, одной гидроксильной группой.
Примеры олефиновых полиненасыщенных мономеров, полимеризующихся по свободнорадикальному механизму, и олефиновых ненасыщенных мономеров, полимеризующихся по свободнорадикальному механизму с, по меньшей мере, одной кислотной группой, или с, по меньшей мере, одной гидроксильной группой, являются такими же, как в случае смеси А.
Кроме, по меньшей мере, одного олефинового полиненасыщенного мономера, полимеризующегося по свободнорадикальному механизму, и возможно, но предпочтительно при отсутствии, одного олефинового ненасыщенного мономера, полимеризующегося по свободнорадикальному механизму с, по меньшей мере, одной кислотной группой, или с, по меньшей мере, одной гидроксильной группой, по меньшей мере, одна смесь В содержит, по меньшей мере, один дополнительный олефиновый ненасыщенный мономер, полимеризующийся по свободнорадикальному механизму, без функциональной группы. Примеры таких олефиновых ненасыщенных мономеров, полимеризующихся по свободнорадикальному механизму, которые не содержат функциональные группы, являются такими же, как описано в случае смеси А.
Например, смесь В или каждая из смесей В может состоять из
a) 0,5-5 вес.%, по меньшей мере, одного олефинового полиненасыщенного мономера, полимеризующегося по свободнорадикальному механизму,
b) вес.% содержания, соответствующего кислотному числу смеси (смесей) В от 0 до менее 5 мг КОН/г, например, от 0 до менее 1 вес.%, по меньшей мере, одного олефинового ненасыщенного мономера, полимеризующегося по свободнорадикальному механизму с, по меньшей мере, одной кислотной группой,
c) вес.% содержания, соответствующего гидроксильному числу смеси (смесей) В от 0 до менее 5 мг КОН/г, например, от 0 до менее 2 вес.%, по меньшей мере, одного олефинового ненасыщенного мономера, полимеризующегося по свободнорадикальному механизму с, по меньшей мере, одной гидроксильной группой, и
d) от выше 92 до 99,5 вес.%, по меньшей мере, одного олефинового ненасыщенного мономера, полимеризующегося по свободнорадикальному механизму, без функциональных групп,
в которой содержание весовых процентов доводят до 100 вес.%.
В частности, смесь В или каждая из смесей В может состоять из
a) от 0,5 до 3 вес.%, по меньшей мере, одного олефинового полиненасыщенного мономера, полимеризующегося по свободнорадикальному механизму, и
b) от 97 до 99,5 вес.%, по меньшей мере, одного олефинового ненасыщенного мономера, полимеризующегося по свободнорадикальному механизму, без функциональных групп,
в которой содержание весовых процентов доводят до 100 вес.%.
Способ в соответствии с настоящим изобретением делает возможным получение водных латексов как связующих с содержанием твердого вещества, например, от 30 до 60 вес.%.
На основании электронных микроснимков приблизительно 90 нм толщины микротомных секций высушенных слоев, полученных из водных латексов как связующих, стало возможно установить, что отдельные частицы латекса, в общем случае, имеют структуру двух непосредственно связанных пузырьков, которую можно сравнить с написанием цифры 8. Вероятно, что морфология этих частиц является основополагающей причиной удивительных реологических свойств водных латексов как связующих, соответствующих настоящему изобретению. Такие связующие латексы, в действительности, демонстрируют резко выраженную псевдопластичность, комбинированную с также ярко выраженными тиксотропными свойствами.
Используя водные латексы, обладающие способностью к связыванию, соответствующие настоящему изобретению, возможно разработать композиции водных покрытий, которые различались бы посредством реологических свойств. На практике композиции водных покрытий различаются великолепными свойствами по дефекту наплыва/подтека (sagging), то есть низкой тенденцией к образованию наплывов (подтеков). Если композиции водных покрытий являются композициями покрытий, содержащих пигменты, которые создают специальный эффект (пигменты, создающие эффект хлопьев), то эти композиции отличаются созданием великолепного специального эффекта (великолепное ориентирование хлопьев), например великолепный металлический эффект. Заслуживает внимания почти полное или полное отсутствие тенденции к образованию неравномерной окраски (образование облаков).
Например, водорастворимые грунтовки, пригодные для получения грунтовочных/прозрачных двухслойных покрытий, можно разработать на основе водных латексов как связующих в соответствии с настоящим изобретением.
Водорастворимые грунтовки получают путем смешивания пигментов с водными латексами как связующими в соответствии с настоящим изобретением и в каждом случае со следующими возможными компонентами: дополнительными связующими агентами, сшивающими агентами, наполнителями (разбавителями), традиционными присадками к покрытиям и органическими растворителями.
Водорастворимые грунтовки имеют содержание твердого вещества в пределе, например, от 10 до 45 вес.%, предпочтительно от 15 до 35 вес.%. Весовое соотношение содержания пигмента к содержанию полимерного твердого вещества составляет, например, приблизительно, от 0,05:1 до 2:1, для водорастворимых грунтовок со специфическими эффектами это соотношение, например, составляет от 0,06:1 до 0,6:1, для цветных (однотонных) водорастворимых грунтовок соотношение предпочтительно выше, например, от 0,06:1 до 2:1, в каждом случае относительно веса твердого вещества. В общем случае, кроме воды, по меньшей мере, одного пигмента, содержания твердого полимерного вещества, которое включает, по меньшей мере, одно связующее, введенное с помощью водного латекса как связующего в соответствии с настоящим изобретением, возможно содержание одного или нескольких дополнительных связующих агентов, отличающихся от него, и возможно содержание одного или нескольких сшивающих агентов, возможно содержание одного или нескольких наполнителей и возможно содержания одного или нескольких органических растворителей в водорастворимых грунтовках, также они содержат одну или несколько традиционных присадок для покрытий. По меньшей мере, одно связующее, введенное с помощью водного латекса как связующего в соответствии с настоящим изобретением, и возможно дополнительный связующий агент, отличающийся от него, образуют собственный состав связующего твердых частиц. Фраза «возможно дополнительные связующие агенты, отличающиеся от него» включает не только связующие смолы, но также пигментные измельченные смолы. Связующий реагент, введенный с помощью водного латекса как связующего в соответствии с настоящим изобретением, может быть единственным связующим реагентом. Если кроме, по меньшей мере, одного связующего реагента, введенного с помощью водного латекса как связующего в соответствии с настоящим изобретением, также присутствуют дополнительные связующие реагенты, отличающиеся от него, то их количество в связующем составляет, например, от 20 до 80 вес.% на содержание сухого остатка.
Примерами связующих агентов, отличающихся от связующего агента, введенного с помощью водного латекса как связующего в соответствии с настоящим изобретением, являются традиционные пленкообразующие, водорастворимые связующие агенты, известные специалистам в данной области, такие как водорастворимые полиэфирные смолы, водорастворимые (мет)акриловые сополимерные смолы или водорастворимые полиэфирные/(мет)акриловые сополимерные гибриды и водорастворимые полиуретановые смолы или полиуретановые/(мет)акриловые сополимерные гибриды. Смолы могут вступать в реакцию или быть нефункциональными.
Водорастворимые грунтовки могут быть самовысушивающимися, самосшивающимися или внешнесшивающимися. Соответственно, водорастворимые грунтовки могут содержать сшивающие агенты, такие как, например, свободные или блокированные полиизоцианаты или аминосмолы, например меламиновые смолы. Выбор возможно используемых сшивающих агентов зависит от типа сшивающейся группы в связующих агентах и известен специалистам в этой области. Сшивающие агенты могут использоваться как индивидуально, так и в комбинации. Соотношение компонентов смеси сшивающего агента к связующему агенту, например, равняется от 10:90 до 40:60, предпочтительно от 20:80 до 30:70.
Водорастворимые грунтовки содержат традиционные пигменты для покрытий, например пигменты для получения специальных эффектов и/или пигменты, выбранные среди белого, цветного или черного пигментов.
Примерами пигментов, придающих специфические эффекты, являются традиционные пигменты, которые придают покрытию цвет и/или светлоту в зависимости от угла наблюдения, такие как пигменты из металлов, например, сделанные из алюминия, меди или других металлов, интерференцированные пигменты, такие как, например, пигменты металлов, оксидом металла с покрытием, например алюминий, покрытый оксидом железа, слюда с покрытием, такая как, например, слюда с покрытием диоксидом титана, пигменты, которые дают графитовый эффект, оксид железа в виде хлопьев, жидкокристаллические пигменты, пигменты оксида алюминия с покрытием, пигменты диоксида кремния с покрытием.
Примерами белых, цветных и черных пигментов являются традиционные неорганические и органические пигменты, известные для специалистов в данной области, такие как, например, диоксид титана, пигменты оксида железа, сажа, азо-пигменты, фталоцианиновые пигменты, хинакридоновые пигменты, пирролопиррольные пигменты, периленовые пигменты.
Водорастворимые грунтовки могут также содержать наполнители, например, в количестве от 0 до 30 вес.% относительно сухого остатка смолы. Наполнители не составляют часть содержания пигмента. Примерами являются сульфат бария, каолин, тальк, диоксид силикона, слоистые силикаты.
В общем случае пигменты, дающие специальные эффекты, на начальной стадии вводятся в виде традиционных, выпускающихся в промышленном масштабе водных или неводных паст, возможно комбинированных с предпочтительно водорастворимыми органическими растворителями, и присадок и затем смешиваются с водными связующими агентами. Порошкообразные пигменты, дающие специальные эффекты, можно сначала обработать предпочтительно водорастворимыми органическими растворителями и присадками, чтобы получить пасту.
Белые, цветные и черные пигменты и/или наполнители могут, например, быть измельчены в пропорции водного связующего агента. Также предпочтительно может иметь место измельчение для специальной водорастворимой пастообразной смолы. Состав затем дополняется оставшейся частью водного связующего агента или водной пастообразной смолой.
Водорастворимые грунтовки могут содержать традиционные добавки (присадки) к покрытиям в традиционных количествах, например, от 0,1 до 5 вес.%, относительно их содержания сухого вещества. Примерами являются нейтрализующие агенты, пеногасители, смачивающие вещества, промоторы адгезии, катализаторы, выравнивающие агенты, агенты, предотвращающие крапчатости, загустители и легкие стабилизаторы.
Водорастворимые грунтовки могут содержать традиционные растворители для покрытий, например, в отношении предпочтительно меньше, чем 20 вес.%, в частности предпочтительно меньше, чем 15 вес.%. Традиционные растворители для покрытий могут образовываться, например, при получении связующих агентов или добавляться отдельно. Примерами таких растворителей являются одноатомные или многоатомные спирты, например пропанол, бутанол, гексанол; гликолевые простые или сложные эфиры, например диалкиловый эфир диэтиленгликоля, диалкиловый эфир дипропиленгликоля, в каждом случае с алкилом, имеющим количество атомов С 1-6, этоксипропанол, монобутиловый эфир этиленгликоля; гликоли, например этиленгликоль, пропиленгликоль и их олигомеры; N-алкилпирролидоны, такие как, например, N-метилпирролидоны; кетоны, такие как метилэтилкетон, ацетон, циклогексанон и ароматические или алифатические углеводороды.
Водорастворимые грунтовки можно использовать для получения окрашенного слоя покрытия и/или слоя покрытия со специальным эффектом в грунтовочном/прозрачном двухслойном покрытии. Водорастворимые грунтовки можно наносить с помощью традиционных способов. Предпочтительно они наносятся путем распыления до образования сухой пленки толщиной, например, от 8 до 40 мкм; для водорастворимых грунтовок со специальными эффектами толщина сухой пленки составляет, например, от 8 до 25 мкм, в тоже время предпочтительно, чтобы толщина пленки одноцветной водорастворимой грунтовки была больше, например, от 10 до 40 мкм. Предпочтительно нанесение проводят способом окраски по влажному слою, то есть после фазы нанесения, например, при 20-80°С, слои водорастворимой грунтовки покрывают сверху прозрачным слоем так, чтобы толщина сухой пленки составила предпочтительно от 30 до 60 мкм, и высушиваются или сшиваются вместе с последним при температурах, например, от 20 до 150°С. Условия сушки определяются использующейся системой прозрачного покрытия. Температуры от 20 до 80°С, например, являются предпочтительными для корректирования. С целью массового производства покрытий предпочтительно используются температуры выше 100°С, например выше 110°С.
Все известные прозрачные покрытия в принципе подходят как прозрачное покрытие. В патентной заявке используемыми прозрачными покрытиями являются оба прозрачных покрытия, содержащих растворитель, однокомпонентные (1 упаковочные) или двухкомпонентные (2 упаковочные), водоразбавляемые 1 упаковочные или 2 упаковочные прозрачные покрытия, порошкообразные прозрачные покрытия или водные порошкообразные взвеси прозрачных покрытий.
Многослойные покрытия, полученные таким способом, могут наноситься на различные типы субстрата. В общем случае субстратами являются металлы или пластмассы. Часто на субстраты предварительно наносят покрытия, например, пластмассовые субстраты снабжены пластмассовой грунтовкой, металлические субстраты, в общем случае, имеют грунтовку, нанесенную электрофорезом и возможно дополнительно один или несколько добавочных слоев покрытия, таких как, например, слой грунтовочного покрытия (слой наполнителя). Эти слои в общем случае отверждаются.
Многослойные покрытия, полученные с водорастворимыми грунтовками, соответствуют определенным современным требованиям, предъявляемым автомобильным покрытиям. Водорастворимые грунтовки соответственно подходят для оригинального (первоначального) покрытия автомобилей и покрытия автомобилей при ремонте, но могут также использоваться в других областях, например покрытиях пластмасс, в частности покрытия деталей автомобиля.
ПРИМЕРЫ
Примеры получения 1-11 (Получение водных латексов как связующих)
В реактор поместили 688 в.ч. (весовая часть) деионизированной воды и 16 в.ч. Rhodapex EST30 (анионное поверхностно-активное вещество от Rhodia; 30 вес.% в воде). Воду и ПАВ нагрели до 80°С в атмосфере азота и выдерживали при этой температуре на протяжении реакции. Первую размешанную эмульсию мономеров, содержащую ингредиенты, представленные в таблице 1, получили отдельно. К содержимому реактора добавили раствор 3,2 в.ч. пероксодисульфата аммония (APS) в 100 в.ч. деионизированной воды и затем к содержимому реактора медленно добавляли первую эмульсию мономеров. После того, как вся эмульсия мономеров была в реакторе, содержимое реактора выдерживали еще час при 80°С, во время этого отдельно готовили вторую размешенную эмульсию мономеров, состоящую из ингредиентов, представленных в таблице 1, и раствор 13 в.ч. 2-амино-2-метил-1-пропанола (90 вес.% в воде) в 98 в.ч. деионизированной воды. В зависимости от композиции первой мономерной эмульсии дальнейшее получение выполняли либо в соответствии с (а), либо в соответствии с (b), как описано ниже.
а) В случае, если первая мономерная эмульсия содержала метакриловую кислоту, к реакционной смеси медленно добавляли водный раствор 2-амино-2-метил-1-пропанола и затем к содержимому реактора медленно добавляли раствор 1,1 в.ч. пероксодисульфата аммония (APS) в 70 в.ч. деионизированной воды. Затем к содержимому реактора медленно добавляли вторую мономерную эмульсию. После того, как добавление было полностью завершено, содержимое реактора выдержали при 80°С в течение дополнительного часа. Затем полученный водный латекс как связующее охладили до комнатной температуры.
b) В случае, когда эмульсия мономеров не содержала метакриловой кислоты, к содержимому реактора медленно добавляли раствор 1,1 в.ч. пероксодисульфата аммония (APS) в 70 в.ч. деионизированной воды и затем к содержимому реактора медленно добавляли вторую эмульсию мономеров. После того, как добавление было полностью завершено, содержимое реактора выдержали при 80°С в течение дополнительного часа. Затем к содержимому реактора медленно добавили водный раствор 2-амино-2-метил-1-пропанола. Затем полученный водный латекс как связующее охладили до комнатной температуры.
Таблица 1
1*) 2*) 3*) 4**) 5*) 6**) 7**) 8**) 9**) 10**) 11**)
Ингредиенты первой эмульсии мономеров (в в.ч.)
Rhodapex EST30 45 45 45 45 45 45 45 45 45 45 45
Деионизированная вода 349 174 524 349 349 349 349 349 349 349 349
ММА 317 183 451 320 318 320 317 335 335 338 338
ВА 317 183 451 321 319 321 317 335 335 339 339
НЕА 36 20 52 36 36 36 36 36 36 36 36
МАА 36 20 52 36 36 36 36 - - - -
АМА 7 4 10 - 4 - 7 7 7 - -
Ингредиенты второй эмульсии мономеров (в в.ч.)
Rodapex EST30 15 15 15 15 15 15 15 15 15 15 15
Деионизированная вода 378 553 203 378 378 378 378 378 378 378 378
ММА 377 527 227 380 370 377 380 359 362 359 362
ВА 327 477 177 331 320 327 331 309 313 309 313
МАА - - - - - - - 36 36 36 36
АМА 7 10 4 - 21 7 - 7 - 7 -
*) в соответствии с настоящим изобретением
**) сравнительный пример
ММА - метилметакрилат
ВА - бутилакрилат
НЕА - гидроксиэтилакрилат
МАА - метакриловая кислота
АМА - аллилметакрилат
Пример 12 (Получение водной полиуретановой связующей дисперсии)
1005 г прямоцепочного полиэфира (полученного из адипиновой кислоты, изофталевой кислоты и гексадиола, имеющего гидроксильное число 102 мг КОН/г) нагрели до 90°С и добавили 1,8 г триметилолпропана и 393 г диизоцианата изофорона. Реакцию проводили при 90°С, пока NCO значение не было постоянным. После охлаждения до 60°С добавили раствор 35,3 г деметилолпропионовой кислоты, 26,1 г триэтиламина и 250 г N-метилпирролидона. После нагревания до 80°С температуру реакции поддерживали, пока NCO значение не было постоянным. Партию перемешали с молярным количеством, взятым по молярному содержанию NCO, деионизированной воды, и раствор выдержали при 80°С до тех пор, пока больше не определялся NCO. Затем партию превратили в водную дисперсию, имеющую содержание сухого вещества 35 вес.%, путем добавления деионизированной воды.
Пример 13 а-l (Получение водорастворимых грунтовок, имеющих серебристый цвет)
Водорастворимые грунтовки, имеющие серебристый цвет, 13 а-l получили при смешивании компонентов, включенных в таблицу 2. Соблюдали пропорции в весовых частях. Таблица 2 также показывает результаты технологических тестов, которые демонстрировали водорастворимые грунтовки.
Таблица 2
Водорастворимые грунтовки 13
a*) b*) c*) d**) e*) f**) g**) h**) i**) k**) l**)
Компоненты:
BE 7,3 7,3 7,3 7,3 7,3 7,3 7,3 7,3 7,3 7,3 7,3
Пастообразный алюминий1) 5 5 5 5 5 5 5 5 5 5 5
NMP 1,6 1,6 1,6 1,6 1,6 1,6 1,6 1,6 1,6 1,6 1,6
Связующая дисперсионная среда из примера 12 10,6 10,6 10,6 10,6 10,6 10,6 10,6 10,6 10,6 10,6 10,6
Деионизированная вода 10 10 10 10 10 10 10 10 10 10 10
Водный латекс как связующее из примера 1 13,7 - - - - - - - - - -
Водный латекс как связующее из примера 2 - 13,7 - - - - - - - - -
Водный латекс как связующее из примера 3 - - 13,7 - - - - - - - -
Водный латекс как связующее из примера 4 - - - 13,7 - - - - - - -
Водный латекс как связующее из примера 5 - - - - 13,7 - - - - - -
Водный латекс как связующее из примера 6 - - - - - 13,7 - - - - -
Водный латекс как связующее из примера 7 - - - - - - 13,7 - - - -
Водный латекс как связующее из примера 8 - - - - - - - 13,7 - - -
Водный латекс как связующее из примера 9 - - - - - - - - 13,7 - -
Водный латекс как связующее из примера 10 - - - - - - - - - 13,7 -
Водный латекс как связующее из примера 11 - - - - - - - - - - 13,7
Деионизированная вода 10 10 10 10 10 10 10 10 10 10 10
Многослойная силикатная композиция2) 10 10 10 10 10 10 10 10 10 10 10
Maprenal®
MF 9003)
4,5 4,5 4,5 4,5 4,5 4,5 4,5 4,5 4,5 4,5 4,5
Деионизированная вода 9 9 9 9 9 9 9 9 9 9 9
Загуститель 4) 9 9 9 9 9 9 9 9 9 9 9
DMEA, 10 вес.% раствор в воде 2,9 2,9 2,9 2,9 2,9 2,9 2,9 2,9 2,9 2,9 2,9
BuOH 3 3 3 3 3 3 3 3 3 3 3
DEGMBE 3,4 3,4 3,4 3,4 3,4 3,4 3,4 3,4 3,4 3,4 3,4
Яркость L* (единиц) 5) 145 144 142 136 145 146 145 144 144 145 132
Неравномерная окраска (Крапчатость)6) + + + + + - + - - - -
Величина подтеков (мкм)7) >40 >40 >40 22 >38 30 29 14 17 15 15
Деформация (образование вздутий) (мкм)7) >40 >40 >40 25 >38 32 32 20 22 18 19
*) в соответствии с настоящим изобретением
**) сравнительный пример
BE - бутоксиэтанол
NMP - N-метилпирролидон
BuOH - н-бутанол
DEGMBE - монобутиловый эфир диэтиленгликоля
1) Смесь 50 в.ч. ВЕ с 50 в.ч. Stapa Hydrolac® WHH 2154 от Eckart.
2) Смесь 3 в.ч. Optigel® SH Südchemie, 3 в.ч. полипропиленгликоля 900 и 94 в.ч. деионизированной воды.
3) Меламинова смола от Surface Specialties.
4) Смесь 33 в.ч. Viscalex HV 30 от Allied Colloids, 2,5 в.ч. DMEA и 64,5 в.ч. деионизированной воды.
5) Каждая из водорастворимых грунтовок была нанесена на стальные тестовые панели, снабженные предварительным покрытием, состоящим из EDC грунтовочного покрытия и грунтовочного ПАВ толщиной сухой пленки 14 мкм. После отгонки в течение 5 минут при 20°С и дополнительно 5 минут при 80°С, каждая и тестовых панелей была покрыта с помощью распыления получаемым в промышленных масштабах двухкомпонентным полиуретановым прозрачным покрытием толщиной 40 мкм, и после отгонки в течение 5 минут при 20°С, высушивали в течение 20 минут при 140°С температуры объекта.
Яркость L* (в соответствии с CIEL*a*b*, DIN 6174) при угле освещения 45 градусов к перпендикуляру и углу наблюдения 15 градусов к отражению измерили прибором X-Rite MA 68, проданным компанией X-Rite Incorporated, Grandeville, Michigan, U.S.A.
6) Каждая из водорастворимых грунтовок была нанесена на стальные тестовые панели (размером 30 см × 60 см), снабженные предварительным покрытием, состоящим из EDC грунтовочного покрытия и грунтовочного ПАВ толщиной сухой пленки 14 мкм. После отгонки в течение 5 минут при 20°С и дополнительно 5 минут при 80°С, каждая из тестовых панелей была покрыта с помощью распыления получаемым в промышленном масштабе двухкомпонентным полиуретановым прозрачным покрытием толщиной 40 мкм, и после отгонки в течение 5 минут при 20°С, сушили в течение 20 минут при 140°С температуры объекта. Полученные покрытия оценили на появление феномена крапчатости (образование облаков). Если есть крапчатость «-», если нет - «+».
7) Каждая из водорастворимых грунтовок была нанесена с клинообразным градиентом толщины сухой пленки от 0 до 40 мкм на перфорированные стальные тестовые панели (размером 30 см × 60 см, с перфорационными отверстиями диаметром 10 мм), снабженные предварительным покрытием, состоящим из EDC грунтовочного покрытия и грунтовочного ПАВ толщиной сухой пленки 14 мкм. После отгонки в течение 5 минут при 20°С и дополнительно 5 минут при 80°С каждая из тестовых панелей была покрыта с помощью распыления получаемым в промышленном масштабе двухкомпонентным полиуретановым прозрачным покрытием толщиной 40 мкм и после отгонки в течение 5 минут при 20°С сушили в течение 20 минут при 140°С температуры объекта. Как величину подтеков (sagging) грунтовки, так и величину деформаций (popping) определили в мкм.

Claims (7)

1. Способ получения грунтовочных/прозрачных двухслойных покрытий с использованием композиции водного покрытия в качестве водорастворимой грунтовки, где композицию водного покрытия получают с использованием водного латекса в качестве связующего, полученного путем многостадийной эмульсионной полимеризации в водной фазе, включающей следующие стадии:
1) свободнорадикальную полимеризацию смеси А олефиновых ненасыщенных мономеров, полимеризующихся по свободнорадикальному механизму, содержащей, по крайней мере, один мономер с, по меньшей мере, одной кислотной группой в количестве, соответствующем кислотному числу смеси А от 10 до 100 мг КОН/г, и от 0,5 до 5 вес.%, по меньшей мере, одного олефинового полиненасыщенного мономера, в водной фазе,
2) нейтрализацию кислотных групп полимера, образованного на стадии (1), и
3) свободнорадикальную полимеризацию, по меньшей мере, одной смеси В олефиновых ненасыщенных мономеров, полимеризующихся по свободнорадикальному механизму, содержащей, по крайней мере, один мономер с, по меньшей мере, одной кислотной группой в количестве, соответствующем кислотному числу смеси В или каждой из смесей В от 0 до ниже 5 мг КОН/г, по меньшей мере, один мономер с, по меньшей мере, одной гидроксильной группой в количестве, соответствующем гидроксильному значению смеси В или каждой из смесей В от 0 до меньше 5 мг КОН/г, и, по меньшей мере, одного олефинового полиненасыщенного мономера в количестве от 0,5 до 5 вес.%, относительно смеси В или каждой из смесей В, в присутствии продукта, полученного на стадии (2), в котором соотношение по весу смеси А, по меньшей мере, к одной смеси В составляет от 15:85 до 85:15 и в котором нейтрализация не начинается на стадии (2) до тех пор, пока, по меньшей мере, 90 вес.% мономеров смеси А не будет полимеризовано полностью.
2. Способ по п.1, в котором смесь А содержит, по меньшей мере, один олефиновый ненасыщенный мономер, полимеризующийся по свободнорадикальному механизму с, по меньшей мере, одной гидроксильной группой в количестве, соответствующем гидроксильному числу смеси А меньше 60 мг КОН/г.
3. Способ по п.1 или 2, в котором смесь А содержит
0,5-5 вес.%, по меньшей мере, одного олефинового полиненасыщенного мономера, полимеризующегося по свободнорадикальному механизму,
вес.% содержания, соответствующего кислотному числу смеси А от 10 до 100 мг КОН/г, по меньшей мере, одного олефинового ненасыщенного мономера, полимеризующегося по свободнорадикальному механизму с, по меньшей мере, одной кислотной группой,
от 55 до менее 98,5 вес.%, по меньшей мере, одного олефинового ненасыщенного мономера, полимеризующегося по свободнорадикальному механизму, без функциональных групп;
и вес.% содержания, соответствующего гидроксильному числу смеси А от 0 до менее 60 мг КОН/г, по меньшей мере, одного олефинового ненасыщенного мономера, полимеризующегося по свободнорадикальному механизму с, по меньшей мере, одной гидроксильной группой,
в которой содержание весовых процентов доводят до 100 вес.%.
4. Способ по пп.1 или 2, в котором смесь А состоит из 0,5-3 вес.%, по меньшей мере, одного олефинового полиненасыщенного мономера, полимеризующегося по свободнорадикальному механизму; свыше 1 до 10 вес.% и соответствующего кислотному числу смеси А от 10 до 100 мг КОН/г, по меньшей мере, одного олефинового ненасыщенного мономера, полимеризующегося по свободнорадикальному механизму с, по меньшей мере, одной кислотной группой; от 77 до менее 97,5 вес.%, по меньшей мере, одного олефинового ненасыщенного мономера, полимеризующегося по свободнорадикальному механизму, без функциональных групп; и свыше 1-10 вес.% и соответствующего гидроксильному числу смеси А от 5 до 30 мг КОН/г, по меньшей мере, одного олефинового ненасыщенного мономера, полимеризующегося по свободнорадикальному механизму с, по меньшей мере, одной гидроксильной группой, в которой содержание весовых процентов доводят до 100 вес.%.
5. Способ по п.1 или 2, в котором используется только одна смесь В.
6. Способ по п.1 или 2, в котором смесь В или каждая из смесей В состоит из
0,5-5 вес.%, по меньшей мере, одного олефинового полиненасыщенного мономера, полимеризующегося по свободнорадикальному механизму;
вес.% содержание, соответствующее кислотному числу смеси (смесей) В от 0 до 5 мг КОН/г, по меньшей мере, одного олефинового ненасыщенного мономера, полимеризующегося по свободнорадикальному механизму с, по меньшей мере, одной кислотной группой;
вес.% содержание, соответствующее гидроксильному числу смеси (смесей) В от 0 до менее 5 мг КОН/г, по меньшей мере, одного олефинового ненасыщенного мономера, полимеризующегося по свободнорадикальному механизму с, по меньшей мере, одной гидроксильной группой;
и свыше 92 до 99,5 вес.%, по меньшей мере, одного олефинового ненасыщенного мономера, полимеризующегося по свободнорадикальному механизму, без функциональных групп,
в котором содержание весовых процентов доводят до 100 вес.%.
7. Способ по любому из п.1 или 2, в котором смесь В или каждая из смесей В состоит из 0,5-3 вес.%, по меньшей мере, одного олефинового полиненасыщенного мономера, полимеризующегося по свободнорадикальному механизму, и от 97 до 99,5 вес.%, по меньшей мере, одного олефинового ненасыщенного мономера, полимеризующегося по свободнорадикальному механизму, без функциональных групп, в котором содержание весовых процентов доводят до 100 вес.%.
RU2007144200/05A 2005-04-29 2006-04-27 Способ получения водных латексов как связующих RU2407755C2 (ru)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US67634605P 2005-04-29 2005-04-29
US60/676,346 2005-04-29
US11/273,834 US7825173B2 (en) 2005-04-29 2005-11-15 Process for the production of aqueous binder latices
US11/273,834 2005-11-15

Publications (2)

Publication Number Publication Date
RU2007144200A RU2007144200A (ru) 2009-06-10
RU2407755C2 true RU2407755C2 (ru) 2010-12-27

Family

ID=36693604

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007144200/05A RU2407755C2 (ru) 2005-04-29 2006-04-27 Способ получения водных латексов как связующих

Country Status (12)

Country Link
US (1) US7825173B2 (ru)
EP (1) EP1874835B1 (ru)
JP (1) JP5091117B2 (ru)
KR (1) KR101291437B1 (ru)
CN (1) CN101166770B (ru)
AT (1) ATE519791T1 (ru)
BR (1) BRPI0612958A2 (ru)
CA (1) CA2605009C (ru)
MX (1) MX2007013323A (ru)
RU (1) RU2407755C2 (ru)
WO (1) WO2006118974A1 (ru)
ZA (1) ZA200709022B (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2642423C2 (ru) * 2013-03-15 2018-01-25 Акцо Нобель Коатингс Интернэшнл Б.В. Гибридные водные дисперсии, композиционные латексные эмульсии сополимера (поли)этилена и (мет)акриловой кислоты, гибридные органосилановые композиционные латексные эмульсии сополимера (поли)этилена и (мет)акриловой кислоты и полученные из них композиции для покрытия

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008003758A1 (en) * 2006-07-07 2008-01-10 Cytec Surface Specialties, S.A. Polymer, composition and process
CA2663244C (en) * 2006-10-19 2013-02-26 E. I. Dupont De Nemours And Company Aqueous additive compositions containing layered silicate
EP1978042B1 (en) * 2007-04-05 2013-05-22 E.I. Du Pont De Nemours And Company Process for the production of aqueous binder latices
PL1978043T3 (pl) * 2007-04-05 2014-03-31 Coatings Foreign Ip Co Llc Proces wytwarzania wodnych lateksów wiążących
ES2345221T3 (es) * 2007-04-05 2010-09-17 E.I. Du Pont De Nemours And Company Procedimiento para la produccion de revestimientos de dos capas de tipo revestimiento base/revestimiento transparente.
US20100056706A1 (en) * 2008-09-04 2010-03-04 Carmen Flosbach Aqueous coating composition
US20100056724A1 (en) * 2008-09-04 2010-03-04 Carmen Flosbach Process for preparation of aqueous binder latices
EP2331643B1 (en) 2008-09-04 2014-03-05 Coatings Foreign IP Co. LLC Aqueous coating composition
AU2009321590B2 (en) 2008-12-01 2015-02-26 Basf Se Aqueous binder composition comprising oligomers
WO2010144903A1 (en) 2009-06-12 2010-12-16 E. I. Du Pont De Nemours And Company Process for multilayer coating
US20110151264A1 (en) 2009-12-17 2011-06-23 E.I. Du Pont De Nemours And Company Aqueous coating composition
AU2010330779A1 (en) 2009-12-18 2012-06-14 Coatings Foreign Ip Co. Llc Water-based coating compositions
US8492472B2 (en) 2009-12-18 2013-07-23 Basf Se Polymer dispersions for corrosion control
ES2375824T3 (es) * 2009-12-18 2012-03-06 Basf Se Dispersiones de pol�?meros.
US9193877B2 (en) 2010-07-27 2015-11-24 Axalta Coating Systems Ip Co., Llc Waterborne base coat compositions having a special-effect color
MX346116B (es) * 2010-10-20 2017-03-08 Valspar Sourcing Inc Sistema de revestimiento a base de agua con adhesion mejorada a una amplia variedad de sustratos revestidos y sin revestir, incluido el acero inoxidable de grado silenciador.
US9434828B2 (en) * 2010-12-08 2016-09-06 Ppg Industries Ohio, Inc. Non-aqueous dispersions comprising a nonlinear acrylic stabilizer
US9573166B2 (en) 2013-10-02 2017-02-21 Axalta Coating Systems Ip Co., Llc Process for the production of a multi-layer coating
US9458358B2 (en) 2014-01-08 2016-10-04 Avery Dennison Corporation Article, compositions, systems, and methods using selectively detackified adhesives
CA3015489C (en) 2016-02-22 2019-05-21 Craig W. Potter Clear extended content label with selectively detackified adhesive
CN110431161A (zh) * 2017-04-06 2019-11-08 陶氏环球技术有限责任公司 具有开放时间添加剂的涂料配制物
US10781333B2 (en) 2017-08-10 2020-09-22 Axalta Coating Systems Ip Co., Llc Coating adhesion promotors and methods of using the same
GB2608517B (en) 2017-11-30 2023-03-29 Axalta Coating Systems Gmbh Coating compositions for application utilizing a high transfer efficiency applicator and methods and systems thereof
WO2020181064A1 (en) 2019-03-06 2020-09-10 Axalta Coating Systems Ip Co., Llc Controlled surface wetting resulting in improved digital print edge acuity and resolution
JP7346054B2 (ja) * 2019-03-28 2023-09-19 ヘンケルジャパン株式会社 水性接着剤
US20210062034A1 (en) * 2019-08-29 2021-03-04 Axalta Coating Systems Ip Co., Llc Water borne sealer
US20230364909A1 (en) 2020-09-28 2023-11-16 Axalta Coating Systems Ip Co., Llc Nozzle plate comprising borosilicate glass
EP4094847A1 (en) 2021-05-27 2022-11-30 Axalta Coating Systems GmbH Coating compositions and methods for application
GB2626644A (en) 2022-11-30 2024-07-31 Axalta Coating Systems Gmbh Method of applying coating compositions to a substrate
EP4386056A1 (en) * 2022-12-16 2024-06-19 Organik Kimya Sanayi Ve Tic. A.S. Waterborne polymer composition and preparation method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3154477B2 (ja) * 1988-05-16 2001-04-09 三井化学株式会社 微粒子集合体エマルション及びその製造方法
JP2784237B2 (ja) * 1990-03-05 1998-08-06 関西ペイント株式会社 架橋アクリル系共重合体微粒子非水分散液の製造方法
CA2101957A1 (en) * 1992-08-18 1994-02-19 Samuel J. Makower Acrylic thermoplastic elastomer
KR0177182B1 (ko) * 1993-10-20 1999-05-15 최근선 중공구조를 갖는 유화중합체의 제조방법
AU771383B2 (en) * 1998-12-08 2004-03-18 Rohm And Haas Company Dirt pickup resistant coating binder and coatings
JP2001240791A (ja) * 2000-02-25 2001-09-04 Nippon Paint Co Ltd 複合塗膜形成方法
JP2003286324A (ja) * 2002-01-25 2003-10-10 Daicel Chem Ind Ltd 水性樹脂分散液及びその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2642423C2 (ru) * 2013-03-15 2018-01-25 Акцо Нобель Коатингс Интернэшнл Б.В. Гибридные водные дисперсии, композиционные латексные эмульсии сополимера (поли)этилена и (мет)акриловой кислоты, гибридные органосилановые композиционные латексные эмульсии сополимера (поли)этилена и (мет)акриловой кислоты и полученные из них композиции для покрытия

Also Published As

Publication number Publication date
US20060247357A1 (en) 2006-11-02
US7825173B2 (en) 2010-11-02
EP1874835B1 (en) 2011-08-10
JP2008539321A (ja) 2008-11-13
JP5091117B2 (ja) 2012-12-05
CN101166770A (zh) 2008-04-23
ATE519791T1 (de) 2011-08-15
CA2605009C (en) 2014-04-08
CA2605009A1 (en) 2006-11-09
MX2007013323A (es) 2008-01-11
BRPI0612958A2 (pt) 2010-12-07
CN101166770B (zh) 2010-11-24
EP1874835A1 (en) 2008-01-09
KR101291437B1 (ko) 2013-07-31
WO2006118974A1 (en) 2006-11-09
RU2007144200A (ru) 2009-06-10
KR20080013950A (ko) 2008-02-13
ZA200709022B (en) 2009-01-28

Similar Documents

Publication Publication Date Title
RU2407755C2 (ru) Способ получения водных латексов как связующих
US7888439B2 (en) Process for the production of aqueous binder latices
AU2007240257B2 (en) Phosphorous-containing organic polymer and compositions and processes including same
EP1978043B1 (en) Process for the production of aqueous binder latices
KR20020012180A (ko) 중합체
JP2001518958A (ja) 架橋可能な水性コーティング組成物
EP1978042B1 (en) Process for the production of aqueous binder latices
WO2003064546A1 (fr) Composition de revetement aqueuse et procede de formation d'un film de revetement en couches
WO2006007978A1 (en) Aqueous vinyl polymer coating compositions
CN113646396A (zh) 水性涂料组合物
US20080249242A1 (en) Aqueous Vinyl Graft Copolymer Compositions
KR0179356B1 (ko) 알카리-불용성 코어/알카리-용해성 쉘을 포함하는 중합체조성물
ES2368578T3 (es) Procedimiento para la producción de recubrimientos de dos capas capa base/barniz de acabado.
JP2003286434A (ja) 水性塗料組成物及び複層塗膜形成方法
JP2003286450A (ja) 水性塗料組成物及び複層塗膜形成方法
GB2413330A (en) Vinyl graft polymer composition
KR100570476B1 (ko) 수용성 폴리에스테르 수지를 이용한 수지보강 에멀젼의제조방법
WO2006035789A1 (ja) 水性塗料用樹脂組成物、水性塗料及び水性塗料用樹脂組成物の製造方法

Legal Events

Date Code Title Description
PC41 Official registration of the transfer of exclusive right

Effective date: 20131211

MM4A The patent is invalid due to non-payment of fees

Effective date: 20150428