RU2393200C2 - Способ термической переработки твердых органических отходов и установка для его осуществления - Google Patents

Способ термической переработки твердых органических отходов и установка для его осуществления Download PDF

Info

Publication number
RU2393200C2
RU2393200C2 RU2008136688/04A RU2008136688A RU2393200C2 RU 2393200 C2 RU2393200 C2 RU 2393200C2 RU 2008136688/04 A RU2008136688/04 A RU 2008136688/04A RU 2008136688 A RU2008136688 A RU 2008136688A RU 2393200 C2 RU2393200 C2 RU 2393200C2
Authority
RU
Russia
Prior art keywords
reactor
gas
pyrolysis
waste
loading
Prior art date
Application number
RU2008136688/04A
Other languages
English (en)
Other versions
RU2008136688A (ru
Inventor
Вадим Евгеньевич Руднев (RU)
Вадим Евгеньевич Руднев
Вячеслав Иванович Назаров (RU)
Вячеслав Иванович Назаров
Евгений Анатольевич Баринский (RU)
Евгений Анатольевич Баринский
Марина Ивановна Клюшенкова (RU)
Марина Ивановна Клюшенкова
Михаил Сергеевич Семенов (RU)
Михаил Сергеевич Семенов
Сергей Юрьевич Алексеев (RU)
Сергей Юрьевич Алексеев
Original Assignee
Михаил Сергеевич Семенов
Вячеслав Иванович Назаров
Сергей Юрьевич Алексеев
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Михаил Сергеевич Семенов, Вячеслав Иванович Назаров, Сергей Юрьевич Алексеев filed Critical Михаил Сергеевич Семенов
Priority to RU2008136688/04A priority Critical patent/RU2393200C2/ru
Publication of RU2008136688A publication Critical patent/RU2008136688A/ru
Application granted granted Critical
Publication of RU2393200C2 publication Critical patent/RU2393200C2/ru

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

Изобретение относится к способам и устройствам для термической переработки твердых органических отходов, преимущественно резинотехнических изделий в жидкие, газообразные и твердые топливные компоненты. Способ заключается в низкотемпературном пиролизе отходов в реакторе в противотоке с газообразным теплоносителем, полученным от сжигания технологического топлива, вводимым в нижнюю часть реактора, загрузке отходов и выгрузке твердого углеродистого остатка с последующим его охлаждением, конденсацией получаемой парогазовой смеси с разделением ее на несколько фракций топливной жидкости и пиролизный газ, отличающийся тем, что загрузку отходов и выгрузку углеродистого остатка из реактора производят циклически при отношении массы загружаемых отходов к массе выгружаемого углеродистого остатка, равным 3:(0,8-1,2), загрузку отходов осуществляют с интервалом, включающим время разогрева загружаемых отходов и дополнительное время, равное 0,4-0,6 от времени максимальной скорости выделения пиролизного газа, парогазовую смесь перед конденсацией предварительно очищают от сажистых и смолистых фракций орошением органической и/или водно-органической жидкостью при температуре 500-350°С, конденсацию парогазовой смеси с последовательным выделением топливных фракций проводят в диапазоне температур 350-70°С, а конденсацию воды при температуре 25-60°С и получаемый при этом остаточный пиролизный газ направляют на сжигание с утилизацией тепла, причем в период пуска с полной загрузкой реактора газообразный теплоноситель подают двумя потоками: основной поток в количестве 60-70% от общего расхода - в осевую зону реактора, а остальной - в его пристенную зону. Установка для осуществления описанного способа содержит реактор пиролиза с реакционной камерой, топку с горелкой для получения газообразного теплоносителя, конденсаторы получаемой в реакторе парогазовой смеси, а также устройства для загрузки отходов и выгрузки твердых углеродистых остатков с приспособлением для их охлаждения, отличающаяся тем, что реакционная камера выполнена в виде смонтированных на колосниковой решетке с живым сечением 20-40% концентрично установленных наружного и внутреннего перфорированных стаканов, при этом внутренний стакан и полость между наружным стаканом и корпусом реактора выполнены закрытыми сверху посредством перегородок и оба стакана по высоте имеют три условные технологические зоны, причем стенки стаканов нижней зоны выполнены сплошными по высоте, равной 0,3-0,5 расчетной высоты загрузки, на опорах реактора смонтированы датчики контроля массы загружаемых отходов, установка снабжена барботером-промывателем с гидроциклоном для очистки парогазовой смеси от смолистых и сажистых фракций, а устройства для загрузки и выгрузки выполнены в виде шлюзовых камер. 2 н. и 5 з.п., 3 табл., 6 ил.

Description

Изобретение относится к способам и устройствам для переработки твердых органических отходов, преимущественно резинотехнических изделий путем пиролиза в жидкие, газообразные и твердые топливные компоненты.
Способ и установка могут быть также использованы для утилизации промышленных, бытовых коммунальных отходов, а также для переработки низкокалорийных углей, илов и т.п.
Известны способ и установка утилизации органических отходов. Установка содержит реактор пиролиза с устройствами загрузки отходов и выгрузки твердого остатка, систему разделения газообразной смеси с конденсатором для отвода горючих газов и жидкого топлива, газоход с заслонкой для отвода дымовых газов, включающий воздухоподогреватель, систему очистки газа и газоанализатор. Пиролиз бытовых и коммунальных отходов осуществляют следующим образом. После загрузки отходов и проведения процесса пиролиза извлекают твердый остаток в виде шлака и разделяют газообразную смесь на жидкую и газовую составляющую пиролизных газов. Нагрев исходных отходов и пиролиз в реакторе осуществляют с использованием части возвращаемых в процесс дымовых газов после дополнительного их подогрева до 600°С, остальную часть дымовых газов после очистки выбрасывают в атмосферу (SU №699287, кл. F23G 5/00, 1979).
Указанный способ пиролиза и установка для утилизации бытовых отходов позволяют получать только жидкое (без разделения на фракции) и газообразное топливо. При этом получается негорючий твердый остаток в виде шлака. Это связано с тем, что процесс пиролиза, протекающий при наличии кислорода в зоне реакции, приводит к излишнему окислению продуктов пиролиза и низкому качеству топливных компонентов. Получаемый по этому способу твердый остаток является шламом и вывозится в отвалы, что создает экологическую проблему.
Известны способ переработки органического сырья в топливные компоненты и установка для его осуществления (RU №2182684, МПК F23G 5/027, 2002), обеспечивающие получение топливных компонентов в виде твердого, жидкого и газообразного топлива, обладающих высоким качеством и повышенной теплотой сгорания за счет проведения пиролиза без доступа кислорода.
Установка содержит реактор пиролиза с реакционной камерой, систему разделения парогазообразной смеси и средства для подачи сырья и выгрузки готового продукта. Система разделения парогазообразной смеси выполнена в виде последовательно установленных циклона, каталитической насадки, конденсатора, массообменной колонны, центробежного вентилятора и шиберного регулятора. В известном способе осуществляют противоточный низкотемпературный пиролиз под небольшим разряжением в потоке топочного газа, а выгрузку углеродистого твердого остатка и разделение парогазообразной смеси проводят последовательно в циклоне, каталитической насадке и конденсаторе. После отделения воды в конденсаторе ее охлаждают и затем выводят из системы, пиролизный газ подают на массообменную колонну, где выделяют топливную жидкость, а от капель жидкости газ отделяют в центробежном активном циклоне. Очищенный пиролизный газ делят на два потока: один идет на подсушку сырья после его сжигания в теплогенераторе. Второй поток направляется в кольцевую топочную камеру реактора пиролиза. Сырье направляется в узел загрузки реактора.
Рассмотренному способу и установке для его осуществления присущи сложность регулирования процесса пиролиза, низкий выход топливной жидкости, отсутствие очистки пиролизного газа от смолистых фракций, приводящее к вынужденной периодической работе установки из-за зарастания оборудования смолистыми веществами. Кроме того, данная установка не предназначена для утилизации крупногабаритных изделий, например отработавших автомобильных покрышек.
Кроме того, полученная топливная жидкость представляет собой одну фракцию в виде вязкой массы с высоким содержанием фенолов, кислот, спиртов и по своим характеристикам значительно отличается от стандартных углеводородных топлив. Твердый остаток содержит технический углерод, загрязненный непереработанным органическим сырьем, а пиролизный газ представляет собой низкокалорийное топливо с невысоким содержанием горючих компонентов, что требует дополнительной очистки.
Наиболее близким к изобретению по технической сущности и достигаемому результату является способ и установка для переработки органического сырья в топливные компоненты по патенту РФ №2275416, МПК F23G 5/027, 2006 г.
Способ термической переработки твердых органических отходов, в том числе и резинотехнических изделий, включает низкотемпературный пиролиз отходов в реакторе с катализатором в противотоке с газообразным теплоносителем от сжигания технологического топлива, вводимым в нижнюю часть реактора, предварительный подогрев и дополнительную продувку органических отходов от кислорода для равномерной и полной их обработки, загрузку отходов и выгрузку твердого углеродистого остатка с последующим его охлаждением, конденсацию получаемой парогазовой смеси с разделением ее на несколько фракций топливной жидкости и пиролизный газ с частичным возвратом последнего в процесс на сжигание.
В реактор в двух точках по его высоте вводят теплоноситель, подготовленный в выносной топке. При этом в нижнюю часть реактора поступает половина всего объема теплоносителя, а в среднюю часть реактора направляют остальной поток, разделяя его на два потока теплоносителя: один с высокой температурой, а другой - с пониженной. Разделение парогазовой смеси осуществляют в четырех последовательно размещенных разделительных конденсаторах, где выделяют из смеси три фракции жидких углеводородов и пиролизный газ. После этого смесь пропускают через теплообменник для сбора остатков фракций жидких углеводородов, а затем смесь направляют в циклон-сепаратор для окончательного отделения фракций жидких углеводородов от пиролизного газа, часть которого затем используют в качестве топлива на теплоэлектростанции, а другую часть возвращают в выносную топку.
Полученные фракции жидких углеводородов - мазутную, дизельную и легкую (близкую к бензиновой) - помещают в емкости.
Жидкие углеводородные фракции из первых двух конденсаторов направляют в две отдельные емкости, из третьего и четвертого конденсатора, а также из теплообменника и циклона-сепаратора получаемые фракции сливаются в третью емкость.
Конденсацию и охлаждение топливных фракций из пиролизного газа в разделительных конденсаторах осуществляют, вводя уже полученные жидкие углеводороды.
Установка для переработки органических отходов содержит вертикальный реактор пиролиза со шлюзовыми затворами для загрузки отходов и выгрузки углеродистого остатка, камеры предварительного подогрева отходов. Перегрузка последних в реакционное пространство реактора осуществляется через дополнительный шлюзовой затвор. В средней части реактора и после узла ввода топочных газов в его нижнюю часть размещены два устройства ввода газообразного теплоносителя.
Подготовку газообразного теплоносителя (дымовых газов) осуществляют в выносной топке, куда вводят газообразное топливо, получаемое после циклона-сепаратора и из камеры подогрева отходов перед загрузкой в реактор, а также необходимый для горения воздух.
Средство для выгрузки твердого углеродистого остатка (топливного угля) выполнено в виде шнекового транспортера со шлюзовыми затворами, установленными на входе и выходе из транспортера. Охлаждение остатка проводят дымовыми газами, отбираемыми после топки.
Способ конденсации и используемые при этом разделительные устройства не позволяют проводить четкого разделения на топливные фракции. Они загрязнены как частицами сажи, так и смолообразующими веществами, и перемешаны с водой. Это ухудшает качество жидкого топлива. Пиролизный газ, подаваемый в топку, является низкокалорийным и содержит большое количество азота, углекислого газа и смолообразующих примесей. В конечном итоге это приводит к зарастанию сопла горелки в топке, что затрудняет поддержание стационарного теплового режима в реакторе пиролиза.
Как видно из конструкции реактора, пиролиз происходит в двух секциях реактора при раздельной подаче газообразного теплоносителя (дымовых газов).
Кроме того, в случае переработки изношенных автомобильных шин исходные отходы должны быть раздроблены, измельчены и очищены от примесей и металлокорда. Это значительно удорожает процесс пиролиза. Разрезанные куски покрышек с металлокордом в данной установке утилизировать невозможно.
Исходные твердые органические отходы: уголь, торф, сланцы, куски шин с неорганическими и другими включениями после смешивания с катализатором - поступают в верхнюю секцию реактора. В описании к указанному патенту отсутствует указание на тип катализатора, хотя обычно для этих целей применяют микросферический цеолит, содержащий катализатор крекинга. Образование сажи, углерода и смолообразующих веществ вызывает зарастание катализатора, вследствие чего его активность снижается. При этом также уменьшается выход парогазовой смеси, а образующийся углеродистый остаток представляет собой спекшуюся массу, которая перемещается в виде пробки. В процессе движения такой массы по реактору нарушается газодинамика. Газовый поток начинает смещаться к периферии реактора, а углистый остаток - к центру, что вызывает закупорку рабочего пространства реактора.
Кроме того, в качестве топлива используют пиролизный газ после двух последних разделительных аппаратов: из камеры предварительного подогрева сырья и шнекового транспортера. Этот газ содержит большое количество азота, диоксида углерода, водорода, паров воды и является низкокалорийным, а его переменный состав приводит к нарушению стационарности процесса пиролиза. В результате такого течения процесса пиролиза происходят значительные колебания состава пиролизного газа, выводимого из реактора, из-за чего получаемая топливная жидкость имеет невысокое качество.
Выгрузка углеродистого остатка (технического углерода) через шнековый транспортер и систему шлюзовых дозаторов при охлаждении подогретым теплоносителем приводит к его дополнительному нагреву и тлению. Температура тления технического углерода 170°С.
Основной задачей, которую решают заявленные способ и установка термической переработки твердых органических отходов, преимущественно резинотехнических изделий, является повышение эффективности процесса низкотемпературного пиролиза, возможность контроля процесса, а также повышение надежности и экономичности процесса.
Поставленная задача решается тем, что в способе, заключающемся в низкотемпературном пиролизе отходов в реакторе в противотоке с газообразным теплоносителем, полученном от сжигания технологического топлива, вводимым в нижнюю часть реактора, загрузке отходов и выгрузке твердого углеродистого остатка с последующим его охлаждением, конденсацией получаемой парогазовой смеси с разделением ее на несколько фракций топливной жидкости и пиролизный газ, согласно изобретению загрузку отходов и выгрузку углеродистого остатка из реактора производят циклически при отношении массы загружаемых отходов к массе выгружаемого углеродистого остатка, равным 3:(0,8-1,2), загрузку отходов осуществляют с интервалом, включающим время разогрева загружаемых отходов и дополнительное время, равное 0,4-0,6 от времени максимальной скорости выделения пиролизного газа, парогазовую смесь перед конденсацией предварительно очищают от сажистых и смолистых фракций орошением органической и/или водно-органической жидкостью при температуре 500-350°С, конденсацию парогазовой смеси с последовательным выделением топливных фракций проводят в диапазоне температур 350-70°С, а конденсацию воды при температуре 25-60°С, получаемый при этом остаточный пиролизный газ направляют на сжигание с утилизацией тепла, причем в период пуска с полной загрузкой реактора газообразный теплоноситель подают двумя потоками: основной поток в количестве 60-70% от общего расхода - в осевую зону реактора, а остальной - в его пристенную зону.
Повышение теплотворной способности парогазовой смеси может обеспечиваться поддержанием коэффициента избытка воздуха, равным 0,90-1,00, а сажистые и смолистые фракции после улавливания можно возвращать в процесс на сжигание для получения газообразного теплоносителя.
Разработанный способ реализуется в следующей установке.
В установке для осуществления способа термической переработки твердых органических отходов, преимущественно резинотехнических изделий, содержащей реактор пиролиза с реакционной камерой, топку с горелкой для получения газообразного теплоносителя, конденсаторы получаемой в реакторе парогазовой смеси, а также устройства для загрузки отходов и выгрузки твердых углеродистых остатков с приспособлением для их охлаждения, согласно изобретению реакционная камера выполнена в виде смонтированных на колосниковой решетке с живым сечением 20-40% концентрично установленных наружного и внутреннего перфорированных стаканов, при этом внутренний стакан и полость между наружным стаканом и корпусом реактора выполнены закрытыми сверху посредством перегородок и оба стакана по высоте имеют три условные технологические зоны, причем стенки стаканов нижней зоны выполнены сплошными по высоте, равной 0,3-0,5 расчетной высоты загрузки, на опорах реактора смонтированы датчики контроля массы загружаемых отходов, установка снабжена барботером-промывателем с гидроциклоном для очистки парогазовой смеси от смолистых и сажистых фракций, а устройства для загрузки и выгрузки выполнены в виде шлюзовых камер.
Перфорация стенок внутреннего стакана в средней и верхней технологических зонах может быть выполнена с переменным живым сечением, увеличивающимся снизу вверх на 20-30%, а перфорация наружного стакана в этих зонах имеет постоянное живое сечение, равное 40-60%.
Конденсаторы парогазовой смеси выполнены в виде горизонтальных трубчатых газоводяных теплообменников, попарно размещенных один над другим и установленных под углом к горизонту 5-15° по ходу движения потока, а трубки теплообменников на входе парогазовой смеси снабжены сужающимися в направлении движения потока полыми коническими вставками.
На фиг.1 изображена принципиальная схема установки; на фиг.2 - реактор пиролиза (продольный разрез); на фиг.3 - реактор пиролиза (поперечный разрез); на фиг.4 - фрагмент трубной решетки конденсатора с трубками и коническими вставками; на фиг.5 - циклограмма последовательности дозагрузки отходов и скорости выделения парогазовой смеси; на фиг.6 - изменение количества пиролизного газа в процессе термической обработки.
Установка для переработки органических отходов содержит теплоизолированный реактор пиролиза 1, представляющий собой цилиндрический корпус с реакционной камерой 2, выносную топку 3 с газомазутной горелкой 4, а также приемные шлюзовые камеры 5 для подачи отходов и выгрузочные шлюзовые камеры 6. Конденсаторы 7-9 соединены соответственно с емкостями 10-12 для сбора жидких фракций, а конденсатор 13 предназначен для сбора сконденсированной воды. Реакционная камера 2 содержит наружный 14 и внутренний 15 перфорированные стаканы, смонтированные на колосниковой решетке 16, перегородку 17 в виде конуса, закрывающую сверху полость внутреннего стакана и полость между наружным стаканом и корпусом реактора. Опоры реактора 18 снабжены весовыми датчиками 19. Реактор соединен с барботером-промывателем 20, связанным с гидроциклоном 21 и с емкостью 32 для сбора промывной жидкости, а трубки 22 газоводяных конденсаторов выполнены с полыми коническими вставками 23.
Ниже приводится пример осуществления способа термохимической переработки отходов на заявленной установке с проектной производительностью 5,5 т/сутки по отходам - изношенных автомобильных покрышек. В таблице 1 представлен усредненный компонентный состав утилизируемых покрышек.
Таблица 1
Усредненный компонентный состав утилизируемых покрышек Состав, мас.%
Технический углерод 35
Каучуковая матрица 45
Металлокорд 11,5
Пластификатор 6,0
Сера 2,5
Перед загрузкой резинотехнические изделия, в частности автопокрышки, в количестве 900 кг (расчетная загрузка) разрезали на фрагменты и укладывали горизонтальными рядами в контейнер загрузки (на чертеже условно не показан).
Такая загрузка увеличивает свободное сечение для прохода газообразного теплоносителя (дымовых газов) и удлиняет траекторию его движения, что способствует усилению турбулизации газовых потоков, тем самым увеличивая коэффициент теплопередачи и снижая время разогрева покрышек. Затем контейнер доставляли и перегружали в приемные шлюзовые камеры 5 реактора. При работе шлюзовых камер 5 отходы подают в загрузочный отсек, после чего внешний люк закрывается и блокируется. Для продвижения отходов открываются внутренние створки 24, и фрагменты автопокрышек под собственным весом перемещаются в реакционную зону 2.
Процесс пиролиза осуществляют непосредственно в реакторе. После запуска все технологическое оборудование находится под разряжением порядка 500 мм рт.ст., что обеспечивает продвижение продукта и исключает его утечки из технологического тракта. Разогрев реактора 1 до температуры 490-500°С проводят сжиганием топлива в выносной топке 3 с подачей газообразного теплоносителя в нижнюю часть реактора 1 под колосниковую решетку 16 в противотоке с загружаемыми отходами.
В период пуска с полной загрузкой реактора газообразный теплоноситель подают двумя потоками: основной поток в количестве 60-70% от общего расхода - в осевую зону реактора, а остальной - в его пристенную зону.
Повышение теплотворной способности парогазовой смеси обеспечивают поддержанием коэффициента избытка воздуха, равным 0,9-1,0.
Загрузку отходов ведут циклически отдельными партиями.
Отходы из шлюзовых камер 5 попадают в реакционную камеру 2 реактора, содержащую наружный 14 и внутренний 15 стаканы.
Стаканы смонтированы на колосниковой решетке, имеющей живое сечение, равное 20-40%. Снижение живого сечения ниже 20% будет увеличивать риск закоксовывания решетки углеродистым остатком, а превышение живого сечения выше 40% вызовет нарушение теплообмена в реакционной камере реактора.
Стенки стаканов в нижней технологической зоне с высотой, равной 0,3-0,5 от указанной расчетной высоты загрузки отходов, выполнены сплошными без перфорации. Увеличение высоты сплошных стенок стаканов более 0,5 расчетной высоты приводит к замедлению процесса пиролиза, а снижение высоты менее 0,3 вызывает спекание и комкование продуктов пиролиза в нижней зоне реакционной камеры на колосниковой решетке. Перфорация стенок внутреннего стакана в средней и верхней технологических зонах имеет переменное живое сечение, увеличивающееся снизу вверх на 20-30% и эти зоны в наружном стакане выполнены с одинаковым живым сечением 40-60%. При таких живых сечениях перфорированных стенок в указанных зонах стаканов 14 и 15 обеспечивается оптимальное деление потока теплоносителя, ускоренный прогрев фрагментов покрышек с одновременной интенсификацией процесса теплообмена в замкнутом объеме при непрерывном процессе пиролиза.
Для ведения процесса пиролиза с максимальной скоростью выделения парогазовой смеси и в установившемся режиме дозагрузку отходов ведут по циклограмме с временными периодами, включающими время разогрева загружаемых отходов и дополнительное время от времени максимальной скорости выделения парогазовой смеси через интервал времени τ=τпр+(0,4-0,6)τпирпр - время прогрева; τпир - время выделения пиролизного газа). Ход ведения процесса отражен кривыми I,II и III (фиг.5).
При начальной загрузке отходов массой 900 кг и последующей циклической дозагрузки отдельных весовых партий интервал времени τ цикла составляет 4 часа, равное сумме времени подогрева порционной загрузки 1 час, и времени выделения пиролизного газа τпир, равного 1,5 часа, а также остальное время загрузки и времени выгрузки.
Благодаря циклической загрузке, контролю над температурой ведения процесса, массой загружаемых отходов и продуктов пиролиза выход парогазовой смеси, образующейся в процессе, поддерживается постоянным.
Это время определяют экспериментально по изменению массы реактора с отходами. Контроль над массой загружаемых отходов, а также выгрузкой углеродистого остатка (пирокарбона) из реакционной зоны осуществляют с помощью датчиков 19 (в данном примере, тензодатчиков), смонтированных на опорах 18 реактора.
Установлено, что при выработке газа во время пиролиза имеются три характерных временных участка: начальное время разогрева τнач, участок с установившейся скоростью выработки газа τуст и участок с падающей скоростью τкон (фиг.6, кривая 1). Поэтому для ведения процесса пиролиза в установившемся режиме загрузку отходов по массе ведут в соотношении Gзагр:Gвыгр=3:(0,8÷1,2) и при расходе газообразного теплоносителя из топки, равном 1,05-1,25 по отношению к теоретическому расходу на единицу массы отходов в течение первых 15-30 минут. В указанном интервале соотношение массы загружаемых отходов и массы выгружаемого углеродистого остатка вместе с металлокордом составляет соответственно 350 и 100 кг/т. Расход газообразного теплоносителя в приведенном примере равен 1,2 по отношению к теоретическому расходу на единицу массы отходов в течение первых 20 минут.
В процессе термического разложения отходов выделяются газообразные продукты в виде парогазовой смеси, направляемой в газовый тракт, и углеродистый остаток - пирокарбон, который периодически (раз в 90-120 мин) согласно циклограмме выгружают. Охлаждение (гашение) пирокарбона после выгрузки через несколько шлюзовых камер 6, обеспечивающих герметичное присоединения камер к реактору 1, производят водой (система орошения на схеме условно не показана). После этого пирокарбон подвергают сушке, а затем после извлечения металлокорда отправляют потребителю.
При достижении в реакторе пиролиза 1 температуры 90-95°С включают подачу промывной жидкости в барботер-промыватель 20 и систему охлаждения горизонтальных газоводяных конденсаторов 7-9 и 13. Также подают охлаждающую воду в сборник шлама 25 для отвода тепла от промывной жидкости. В качестве промывной жидкости может использоваться топливная жидкость.
Выделение смолистых и сажистых фракций осуществляют в замкнутом циклическом режиме при пропускании парогазовой смеси через барботер-промыватель 20, где за счет орошения органической или водоорганической жидкостью отделяются сажа и тяжело кипящие смолистые фракции путем снижения температуры продуктов пиролиза с 500 до 350°С. В качестве органической и/или водно-органической жидкости используют смесь топливных фракций. Затем смесь с уловленными загрязняющими фракциями поступает в емкость 32 промывной жидкости, откуда насосом ее подают на разделение в гидроциклон 21. Промывную жидкость возвращают в барботер-промыватель 20. Топливная жидкость, загрязненная смолисто-сажистыми компонентами из барботера-промывателя 20 и гидроциклона 21, направляется в сборник шлама 25. Твердую фракцию осадка после отстаивания в сборнике подают на сжигание в выносную топку 3, а жидкая фракция может быть возвращена в производство.
Благодаря такой очистке удается уменьшить попадание в систему конденсации сажисто-смолистых включений и, как следствие, загрязнение ими товарных продуктов пиролиза.
Из барботера-промывателя 20 парогазовую смесь направляют в конденсаторы 7-9, где происходят охлаждение смеси и конденсация жидкой органической фракции. Полученные жидкие компоненты сливают в емкости 10-12, соответственно для мазутной, бензиновой и дизельной фракций, из которых затем возможно приготовление топливного продукта заданного состава путем смешения полученных фракций. Для получения заданного состава топливных фракций контролируют температуру последних на выходе из конденсаторов. В конденсаторах 7-9 поддерживают температуру соответственно 350, 250 и 150°С. При выходе из конденсатора 7 температура газовой фазы равнялась 250°С, из конденсатора 8 - 150°С, а из конденсатора 9 - 70°С, что позволяет исключить попадание воды в жидкое топливо. Вода конденсируется в конденсаторе 13 при температуре 25-60°С, что повышает теплотворную способность пиролизного газа. Водный конденсат сбрасывают в канализацию. Усредненный состав и объем пиролизного газа после конденсации приведен в таблице 2.
Таблица 2
№ п/п Состав пиролизного газа кг/т Состав, мас.%
1 Азот 265,9 43,3
2 Водород 70,13 11,4
3 Оксид углерода 70,1 11,4
4 Диоксид углерода 81,12 13,2
5 Метан 23,38 3,8
6 Непредельные углеводороды (этан, пропан, бутан) 16,36 2,7
7 Вода 87,6 14,25
Далее пиролизный газ из конденсатора 13 направляют в сепаратор 26 и вентилятором 27 подают на сжигание в котел-утилизатор 28 для подогрева воды на технические нужды, а дымовые газы выбрасывают в атмосферу через трубу 29.
Экспериментально установлена целесообразность проведения пиролиза при температурах не выше 500°С, что способствует максимальному выходу топливных фракций, а получение трех обезвоженных топливных фракций (тяжелой - мазутной, средней - дизельной и легкой - бензиновой) проводят конденсацией из газов до температуры начала конденсации воды, зависящей от влажности парогазовой смеси.
Конденсаторы охлаждают подаваемой из циркуляционной емкости 30 водой с температурой 25°С. Нагретую в конденсаторах воду до температуры 50°С направляют в холодильник 31, а затем возвращают в циркуляционную емкость 30. Этим обеспечивают оборотный цикл по воде и защиту окружающей среды от загрязняющих выбросов.
Горизонтальные газоводяные теплообменники, образующие систему конденсаторов, последовательно соединены между собой по ходу газа, установлены наклонно в сторону движения потока под углом 5-15° к горизонту и попарно размещены один над другим. Такой монтаж конденсаторов позволяет быстро освобождать их от сконденсированного топлива, а в случае образования на внутренних стенках трубок твердого осадка существенно снизить трудоемкость по очистке трубок при снятых крышках.
Кроме того, трубки газоводяных теплообменников увеличены в диаметре на 30-40% по сравнению со стандартным их типоразмером. На входе парогазовой смеси трубки снабжены сужающимися в направлении движения потока полыми коническими вставками. Установка последних уменьшает перепад температур в области трубной доски, что повышает срок службы конденсаторов и их надежность. Кроме того, конические вставки увеличивают скорость парогазовой смеси в трубках и тем самым повышают интенсивность теплообмена и степень конденсации жидких компонентов топлива.
На опытно-промышленной установке был проведен процесс пиролиза отработанных автомобильных покрышек.
В таблице 3 приведены показатели работы установки пиролиза.
Пример 1 соответствует осуществлению способа при режимных и конструктивных параметрах, меньших, чем они указаны в формуле изобретения, а пример 4 осуществляли при времени цикла (τ=τпр+0,8τпир), равном 6 часам, коэффициенте избытка воздуха α, равном 1,25, при максимальном значении живого сечения колосниковой решетки φ=70% и соотношении массы загружаемых шин к массе выгружаемого углеродистого остатка Gзагр:Gвыгр=4:1, что соответствует показателям, превышающим верхний предел параметров.
Пример 2 соответствует минимальным границам заявляемых соотношений, при интервале времени цикла 4 часа (τ=τпр+0,4τпир), α=0,9, живом сечении колосниковой решетки φ=20% с коническими вставками в трубках конденсаторов, а пример 3 соответствует интервалу времени цикла 5,5 часов (τ=τпр+0,6τпир), α=1,0, живом сечении колосниковой решетки φ=40%.
Как видно из приведенных данных, показатели работы установки пиролиза отработанных автомобильных покрышек оптимальны в примерах 2 и 3.
Предложенный способ и установка для термической переработки твердых органических отходов, в частности резинотехнических изделий, позволяют повысить эффективность процесса низкотемпературного пиролиза, обеспечивают возможность контроля процесса и получение качественного жидкого топлива и углеродистого остатка (пирокарбона) практически по безотходной технологической схеме. Реализуемый согласно настоящему изобретению процесс пиролиза экономичности целесообразен, не загрязняет окружающую среду газообразными, жидкими и твердыми выбросами, а устройство надежно в эксплуатации.
Кроме того, решается проблема, связанная с накоплением и утилизацией автопокрышек. При этом только при заявленной совокупности существенных признаков и заявленных соотношений технологических параметров, которые определены экспериментальным путем, достигается максимальная эффективность процесса пиролиза.
Таблица 3
№ п/п Продукты пиролиза Пример 1, мас.%/
Figure 00000001
Пример 2, мас.%/
Figure 00000002
Пример 3, мас.%/
Figure 00000002
Пример 4, мас.%/
Figure 00000002
1 Жидкое топливо 32/320 42/420 44/440 33/330
2 Бензиновая фракция 17/54,4 23,72/99,6 25/105 18/59,4
3 Дизельная фракция 30/96 37,5/157,4 37,5/157,4 29/95,7
4 Мазутная фракция 18/57,6 15,3/64,3 17,0/74,8 20/66
5 Тяжелокипящие смолы 10/32 8,5/35,7 8,5/35,0 10/33
6 Вода 95/80 15/63 15/63 24/73,2
7 Углеродистый остаток 25/250 30/300 32/320 35/350
8 Металлокорд 10/100 10/100 10/100 10/100
9 Пиролизный газ - 180 182 150
10 Водород 25/59,5 39/70,1 42/72 40/60
11 Оксид углерода 30/51 390/70 39/70 32/48
12 Метан 11/18,7 13,0/23,4 13,4/25 12/18
13 Непредельные углеводороды (этан, пропан, бутан) 9,1/15,47 9,1/16,4 9,3/16,5 14/21

Claims (7)

1. Способ термической переработки твердых органических отходов, преимущественно резинотехнических изделий, заключающийся в низкотемпературном пиролизе отходов в реакторе в противотоке с газообразным теплоносителем, полученным от сжигания технологического топлива, вводимым в нижнюю часть реактора, загрузке отходов и выгрузке твердого углеродистого остатка с последующим его охлаждением, конденсацией получаемой парогазовой смеси с разделением ее на несколько фракций топливной жидкости и пиролизный газ, отличающийся тем, что загрузку отходов и выгрузку углеродистого остатка из реактора производят циклически при отношении массы загружаемых отходов к массе выгружаемого углеродистого остатка, равном 3:(0,8-1,2), загрузку отходов осуществляют с интервалом, включающим время разогрева загружаемых отходов и дополнительное время, равное 0,4-0,6 времени максимальной скорости выделения пиролизного газа, парогазовую смесь перед конденсацией предварительно очищают от сажистых и смолистых фракций орошением органической и/или водно-органической жидкостью при температуре 500-350°С, конденсацию парогазовой смеси с последовательным выделением топливных фракций проводят в диапазоне температур 350-70°С, а конденсацию воды при температуре 25-60°С и получаемый при этом остаточный пиролизный газ направляют на сжигание с утилизацией тепла, причем в период пуска с полной загрузкой реактора газообразный теплоноситель подают двумя потоками: основной поток в количестве 60-70% от общего расхода - в осевую зону реактора, а остальной - в его пристенную зону.
2. Способ по п.1, отличающийся тем, что при получении газообразного теплоносителя поддерживают коэффициент избытка воздуха, равный 0,90-1,00.
3. Способ по любому из пп.1 и 2, отличающийся тем, что сажистые и смолистые фракции после улавливания возвращают в процесс на сжигание для получения газообразного теплоносителя.
4. Установка для осуществления способа термической переработки твердых органических отходов, преимущественно резинотехнических изделий, содержащая реактор пиролиза с реакционной камерой, топку с горелкой для получения газообразного теплоносителя, конденсаторы получаемой в реакторе парогазовой смеси, а также устройства для загрузки отходов и выгрузки твердых углеродистых остатков с приспособлением для их охлаждения, отличающаяся тем, что реакционная камера выполнена в виде смонтированных на колосниковой решетке с живым сечением 20-40% концентрично установленных наружного и внутреннего перфорированных стаканов, при этом внутренний стакан и полость между наружным стаканом и корпусом реактора выполнены закрытыми сверху посредством перегородок и оба стакана по высоте имеют три условные технологические зоны, причем стенки стаканов нижней зоны выполнены сплошными по высоте, равной 0,3-0,5 расчетной высоты загрузки, на опорах реактора смонтированы датчики контроля массы загружаемых отходов, установка снабжена барботером-промывателем с гидроциклоном для очистки парогазовой смеси от смолистых и сажистых фракций, а устройства для загрузки и выгрузки выполнены в виде шлюзовых камер.
5. Установка по п.4, отличающаяся тем, что перфорация стенок внутренних стаканов в средней и верхней технологических зонах выполнена с переменным живым сечением, увеличивающимся снизу вверх на 20-30%, а перфорация стенок наружных стаканов в средней и верхней технологических зонах выполнена с постоянным живым сечением, равным 40-60%..
6. Установка по п.4, отличающаяся тем, что конденсаторы получаемой в реакторе парогазовой смеси для выделения жидких топливных фракций и пиролизного газа выполнены в виде горизонтальных трубчатых газоводяных теплообменников, попарно размещенных один над другим и установленных под углом к горизонту 5-15° по ходу движения потока.
7. Установка по п.4, отличающаяся тем, что трубки газоводяных теплообменников на входе парогазовой смеси снабжены сужающимися в направлении движения потока полыми коническими вставками.
RU2008136688/04A 2008-09-12 2008-09-12 Способ термической переработки твердых органических отходов и установка для его осуществления RU2393200C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2008136688/04A RU2393200C2 (ru) 2008-09-12 2008-09-12 Способ термической переработки твердых органических отходов и установка для его осуществления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2008136688/04A RU2393200C2 (ru) 2008-09-12 2008-09-12 Способ термической переработки твердых органических отходов и установка для его осуществления

Publications (2)

Publication Number Publication Date
RU2008136688A RU2008136688A (ru) 2010-03-20
RU2393200C2 true RU2393200C2 (ru) 2010-06-27

Family

ID=42136959

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008136688/04A RU2393200C2 (ru) 2008-09-12 2008-09-12 Способ термической переработки твердых органических отходов и установка для его осуществления

Country Status (1)

Country Link
RU (1) RU2393200C2 (ru)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BG1522U1 (bg) * 2011-05-09 2012-01-31 "Прогрес М-2000" Еад Инсталация за преработка на отпадни въглеводородни продукти и оползотворяване на получените от преработката продукти
RU2459843C1 (ru) * 2010-12-15 2012-08-27 Андрей Николаевич Ульянов Способ переработки отходов термопластов и установка для его реализации
RU2464294C2 (ru) * 2010-11-08 2012-10-20 Федеральное государственное бюджетное учреждение науки Казанский научный центр Российской академии наук (КазНЦ РАН) Способ комплексной термохимической переработки твердого топлива с последовательным отводом продуктов разделения
MD4188C1 (ru) * 2011-11-07 2013-06-30 Валерий ДИНТОВ Установка для переработки углеродсодержащего сырья
EP2829801A1 (en) 2013-07-22 2015-01-28 AZ ECO Energy, spol. s r.o. A method of pyrolysis (thermal decomposition) of a solid bulk organic waste and a reactor for performing the method
RU2554355C1 (ru) * 2014-06-10 2015-06-27 Общество с ограниченной ответственностью "Научно-производственное объединение РГ ИННОВАЦИИ" Способ переработки органического сырья в топливо
RU2632812C2 (ru) * 2015-12-03 2017-10-10 Валерий Григорьевич Лурий Установка термохимической переработки углеродсодержащего сырья
RU2659924C1 (ru) * 2017-09-08 2018-07-04 Юрий Михайлович Микляев Способ пиролизной утилизации твердых углеродсодержащих отходов и мусороперерабатывающий комплекс для его осуществления
RU2685720C1 (ru) * 2018-06-28 2019-04-23 Александр Григорьевич Ершов Установка для сжигания твердых отходов
RU2686560C1 (ru) * 2018-08-15 2019-04-29 Александр Григорьевич Ершов Способ сжигания твердых отходов
RU195265U1 (ru) * 2018-12-13 2020-01-21 Федеральное государственное бюджетное учреждение науки "Федеральный исследовательский центр "Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук" (Институт катализа СО РАН, ИК СО РАН) Каталитический теплогенератор

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2464294C2 (ru) * 2010-11-08 2012-10-20 Федеральное государственное бюджетное учреждение науки Казанский научный центр Российской академии наук (КазНЦ РАН) Способ комплексной термохимической переработки твердого топлива с последовательным отводом продуктов разделения
RU2459843C1 (ru) * 2010-12-15 2012-08-27 Андрей Николаевич Ульянов Способ переработки отходов термопластов и установка для его реализации
BG1522U1 (bg) * 2011-05-09 2012-01-31 "Прогрес М-2000" Еад Инсталация за преработка на отпадни въглеводородни продукти и оползотворяване на получените от преработката продукти
MD4188C1 (ru) * 2011-11-07 2013-06-30 Валерий ДИНТОВ Установка для переработки углеродсодержащего сырья
EP2829801A1 (en) 2013-07-22 2015-01-28 AZ ECO Energy, spol. s r.o. A method of pyrolysis (thermal decomposition) of a solid bulk organic waste and a reactor for performing the method
WO2015010668A1 (en) 2013-07-22 2015-01-29 Az Eco Energy, Spol. S R.O. A method of pyrolysis (thermal decomposition) of a solid bulk organic waste and a reactor for performing the method
RU2554355C1 (ru) * 2014-06-10 2015-06-27 Общество с ограниченной ответственностью "Научно-производственное объединение РГ ИННОВАЦИИ" Способ переработки органического сырья в топливо
RU2632812C2 (ru) * 2015-12-03 2017-10-10 Валерий Григорьевич Лурий Установка термохимической переработки углеродсодержащего сырья
RU2659924C1 (ru) * 2017-09-08 2018-07-04 Юрий Михайлович Микляев Способ пиролизной утилизации твердых углеродсодержащих отходов и мусороперерабатывающий комплекс для его осуществления
WO2019050431A1 (ru) * 2017-09-08 2019-03-14 Юрий Михайлович МИКЛЯЕВ Способ пиролизной утилизации твердых углеродсодержащих отходов и мусороперерабатывающий комплекс для его осуществления
RU2685720C1 (ru) * 2018-06-28 2019-04-23 Александр Григорьевич Ершов Установка для сжигания твердых отходов
RU2686560C1 (ru) * 2018-08-15 2019-04-29 Александр Григорьевич Ершов Способ сжигания твердых отходов
RU195265U1 (ru) * 2018-12-13 2020-01-21 Федеральное государственное бюджетное учреждение науки "Федеральный исследовательский центр "Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук" (Институт катализа СО РАН, ИК СО РАН) Каталитический теплогенератор

Also Published As

Publication number Publication date
RU2008136688A (ru) 2010-03-20

Similar Documents

Publication Publication Date Title
RU2393200C2 (ru) Способ термической переработки твердых органических отходов и установка для его осуществления
EP0764196B1 (en) Improved pyrolytic conversion of organic feedstock and waste
Bridgwater et al. A review of biomass pyrolysis and pyrolysis technologies
US4028068A (en) Process and apparatus for the production of combustible gas
RU2763026C2 (ru) Печь
CN106867585A (zh) 炉内自脱焦油式有机固体燃料气化装置与方法
RU2621097C2 (ru) Устройство для термической деструкции отходов полиэтилена и полипропилена
CN1014070B (zh) 气体发生器装置
RU2275416C1 (ru) Способ термохимической переработки органического сырья в топливные компоненты и установка для его осуществления
US11807813B2 (en) Installation for the production and a method of producing oil, gas and char for a coal black from elastomers, especially rubber waste, in the process of continuous pyrolysis
CN102268274A (zh) 将城市污泥转换成气、液、固燃料方法及全封闭设备***
CN103917627A (zh) 用二氧化碳干式冷却焦炭并且随后使用所产生的一氧化碳的方法
EP3312223B1 (en) Method for thermally decomposing polyethylene and polypropylene waste
RU2725434C1 (ru) Способ термической деструкции сыпучей органики в вертикальном реакторе газификации
CN102329654B (zh) 生物质气化装备及其气化工艺
RU2632812C2 (ru) Установка термохимической переработки углеродсодержащего сырья
CN102719258A (zh) 一种生物质连续热解与资源化利用的***和方法
CN204369820U (zh) 生物质气化炉余热综合利用***
CN100396758C (zh) 一种生物质热解气化焦油清除方法及装置
CN104479742A (zh) 生物质燃气制备***
RU2251483C2 (ru) Способ переработки изношенных шин и устройство для его реализации
CN204369821U (zh) 具有二级焦油过滤的生物质气化炉
CN204369819U (zh) 自预热生物质气化炉
RU88669U1 (ru) Установка для производства древесного угля
RU167118U1 (ru) Устройство для термической деструкции отходов полиэтилена и полипропилена

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20100913