RU2397513C1 - Способ нейтронного гамма-каротажа и устройство для его осуществления - Google Patents

Способ нейтронного гамма-каротажа и устройство для его осуществления Download PDF

Info

Publication number
RU2397513C1
RU2397513C1 RU2009128842/28A RU2009128842A RU2397513C1 RU 2397513 C1 RU2397513 C1 RU 2397513C1 RU 2009128842/28 A RU2009128842/28 A RU 2009128842/28A RU 2009128842 A RU2009128842 A RU 2009128842A RU 2397513 C1 RU2397513 C1 RU 2397513C1
Authority
RU
Russia
Prior art keywords
gamma
neutron
alpha
detector
generator
Prior art date
Application number
RU2009128842/28A
Other languages
English (en)
Inventor
Михаил Альбертович Федорин (RU)
Михаил Альбертович Федорин
Борис Григорьевич Титов (RU)
Борис Григорьевич Титов
Original Assignee
Учреждение Российской академии наук Институт нефтегазовой геологии и геофизики им. А.А. Трофимука Сибирского отделения РАН (ИНГГ СО РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Учреждение Российской академии наук Институт нефтегазовой геологии и геофизики им. А.А. Трофимука Сибирского отделения РАН (ИНГГ СО РАН) filed Critical Учреждение Российской академии наук Институт нефтегазовой геологии и геофизики им. А.А. Трофимука Сибирского отделения РАН (ИНГГ СО РАН)
Priority to RU2009128842/28A priority Critical patent/RU2397513C1/ru
Application granted granted Critical
Publication of RU2397513C1 publication Critical patent/RU2397513C1/ru

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

Использование: для каротажа нефтяных и газовых скважин. Сущность: заключается в том, что осуществляют облучение скважинной среды нейтронами, сгенерированными нейтронным генератором со встроенным детектором альфа-частиц, регистрацию альфа-частиц, образовавшихся в результате реакции
Figure 00000003
и вылетевших из мишени в направлении, противоположном направлению вылета быстрого нейтрона, регистрацию индуцированного нейтронами гамма-излучения неупругого рассеяния, при этом в дальней зоне от скважины, размеры и расположение детектора альфа-частиц в нейтронном генераторе выбирают такими, чтобы контролируемый конус вылета нейтронов имел угол разлета 30° и был перпендикулярен к оси скважинного прибора, сигнал детектора гамма-квантов регистрируют непрерывно во времени с помощью аналого-цифрового преобразователя с дискретностью 0,1…0,3 наносекунды и непрерывно записывают в память микропроцессора, который при появлении импульса от альфа-частицы со встроенного в генератор детектора альфа-частиц продолжает запись сигнала детектора гамма-квантов в течение заданного интервала времени, по окончанию которого определяет наличие импульса от детектора гамма-квантов, его амплитуду и время прихода относительно момента рождения нейтрона в заранее заданном интервале, селектирует импульсы от гамма-квантов, совпадающие с энергиями нерассеянного гамма-излучения неупругого рассеяния нейтронов элементов Ca, Si, C, O, Fe, Mg, Al, Ti и S, формирует из них временные распределения, рассчитывает координаты границ цилиндрических зон, окружающих скважину, и концентрацию в них элементов Ca, Si, C, O, Fe, Mg, Al, Ti и S путем подбора параметров заранее заданной модели околоскважинного пространства до наилучшего совпадения с результатами измеренных временных распределений. Технический результат: повышение точности проводимых измерений с возможностью получения более полных данных об околоскважинном пространстве. 2 н.п. ф-лы, 6 ил.

Description

Изобретение относится к ядерной геофизике и может быть использовано для каротажа нефтяных и газовых скважин.
Известны способы и устройства для неразрушающего контроля с применением времяпролетной методики, в которой используются генераторы нейтронов со встроенными детекторами альфа-частиц. Такие генераторы называют генераторами меченых нейтронов (ГМН). Устройство таких генераторов подробно описано в [1, 2]. Генерация нейтронов происходит по ядерной реакции
Figure 00000001
, в которой продукты реакции - альфа-частица и нейтрон разлетаются в противоположные относительно друг друга стороны, угол разлета равен 180°. Если на пути альфа-частицы поставить детектор, то при регистрации альфа-частицы можно сказать, что в противоположном направлении летит нейтрон. Угол контролируемого конуса разлета нейтронов зависит от размеров детектора альфа-частиц и его расположения относительно точки рождения продуктов ядерной реакции (мишени нейтронного генератора) и постоянен для конкретной конструкции нейтронного генератора. Параметры альфа-частицы по законам движения связаны с направлением и моментом вылета самого нейтрона, что дает возможность отслеживать начальный этап траектории нейтрона в среде, в т.ч. и оценивать его удаление от источника посредством регистрации возникающего при взаимодействии со средой гамма-излучения.
Детектор гамма-квантов измеряет спектры гамма-излучения неупругого рассеяния нейтронов в заданных относительно момента регистрации альфа-частицы интервалах времени. По измеренным спектрам определяется элементный состав в зонах, разно удаленных от точки облучения.
Такой способ измерения получил название в русскоязычной литературе как Метод Меченых Нейтронов (ММН) [1], а в англоязычной литературе именуется как Associated Particle Imaging (API) или Associated-Particle, Sealed-Tube, Neutron Generator (APSTNG) [7].
Известно, что устройства, реализующие такой способ, применяются для решения специальных задач безопасности, контроля багажа, обнаружения взрывчатых веществ [2], а также для исследования состава вещества, окружающего скважину [3, 4, 5].
Наиболее близким к заявляемому способу является изложенный в [6] способ ядерного каротажа, включающий облучение горных пород в скважине нейтронами, сгенерированными в скважинном приборе, регистрацию альфа-частиц, образовавшихся в результате реакции
Figure 00000002
и вылетевших с нейтронной мишени в заданном направлении, противоположном направлению вылета с мишени быстрого нейтрона, регистрацию амплитудных спектров индуцированного гамма-излучения детектором в заданном временном интервале после момента регистрации альфа-частицы. При этом скважинный прибор ориентируют относительно скважины так, что конус распространения быстрых нейтронов, направление вылета которых контролируется регистрируемыми альфа-частицами, направлен из скважины таким образом, что плоскость, проведенная через ось скважинного прибора, ось прижима к стенке скважины и ось конуса, перпендикулярна к касательной плоскости, проведенной через линию соприкосновения скважинного прибора и стенки скважины, при этом угол между осью конуса и осью скважинного прибора со стороны детектора лежит в пределах 10…60°. В данном способе регистрируют амплитудные спектры индуцированного гамма-излучения в n-временных окнах, рассчитывают координату места неупругого рассеяния быстрого нейтрона, на основании этого выделяют спектры гамма-излучения неупругого рассеяния от различных зон скважины.
Наиболее близким к заявляемому устройству является изложенное в [6] устройство для ядерного каротажа, включающее скважинный прибор, имеющий нейтронный генератор, центр мишени которого расположен на оси скважинного прибора, детектор альфа-частиц, центр которого установлен в непосредственной близости от мишени нейтронного генератора на некотором расстоянии от оси скважинного прибора и включенный последовательно с соответствующим усилителем-дискриминатором, детектор гамма-квантов, включенный последовательно с соответствующим усилителем, первый выход которого соединен с первым входом многоканального амплитудного анализатора, усилитель-дискриминатор канала гамма-квантов, временной анализатор совпадений, селектор, выходная шина данных которого подключена на второй вход многоканального амплитудного анализатора. Второй выход усилителя канала гамма-квантов устройства подключен на вход усилителя-дискриминатора канала гамма-квантов, выходы усилителя-дискриминатора канала альфа-частиц и усилителя-дискриминатора канала гамма-квантов подключены соответственно на первый и второй входы временного анализатора совпадений и параллельно на первый и второй входы селектора, временной анализатор совпадений соединен по выходу шиной данных с шинным входом селектора. При этом скважинный прибор имеет прижим к стенке скважины, расположенный в одной плоскости с осью скважинного прибора и осью, соединяющей центр мишени нейтронного генератора и центр детектора альфа-частиц, причем угол со стороны детектора гамма-излучения между осью, соединяющей центр мишени нейтронного генератора с центром детектора альфа-частиц и осью скважинного прибора, лежит в пределах 10…60°.
Данный способ и реализующее его устройство позволяют по зарегистрированным спектрам гамма-излучения проводить томографию нефтяных и газовых скважин.
К недостаткам данного способа и реализующего его устройства следует отнести наличие мертвой зоны, связанной с тем, что момент регистрации альфа-частицы запаздывает относительно момента вылета нейтрона на время пролета альфа-частицей расстояния от точки рождения до детектора альфа-частиц, вследствие чего гамма-излучение неупругого рассеяния от нейтронов, взаимодействующих вблизи источника, не регистрируется и информация о ближней зоне скважины отсутствует. При временном разрешении системы регистрации, приведенном в описании прототипа, равном 3 наносекундам, обеспечивается пространственное разрешение не более 15 см, что недостаточно для детального изучения радиального разреза околоскважинного пространства.
Предлагаемый способ и реализующее его устройство устраняют эти недостатки, позволяют повысить точность проводимых измерений и получить непосредственно информацию об элементном составе среды в скважине, качестве обсадки, толщине и составе глинистой корки, размере зоны проникновения скважинного флюида и происходящих в ней изменениях химического состава, а также о составе неизмененной породы в дальней зоне от скважины с пространственным разрешением около 0,5 см.
Технический результат достигается тем, что в способе контролируют вылет нейтронов в конус с углом 30° перпендикулярно оси прибора, непрерывно оцифровывают сигнал детектора гамма-квантов аналого-цифровым преобразователем с дискретностью 0,1 наносекунды, непрерывно записывают его значения в память микропроцессора, определяют наличие импульса от детектора гамма-квантов, его амплитуду и время прихода относительно момента рождения нейтрона в заранее заданном интервале, производят селекцию импульсов от гамма-квантов, совпадающих с энергиями нерассеянного гамма-излучения неупругого рассеяния нейтронов элементов Ca, Si, C, O, Fe, Mg, Al, Ti и S, формируют из них временные распределения, рассчитывают координаты границ цилиндрических зон, окружающих скважину, и концентрации в них элементов Ca, Si, C, O, Fe, Mg, Al, Ti и S путем подбора параметров заранее заданной модели околоскважинного пространства до наилучшего совпадения с результатами измеренных временных распределений.
Технический результат достигается также тем, что устройство снабжено аналого-цифровым преобразователем с временем преобразования 0,1 наносекунды, оцифровывающим непрерывно сигнал детектора гамма-квантов, микропроцессором, который при появлении импульса от альфа-частицы со встроенного в нейтронный генератор детектора альфа-частиц определяет наличие импульса от детектора гамма-квантов, амплитуду и время его прихода относительно момента рождения нейтрона в заранее заданном интервале, селектирует импульсы от гамма-квантов, совпадающие с энергиями нерассеянного гамма-излучения неупругого рассеяния нейтронов элементов Ca, Si, C, O, Fe, Mg, Al, Ti и S, формирует из них временные распределения, рассчитывает координаты границ цилиндрических зон, окружающих скважину, и концентрацию в них элементов Ca, Si, C, O, Fe, Mg, Al, Ti и S путем подбора параметров заранее заданной модели околоскважинного пространства до наилучшего совпадения с результатами измеренных временных распределений.
Техническая сущность изобретения поясняется чертежами. На фиг.1 изображен скважинный прибор, зондирующий околоскважинное пространство; на фиг.2 - блок-схема устройства; на фиг.3 - временная диаграмма процесса регистрации; на фиг.4 - структура модели околоскважинной среды, принятая в расчетах; на фиг.5 - результаты моделирования временных спектров нерассеянных потоков гамма-излучения неупругого рассеяния нейтронов от Ca, Si, C, O, Fe в модели околоскважинной среды при угле вылета нейтронов 30°; на фиг.6 - результаты моделирования временных спектров нерассеянных потоков гамма-излучения неупругого рассеяния нейтронов от Са, Si, С, О, Fe в модели околоскважинной среды при угле вылета нейтронов 90°.
Предлагаемый способ реализуется следующим образом. В скважину помещают каротажный прибор 3, содержащий генератор нейтронов 2 со встроенным детектором альфа-частиц 8 и детектор гамма-квантов 1. Детектор альфа-частиц расположен в генераторе нейтронов так, что контролируемый конус вылета нейтронов 4 имеет угол разлета 30° и перпендикулярен к оси скважинного прибора.
Генератор 2 испускает быстрые нейтроны, которые взаимодействуют с веществом в околоскважинном пространстве. Вещество рассматривается как последовательность различающихся по составу зон, находящихся на разном удалении от точки вылета нейтрона, например: скважинный флюид (I), обсадная колонна (II), цемент (III), измененная зона пласта (IV), неизмененная порода (V). Расположение зон показано на фиг.1.
Испускаемые генератором 2 быстрые нейтроны с энергией 14,1 МэВ, попадая в среду, вступают в ядерные реакции с атомами среды, в результате которых ядра излучают гамма-кванты с характеристической для каждого элемента энергией. Часть этих квантов, не претерпев ни единого соударения с атомами среды, попадает в детектор гамма-квантов 1, расположенный в скважинном приборе 3.
Гамма-квант, рожденный при взаимодействии нейтрона с атомом в околоскважинном пространстве, может прилететь в детектор 1 раньше, чем в генераторе нейтронов будет зарегистрирована альфа-частица, рожденная одновременно с этим нейтроном, поэтому сигнал детектора гамма-квантов регистрируют непрерывно во времени с помощью аналого-цифрового преобразователя 6 с дискретностью 0,1 наносекунды и непрерывно записывают в память микропроцессора 7.
При появлении импульса от альфа-частицы со встроенного в генератор 2 детектора 8 микропроцессор 7 определяет наличие импульса от детектора гамма-квантов 1, его амплитуду и время прихода относительно момента рождения нейтрона в заранее заданном интервале, селектирует импульсы от гамма-квантов, совпадающие с энергиями нерассеянного гамма-излучения неупругого рассеяния нейтронов элементов Ca, Si, C, O, Fe, Mg, Al, Ti и S, формирует временные распределения элементов, рассчитывает координаты границ цилиндрических зон, окружающих скважину, и концентрации в них элементов Ca, Si, C, O, Fe, Mg, Al, Ti и S путем подбора параметров заранее заданной модели околоскважинного пространства до наилучшего совпадения с результатами измеренных временных распределений.
Предложенное для реализации способа устройство работает следующим образом. Нейтронный генератор 2 со встроенным детектором альфа-частиц 8 испускает быстрые нейтроны. Индуцированное нейтронами гамма-излучение регистрируется детектором гамма-квантов 1. Сигнал с детектора гамма-квантов через усилитель 5 подается на вход аналого-цифрового преобразователя 6. Аналого-цифровой преобразователь непрерывно оцифровывает сигнал детектора 1 с дискретностью 0,1 наносекунды. Мгновенные значения сигнала детектора 1 записываются в память микропроцессора 7.
Детектор альфа-частиц 8 расположен в генераторе нейтронов так, что контролируемый конус вылета нейтронов 4 имеет угол разлета 30° и перпендикулярен к оси скважинного прибора.
Сигнал от детектора альфа-частиц 8 усиливается усилителем-формирователем 9 и в виде прямоугольного импульса подается на вход микропроцессора 7.
Сигнал от альфа-частицы всегда запаздывает относительно момента рождения нейтрона и альфа-частицы. Время запаздывания Т1 равно времени пролета альфа-частицей расстояния от точки рождения до детектора альфа-частиц, постоянно для конкретной конструкции нейтронного генератора и учитывается при обработке сигнала детектора гамма-квантов.
При появлении импульса от альфа-частицы на входе микропроцессора микропроцессор продолжает запись значений сигнала в течение времени Т2. По окончании интервала микропроцессор по записанным мгновенным значениям сигнала детектора 1 определяет наличие импульса от гамма-квантов, его амплитуду и время прихода относительно момента рождения нейтрона в заранее заданном интервале Т3, селектирует импульсы от гамма-квантов, совпадающие с энергиями нерассеянного гамма-излучения неупругого рассеяния нейтронов на элементах Ca, Si, C, O, Fe, Mg, Al, Ti и S, формирует из них временные распределения, рассчитывает координаты границ цилиндрических зон, окружающих скважину, и концентрацию в них элементов Ca, Si, C, O, Fe, Mg, Al, Ti и S путем подбора параметров заранее заданной модели околоскважинного пространства до наилучшего совпадения с результатами измеренных временных распределений и передает на индикатор 10. На индикаторе отображаются результаты измерений.
На фиг.3 показана временная диаграмма работы устройства. Подписи к диаграмме соответствуют:
- Т1 - время пролета альфа-частицей расстояния от точки рождения до детектора альфа-частиц,
- Т2 - интервал времени после регистрации альфа-частицы,
- Т3 - заданный интервал наблюдения,
- А - ситуация, когда импульс от детектора гамма-квантов находится вне заданного интервала наблюдения и игнорируется,
- В - ситуация, когда импульс от детектора гамма-квантов находится в заданном интервале наблюдения и обрабатывается,
- С - ситуация, когда импульс от детектора гамма-квантов находится в интервале времени пролета альфа-частицей расстояния от точки рождения до детектора альфа-частиц и обрабатывается,
- D - ситуация, когда импульс от детектора гамма-квантов в заданном интервале наблюдения отсутствует и измерение игнорируется.
Для оценки возможностей предлагаемого способа и устройства на его основе проведены численные расчеты в моделях сред, наиболее близких к реальным скважинным и геологическим условиям. На фиг.4 показана модель среды, использованная в проведенных расчетах. Она состоит из пяти цилиндрических слоев, различающихся по химическому составу:
- скважина, заполненная жидкостью I, химический состав H2O
- железная колонна II, Fe
- цемент III, CaCO3
- измененная зона пласта IV, SiO2+H2O
- неизмененная порода V, SiO2+CH2
В качестве величин, используемых для определения положения границ пространственных неоднородностей и состава среды между этими границами, выбраны зависимости изменения нерассеянных спектральных компонент потоков гамма-излучения неупругого рассеяния во времени, для элементов Ca, Si, C, O, Fe. Рассчитанные временные распределения гамма-излучения неупругого рассеяния нейтронов для угла вылета нейтронов 30° показаны на фиг.5, для угла вылета нейтронов 90° показаны на фиг.6.
Результаты моделирования указывают на высокую чувствительность измерений к радиальным границам и на достаточное пространственное разрешение (около 0,5 см) при временной дискретизации измерений на уровне 0,1 нс.
Источники информации
1. В.М.Быстрицкий, Н.И.Замятин, В.Г.Кадышевский, А.П.Кобзев, В.А.Никитин, Ю.Н.Рогов, М.Г.Сапожников, А.Н.Сисакян, В.М.Слепнев, Н.В.Власов. Изучение ядерно-физических методов идентификации скрытых веществ в ОИЯИ. Сборник материалов международной научно-технической конференции «Портативные генераторы нейтронов и технологии на их основе», ФА по атомной энергии РФ, ВНИИА, М., 2004, с.306-319.
2. Е.П.Боголюбов, С.А.Коротков, С.А.Краснов, Ю.К.Пресняков, Т.О.Хасаев. Нейтронные технологии на базе портативных генераторов нейтронов для инспекции опасных объектов. Сборник материалов Международной научно-технической конференции «Портативные генераторы нейтронов и технологии на их основе», ФА по атомной энергии РФ, ВНИИА, М., 2004, с.326-333.
3. Qu Xiancai, Ding Xijin, Li Huazhang, Wu Liping, Jiang Shilian. Новый каротажный прибор для спектрометрии сопутствующих а-частиц при углерод/кислородном каротаже и его применение для оценки маломощных пластов. II Китайско-Российский научный симпозиум по геофизическим исследованиям скважин, Шанхай, 3-5 ноября 2002 г. Материалы Симпозиума, Уфа, 2003, с.11-17.
4. Qu Xiancai, Ding Xijin, Li Huazhang, Wu Liping, Jiang Shilian. Каротажный прибор для спектрометрии сопутствующих а-частиц углерода/кислорода и его применение для оценки маломощных пластов, НТВ «КАРОТАЖНИК», Выпуск 12-13 (125-126), Тверь, 2004, с.257-265.
5. Патент Китая №1047237, МПК E21B 47/00, по заявке №93109244, 1995.
6. Патент РФ №2256200, МПК G01V 5/10.
7. Е.Rhodes, С.Е.Dickerman, A.DeVolpi, C.W.Peters. APSTNG: Radiation Interrogation for Verification of Chemical and Nuclear Weapons, IEEE Trans. Nucl. Science. 1992, vol.39, pp.1041-1045.

Claims (2)

1. Способ нейтронного гамма-каротажа, включающий облучение скважинной среды нейтронами, сгенерированными нейтронным генератором со встроенным детектором альфа-частиц, регистрацию альфа-частиц, образовавшихся в результате реакции
Figure 00000003
и вылетевших из мишени в направлении, противоположном направлению вылета быстрого нейтрона, регистрацию индуцированного нейтронами гамма-излучения неупругого рассеяния, отличающийся тем, что, с целью получения информации о составе среды в скважине, качестве обсадки, толщине и составе глинистой корки, размере зоны проникновения скважинного флюида и происходящих в ней изменениях химического состава, а также о составе неизмененной породы в дальней зоне от скважины, размеры и расположение детектора альфа-частиц в нейтронном генераторе выбирают такими, чтобы контролируемый конус вылета нейтронов имел угол разлета 30° и был перпендикулярен к оси скважинного прибора, сигнал детектора гамма-квантов регистрируют непрерывно во времени с помощью аналога-цифрового преобразователя с дискретностью 0,1…0,3 наносекунды и непрерывно записывают в память микропроцессора, который при появлении импульса от альфа-частицы со встроенного в генератор детектора альфа-частиц продолжает запись сигнала детектора гамма-квантов в течение заданного интервала времени, по окончанию которого определяет наличие импульса от детектора гамма-квантов, его амплитуду и время прихода относительно момента рождения нейтрона в заранее заданном интервале, селектирует импульсы от гамма-квантов, совпадающие с энергиями нерассеянного гамма-излучения неупругого рассеяния нейтронов элементов Ca, Si, C, O, Fe, Mg, Al, Ti и S, формирует из них временные распределения, рассчитывает координаты границ цилиндрических зон, окружающих скважину, и концентрацию в них элементов Ca, Si, C, O, Fe, Mg, Al, Ti и S путем подбора параметров заранее заданной модели околоскважинного пространства до наилучшего совпадения с результатами измеренных временных распределений.
2. Устройство для нейтронного гамма-каротажа, включающее скважинный прибор, имеющий нейтронный генератор со встроенным детектором альфа-частиц, включенным последовательно с соответствующим усилителем, детектор гамма-квантов, включенный последовательно с соответствующим усилителем, отличающееся тем, что устройство содержит аналога-цифровой преобразователь, входом соединенный с усилителем детектора гамма-квантов, микропроцессор, первым входом соединенный с выходом аналого-цифрового преобразователя, вторым входом соединенный с выходом усилителя детектора альфа-частиц и выходом соединенный с индикатором, а встроенный детектор альфа-частиц нейтронного генератора расположен так, что контролируемый конус вылета нейтронов имеет угол разлета 30° и перпендикулярен к оси скважинного прибора.
RU2009128842/28A 2009-07-27 2009-07-27 Способ нейтронного гамма-каротажа и устройство для его осуществления RU2397513C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2009128842/28A RU2397513C1 (ru) 2009-07-27 2009-07-27 Способ нейтронного гамма-каротажа и устройство для его осуществления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009128842/28A RU2397513C1 (ru) 2009-07-27 2009-07-27 Способ нейтронного гамма-каротажа и устройство для его осуществления

Publications (1)

Publication Number Publication Date
RU2397513C1 true RU2397513C1 (ru) 2010-08-20

Family

ID=46305611

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009128842/28A RU2397513C1 (ru) 2009-07-27 2009-07-27 Способ нейтронного гамма-каротажа и устройство для его осуществления

Country Status (1)

Country Link
RU (1) RU2397513C1 (ru)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2457469C1 (ru) * 2011-06-23 2012-07-27 Общество с ограниченной ответственностью "Нейтронные технологии" Мобильное устройство для идентификации скрытых веществ (варианты)
RU2476864C1 (ru) * 2011-12-06 2013-02-27 Общество с ограниченной ответственностью "Нейтронные технологии" Переносной обнаружитель опасных скрытых веществ
RU2502986C1 (ru) * 2012-09-07 2013-12-27 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" Способ нейтронной радиографии
RU2503954C1 (ru) * 2012-08-27 2014-01-10 Общество с ограниченной ответственностью "Детекторы взрывчатки и наркотиков" Устройство для обнаружения и индентификации скрытых опасных веществ под водой (варианты)
RU2503955C1 (ru) * 2012-07-27 2014-01-10 Общество с ограниченной ответственностью "Детекторы взрывчатки и наркотиков" Устройство для обнаружения и идентификации скрытых опасных веществ под водой
RU2505801C1 (ru) * 2012-09-07 2014-01-27 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" Устройство нейтронной радиографии
RU2524754C1 (ru) * 2013-01-22 2014-08-10 Вячеслав Михайлович Быстрицкий Мобильный обнаружитель опасных скрытых веществ (варианты)
RU2549680C2 (ru) * 2013-01-22 2015-04-27 Вячеслав Михайлович Быстрицкий Досмотровый комплекс обнаружения опасных скрытых веществ (варианты)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2457469C1 (ru) * 2011-06-23 2012-07-27 Общество с ограниченной ответственностью "Нейтронные технологии" Мобильное устройство для идентификации скрытых веществ (варианты)
RU2476864C1 (ru) * 2011-12-06 2013-02-27 Общество с ограниченной ответственностью "Нейтронные технологии" Переносной обнаружитель опасных скрытых веществ
RU2503955C1 (ru) * 2012-07-27 2014-01-10 Общество с ограниченной ответственностью "Детекторы взрывчатки и наркотиков" Устройство для обнаружения и идентификации скрытых опасных веществ под водой
RU2503954C1 (ru) * 2012-08-27 2014-01-10 Общество с ограниченной ответственностью "Детекторы взрывчатки и наркотиков" Устройство для обнаружения и индентификации скрытых опасных веществ под водой (варианты)
RU2502986C1 (ru) * 2012-09-07 2013-12-27 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" Способ нейтронной радиографии
RU2505801C1 (ru) * 2012-09-07 2014-01-27 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" Устройство нейтронной радиографии
RU2524754C1 (ru) * 2013-01-22 2014-08-10 Вячеслав Михайлович Быстрицкий Мобильный обнаружитель опасных скрытых веществ (варианты)
RU2549680C2 (ru) * 2013-01-22 2015-04-27 Вячеслав Михайлович Быстрицкий Досмотровый комплекс обнаружения опасных скрытых веществ (варианты)

Similar Documents

Publication Publication Date Title
RU2397513C1 (ru) Способ нейтронного гамма-каротажа и устройство для его осуществления
EP0081314A2 (en) A method and system for ascertaining density features of underground earth regions, and a detector module usable therein for detecting the flux and trajectories of muons
Pesente et al. Detection of hidden explosives by using tagged neutron beams with sub-nanosecond time resolution
US20110062319A1 (en) Apparatus and method for well logging utilizing associate particle imaging
US20060033022A1 (en) Elemental gamma ray signature instrument
US20110218735A1 (en) Real-Time Lithology and Mineralogy Interpretation
US20020150194A1 (en) Method and device for non-invasive soil carbon content and distribution measurements
Gong et al. BP neural network analysis for identification of explosive in package by tagged neutron method
Johansen Gamma-ray tomography
RU2427861C2 (ru) Способ одновременного исследования методами радиоактивного каротажа и устройство для его осуществления
US11402338B2 (en) System and method of using energy correlated timing spectra to locate subsurface objects
Lunardon et al. Detection of landmines by using 14 MeV neutron tagged beams
RU2256200C1 (ru) Способ ядерного каротажа и устройство для его осуществления
Liu et al. Methods for evaluating elemental concentration and gas saturation by a three-detector pulsed-neutron well-logging tool
Kavetskiy et al. Neutron-stimulated gamma ray analysis of soil
Faust et al. Feasibility of fast neutron analysis for the detection of explosives buried in soil
Xue et al. Design and simulation of landmines detection system based on fast neutron analysis
Mitra Identification of UXO using the associated particle neutron time-of-flight technique, final report
US8582712B2 (en) Methods of detection and identification of carbon- and nitrogen-containing materials
JP2009236635A (ja) 窒素含有物質の検知方法およびその検知装置
Zauner Deposit characterization based on pulsed neutron induced borehole n-/γ-spectroscopy
WO2017141250A1 (en) Method and system for rapid analysis of fluid content in geological formations
RU2690095C1 (ru) Устройство для измерения нейтронной пористости
RU2559309C1 (ru) Способ обнаружения и идентификации скрытых веществ
Dunn et al. Radiation interrogation using signature analysis for detection of chemical explosives

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20120728