RU2406976C1 - Устройство для измерения расхода газа - Google Patents

Устройство для измерения расхода газа Download PDF

Info

Publication number
RU2406976C1
RU2406976C1 RU2009121185/28A RU2009121185A RU2406976C1 RU 2406976 C1 RU2406976 C1 RU 2406976C1 RU 2009121185/28 A RU2009121185/28 A RU 2009121185/28A RU 2009121185 A RU2009121185 A RU 2009121185A RU 2406976 C1 RU2406976 C1 RU 2406976C1
Authority
RU
Russia
Prior art keywords
resonator
dielectric
flow
float
gas flow
Prior art date
Application number
RU2009121185/28A
Other languages
English (en)
Inventor
Валентин Ефимович Костюков (RU)
Валентин Ефимович Костюков
Иван Григорьевич Вышиваный (RU)
Иван Григорьевич Вышиваный
Игорь Николаевич Москалев (RU)
Игорь Николаевич Москалев
Петр Алексеевич Почтин (RU)
Петр Алексеевич Почтин
Александр Борисович Тихонов (RU)
Александр Борисович Тихонов
Вадим Борисович Беляев (RU)
Вадим Борисович Беляев
Original Assignee
Федеральное государственное унитарное предприятие федеральный научно-производственный центр "Научно-исследовательский институт измерительных систем им. Ю.Е. Седакова"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие федеральный научно-производственный центр "Научно-исследовательский институт измерительных систем им. Ю.Е. Седакова" filed Critical Федеральное государственное унитарное предприятие федеральный научно-производственный центр "Научно-исследовательский институт измерительных систем им. Ю.Е. Седакова"
Priority to RU2009121185/28A priority Critical patent/RU2406976C1/ru
Application granted granted Critical
Publication of RU2406976C1 publication Critical patent/RU2406976C1/ru

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

Изобретение может быть использовано для измерения расхода газа, добываемого на газоконденсатных месторождениях и содержащего жидкую углеводородную фазу в капельном или парообразном состоянии. Устройство включает в себя цилиндрический СВЧ-резонатор (1), связанный с генератором и детектором, и ротаметр (7, 8). Резонатор заполнен диэлектриком (2) с малыми потерями на рабочей частоте. В диэлектрике выполнена коническая полость ротаметра. В полости размещен поплавок (8) ротаметра, выполненный из диэлектрического материала с малыми потерями. В верхней части СВЧ-резонатора расположена кольцевая диэлектрическая пластина (3) из материала с диэлектрической проницаемостью существенно более высокой, чем диэлектрическая проницаемость диэлектрика (2). При работе в резонаторе возбуждаются ТЕ011 типы колебаний. Изобретение повышает точность измерения при больших рабочих давлениях в широком диапазоне расходов газа, обеспечивает возможность непрерывного и автоматического проведения процесса измерения. 2 з.п. ф-лы, 5 ил.

Description

Изобретение относится к области измерительной техники, а именно к измерению расхода природного газа, в частности, добываемого на газоконденсатных месторождениях и содержащего жидкую углеводородную фазу в капельном или парообразном состоянии. Оно также может быть использовано в энергетике, авиационной технике, химических и криогенных технологиях, экологии и других областях промышленности, имеющих дело с газами, содержащими аэрозоли в капельно-жидком и твердом виде (например, дым заводских труб).
Известно устройство измерения расхода, состоящее из измерительного трубопровода, в котором установлено стандартное сужающее устройство, представляющее собой диафрагму или сопло, блока измерения перепада давления на входе и выходе сужающего устройства (СУ) и блока обработки результатов измерений [1], [2].
Недостатком устройства является необходимость смены диафрагм с разными диаметрами для обеспечения полного диапазона измерений расхода газа. Кроме того, СУ предназначены для измерения сухого и чистого газа, и если перед диафрагмой начинает скапливаться жидкость, это влечет за собой изменение формы потока над диафрагмой, что приводит к появлению неконтролируемой погрешности [2].
Известны также устройства для измерения расхода газа с помощью вихревых расходомеров. Общим недостатком этих расходомеров (как и расходомеров на основе СУ) является их низкая точность при измерении малых расходов, приводящая к ограничению их применения в случае работы с газами, текущими с небольшими скоростями (например, газы, подаваемые на факел). Недостатком вихревых расходомеров является также необходимость их поверки [1].
Известно устройство измерения расхода газа, основанное на взаимодействии потока со специально введенным в поток телом возмущения (обтекания). При движении газа на тело возмущения действует сила скоростного напора
Figure 00000001
где ρ - плотность потока в рабочих условиях;
ν - скорость потока;
S - поперечное сечение тела возмущения;
С - коэффициент лобового сопротивления, зависящий от формы тела возмущения.
При увеличении скорости потока эта сила возрастает, что приводит к смещению положения тела возмущения, которое в первом приближении пропорционально расходу газа.
Устройство измерения расхода газожидкостного потока, выбранное за прототип, получило название ротаметр [3]. Устройство представляет собой установленную вертикально трубу с небольшой конусностью (слегка расширяющейся кверху).
Входное отверстие расположено внизу и в отсутствие потока закрыто телом возмущения («поплавком»), выполненным, как правило, в виде шара. Выходное отверстие располагается вверху. При прохождении газа поплавок смещается вверх; высота подъема поплавка h в первом приближении пропорциональна объемному расходу:Qоб=kh, где k - коэффициент пропорциональности.
Недостатком устройства являются: необходимость иметь прозрачный (стеклянный, кварцевый, плексигласовый) корпус ротаметра, что не позволяет работать при больших рабочих давлениях газа; трудность автоматизации процесса измерения, т.к. определение смещения поплавка производится визуально.
Техническим результатом предложенного изобретения является возможность измерения расхода газа с большей точностью при больших рабочих давлениях газа; возможность непрерывного и автоматического проведения процесса измерения.
Технический результат достигается тем, что в устройстве для измерения расхода газа, включающем в себя цилиндрический СВЧ-резонатор и ротаметр, резонатор заполнен диэлектриком с малыми потерями на рабочей частоте, а ротаметр выполнен в виде конической полости в этом диэлектрике, расположенной вдоль оси резонатора. В верхней части резонатора расположена кольцевая диэлектрическая пластина из материала с диэлектрической проницаемостью, существенно более высокой, чем диэлектрическая проницаемость диэлектрика, заполняющего резонатор. В резонаторе используются TE011 типы колебаний.
На фиг.1 изображена конструкция предлагаемого устройства. На ней показаны: 1 - металлический силовой корпус цилиндрического СВЧ-резонатора, способный выдерживать рабочие давления газа в трубопроводе, 2 - твердый диэлектрик с диэлектрической проницаемостью ε1 и малыми потерями (tgδ1≤10-3), 3 - кольцевая диэлектрическая пластина из материала с диэлектрической проницаемостью ε22>>ε1) и малыми потерями (tgδ2≤10-3), 4 - элемент связи резонатора с генератором, 5 - элемент связи резонатора с детектором, 6 - проходные изоляторы, 7 - коническая стенка отверстия в диэлектрике 2, образующая полость ротаметра (коническая стенка ротаметра), 8 - «поплавок» ротаметра (поз. «0» при отсутствии потока, поз «1» при его наличии), 9 - рабочий трубопровод, 10, 11 - переходники от резонатора к рабочему трубопроводу, 12 - присоединительные фланцы, 13 - уплотнения.
На фиг.2 изображено распределение основного компонента электрического поля Еφ по высоте резонатора при возбуждении колебания ТЕ011. Кривая 14 показывает зависимость Eφ(h) для случая, когда диэлектрическая пластина 3 отсутствует (d=0). Кривая 15 относится к случаю, когда специальным образом подобранная пластина с проницаемостью ε2 и толщиной d размещена на верхнем торце резонатора.
На фиг.3 показаны амплитудно-частотные характеристики резонатора - сплошная линия 16 относится к случаю, когда поплавок занимает нижнее положение "0" (скорость газа равна 0), пунктирная линия 17 - когда поплавок занимает положение "1" (идет некоторый поток, расход газа Q1).
На фиг.4 показано смещение частоты резонатора в зависимости от положения поплавка, играющего роль тела возмущения в резонаторе: ω=ω(h). За точку отсчета h=0 принят нижний торец резонатора.
На фиг.5 показана выходная характеристика СВЧ-ротаметра - зависимость регистрируемого объемного расхода Q (при определенной плотности потока) от частотного смещения резонатора
Figure 00000002
,
определяемого местоположением поплавка по координате h.
Работа устройства происходит следующим образом.
Радиочастотные колебания СВЧ-диапазона от генератора (на фиг.1 не показан) поступают на элемент связи 4 и возбуждают в резонаторе 1, тип колебания ТЕ011. Распределение основного компонента электрического поля Еφ по высоте резонатора приведено на фиг.2. В отсутствие потока (поплавок 8 на фиг.1 в положении "0") резонансная частота резонатора равна ω. При появлении потока на поплавок 8 будет действовать скоростной напор. При этом поплавок поднимается до некоторой высоты h1 (положение "1", фиг.1), такой, чтобы пропустить поток в кольцевой зазор между поплавком и конически расходящейся стенкой ротаметра 7. Сумма сил, действующая на поплавок в положении 1, становится равной нулю: вес поплавка mg уравновешивается силой скоростного напора F, вычисляемой по (1):
Figure 00000003
Высота h, на которую поднялся поплавок, и величина объемного расхода Q связаны зависимостью
Figure 00000004
где k коэффициент, устанавливаемый при калибровке.
Поясним смысл установки в резонатор пластины 3. В отсутствие пластины 3 поле в резонаторе имеет вид полуволны синусоиды (фиг.2, кривая 14). При этом при попадании поплавка в области, симметрично стоящие от экваториальной плоскости резонатора, реакция резонатора будет одинаковой, т.к. в этих областях поле имеет одну и ту же напряженность. Это приводит к неоднозначности показаний и к сокращению динамического диапазона величин регистрируемых расходов. При введении пластины 3 в резонатор она искажает поле так, как это показано на фиг.2 (кривая 15), и диапазон регистрируемых расходов возрастает почти вдвое. Одновременно устраняется неоднозначность регистрируемых показаний.
Введение в объем резонатора 1 поплавка возмущает резонатор, это выражается в смещении его собственной частоты ω00→ω1) и изменении добротности. Поскольку поплавок выполнен из диэлектрического материала с малыми потерями, то добротность резонатора не изменяется, и возмущение сводится только к изменению собственной частоты. На фиг.3 показана амплитудно-частотная характеристика резонатора А(ω) в случаях, когда поток отсутствует (поплавок находится в положении "0") и при наличии потока (поплавок находится в положении "1"). Амплитудно-частотная характеристика может быть получена [4] путем регистрации частотно-модулированного сигнала СВЧ генератора при пилообразной форме модулирующего напряжения (на фиг.1 не показаны).
Сдвиг частоты резонатора при введении тела возмущения может быть найден из теории малых возмущений [5]: он определяется размером поплавка, его диэлектрической проницаемостью (ε3) и величиной электрического поля резонатора в месте размещения поплавка. При заданных размерах поплавка при работе на типе колебания ТЕ011 сдвиг частоты качественно повторяет вид функции Е2φ(h). На фиг.4 показана функция ω(h), по которой можно определить сдвиг частоты Δω110 при перемещении поплавка из положения "0" в какое-либо положение "1" (см. фиг.1).
Таким образом, относительный сдвиг частоты резонатора
Figure 00000005
однозначно связан с положением поплавка в объеме резонатора - с его координатой h1, которая в свою очередь связана с расходом Q (фиг.5).
Отсюда, по изменению величины частотного смещения
Figure 00000006
однозначно определяют объемный (при неизменной плотности потока ρ) расход:
Figure 00000007
Множитель G определяется в результате предварительной калибровки СВЧ-ротаметра по какому-либо эталонному средству поверки. Он может являться функцией смещения h (G=G(h)) т.е. зависимость Q0(h) будет нелинейной (фиг.5). Однако при необходимости подбором профиля трубки ротаметра, толщины корректирующей пластины 3 и ее диэлектрической постоянной ε2, а также формы поплавка можно сделать шкалу ротаметра линейной или близкой к ней.
При проведении калибровки необходимо знание плотности газа (при условиях калибровки) - ρк. Если при тех же условиях проводятся измерения с газом другой плотности (ρi), цена деления шкалы изменится.
Так как при одном и том же делении шкалы (при постоянном h) должно выполняться условие
Figure 00000008
имеем
Figure 00000009
Поскольку объемный поток определяется скоростью газа Q=ν·S, то
Figure 00000010
откуда
Figure 00000011
Таким образом, при непрерывном измерении величины объемного расхода неизвестного потока необходимо проводить постоянное измерение его плотности.
СВЧ-устройство для определения расхода газа было проверено в лабораторных условиях как на чистых, так и на запыленных газах и газах, содержащих капельно-жидкий аэрозоль, и показало высокие метрологические характеристики.
Литература
[1] - Плотников В.М., Подрешетников В.А., Тетеревятников Л.Н. Приборы и средства учета природного газа и конденсата. Л.: Недра, 1989, 238 с.
[2] - Правила измерения расхода газов и жидкостей стандартными сужающими устройствами РД-50-213-80. М.: Изд. Стандартов, 1982, 320 с.
[3] - Кремлевский П.П. Измерение расхода многофазных потоков. Л.: Машиностроение, Ленинградское отделение, 1982, 105 с.
[4] - Москалев И.Н. Стефановский A.M. Диагностика плазмы с помощью открытых цилиндрических резонаторов, М.: Энергоатомиздат, 1985, 145 с.
[5] - Брандт А.А. Исследование диэлектриков на сверхвысоких частотах. М.: ГИФМЛ, 1963, 404 с.

Claims (3)

1. Устройство для измерения расхода газа, включающее в себя цилиндрический СВЧ-резонатор и ротаметр, отличающееся тем, что резонатор заполнен диэлектриком с малыми потерями на рабочей частоте, а ротаметр выполнен в виде конической полости в этом диэлектрике, расположенной вдоль оси резонатора.
2. Устройство по п.1, отличающееся тем, что в верхней части резонатора расположена кольцевая диэлектрическая пластина из материала с диэлектрической проницаемостью, существенно более высокой, чем диэлектрическая проницаемость диэлектрика, заполняющего резонатор.
3. Устройство по п.1, отличающееся тем, что в резонаторе используются ТЕ011 типы колебаний.
RU2009121185/28A 2009-06-03 2009-06-03 Устройство для измерения расхода газа RU2406976C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2009121185/28A RU2406976C1 (ru) 2009-06-03 2009-06-03 Устройство для измерения расхода газа

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009121185/28A RU2406976C1 (ru) 2009-06-03 2009-06-03 Устройство для измерения расхода газа

Publications (1)

Publication Number Publication Date
RU2406976C1 true RU2406976C1 (ru) 2010-12-20

Family

ID=44056708

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009121185/28A RU2406976C1 (ru) 2009-06-03 2009-06-03 Устройство для измерения расхода газа

Country Status (1)

Country Link
RU (1) RU2406976C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2733327C1 (ru) * 2019-05-28 2020-10-01 Частное образовательное учреждение высшего образования "Московский Университет им. С.Ю. Витте" Датчик уноса жидкого сорбента в аэрозольном виде из аппаратов гликолевой осушки природного газа
RU2805029C1 (ru) * 2023-02-17 2023-10-10 Частное образовательное учреждение высшего образования "Московский Университет им. С.Ю. Витте" Расходомер постоянного перепада давления типа ротаметра с дистанционной передачей величины расхода

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
КАРАТАЕВ Р.Н. и др. Расходомеры постоянного перепада давления. - М.: Машиностроение, 1980, с.13-15. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2733327C1 (ru) * 2019-05-28 2020-10-01 Частное образовательное учреждение высшего образования "Московский Университет им. С.Ю. Витте" Датчик уноса жидкого сорбента в аэрозольном виде из аппаратов гликолевой осушки природного газа
RU2805029C1 (ru) * 2023-02-17 2023-10-10 Частное образовательное учреждение высшего образования "Московский Университет им. С.Ю. Витте" Расходомер постоянного перепада давления типа ротаметра с дистанционной передачей величины расхода

Similar Documents

Publication Publication Date Title
RU2499229C2 (ru) Способ и устройство для определения состава и расхода влажного газа
CA2744420C (en) A method and apparatus for wet gas flow measurements and measurement of gas properties
US3719073A (en) Mass flow meter
US20050034535A1 (en) System to measure density, specific gravity, and flow rate of fluids, meter, and related methods
GB2411476A (en) Three-phase flow meter
EP1554550A2 (en) Detection and measurement of two-phase flow
WO2005057142A1 (en) A method and flow meter for determining the flow rates of a multiphase fluid
WO2008131236A2 (en) Wet gas measurement
WO2007134009A2 (en) Single and multiphase fluid measurements
Xu et al. Wet-gas flow modeling for the straight section of throat-extended venturi meter
AU2013254946A1 (en) Nuclear magnetic flow meter and method for operation of nuclear magnet flow meters
Takamoto et al. New measurement method for very low liquid flow rates using ultrasound
RU2397479C1 (ru) Устройство для измерения объемной доли жидкой фазы в потоке газожидкостной смеси природного газа
RU2406976C1 (ru) Устройство для измерения расхода газа
Brain et al. Survey of pipeline flowmeters
Cascetta et al. Field test of a swirlmeter for gas flow measurement
RU2665758C2 (ru) Устройство измерения массового расхода, молекулярной массы и влажности газа
RU2164340C2 (ru) Способ определения покомпонентного расхода потока газожидкостной смеси продуктов газонефтедобычи в трубопроводе и устройство для его реализации
RU2286546C2 (ru) Способ и устройство измерения расхода газожидкостного потока
Hongguang et al. Study on the oil quantities calculation method of coriolis mass flow meter in oil dynamic measurement
RU102109U1 (ru) Расходомер
RU2805029C1 (ru) Расходомер постоянного перепада давления типа ротаметра с дистанционной передачей величины расхода
RU2757861C1 (ru) Устройство для измерения объемного расхода газа в продуктах добычи газоконденсатных скважин корреляционным методом
RU2534450C1 (ru) Расходомер
RU2782508C1 (ru) Использование давления пара для определения концентрации компонентов в многокомпонентной текучей среде

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190604