RU2383914C1 - Способ синхронизации часов и устройство для его реализации - Google Patents

Способ синхронизации часов и устройство для его реализации Download PDF

Info

Publication number
RU2383914C1
RU2383914C1 RU2008141954/28A RU2008141954A RU2383914C1 RU 2383914 C1 RU2383914 C1 RU 2383914C1 RU 2008141954/28 A RU2008141954/28 A RU 2008141954/28A RU 2008141954 A RU2008141954 A RU 2008141954A RU 2383914 C1 RU2383914 C1 RU 2383914C1
Authority
RU
Russia
Prior art keywords
signal
frequency
time
output
noise
Prior art date
Application number
RU2008141954/28A
Other languages
English (en)
Inventor
Александр Васильевич Ипатов (RU)
Александр Васильевич Ипатов
Виктор Иванович Дикарев (RU)
Виктор Иванович Дикарев
Борис Васильевич Койнаш (RU)
Борис Васильевич Койнаш
Владимир Никифорович Кузьмин (RU)
Владимир Никифорович Кузьмин
Original Assignee
Учреждение Российской академии наук Институт прикладной астрономии РАН
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Учреждение Российской академии наук Институт прикладной астрономии РАН filed Critical Учреждение Российской академии наук Институт прикладной астрономии РАН
Priority to RU2008141954/28A priority Critical patent/RU2383914C1/ru
Application granted granted Critical
Publication of RU2383914C1 publication Critical patent/RU2383914C1/ru

Links

Images

Landscapes

  • Radio Relay Systems (AREA)

Abstract

Изобретения относятся к технике связи и радиолокации и могут быть использованы для сличения шкал времени, разнесенных на большие расстояния. Изобретения направлены на повышение точности измерения относительного временного сдвига между зондирующим и ретранслированным шумоподобными сигналами путем автоматического отслеживания перемещения экстремума корреляционной функции указанных сигналов вдоль оси абсцисс. Этот результат обеспечивается за счет того, что устройство, реализующее способ синхронизации часов, содержит эталон времени и частоты, первый и второй гетеродины, блок гетеродинов, генератор псевдошумового сигнала, переключатель, усилители мощности, дуплексер 8, приемо-передающую антенну 9, первый и второй клипперы, первый и второй блоки памяти, коррелятор, блок регулируемой задержки, перемножитель, фильтр нижних частот, экстремальный регулятор и микропроцессор. 2 н.п. ф-лы, 3 ил.

Description

Предлагаемые способ и устройство относятся к технике связи и радиолокации и могут быть использованы для сличения шкал времени, разнесенных на большие расстояния.
Известны способ и устройство синхронизации часов (авт.свид. СССР №№970300, 118083, 1244632, 1278800; патенты РФ №№2001423, 2003157, 2040035, 2177167, 2301437; B.C.Губанов, A.M.Финкельштейн, П.А.Фридман. Введение в радиоастрономию. - М., 1983; и другие).
Из известных способов и устройств наиболее близкими к предлагаемым являются «Способ синхронизации часов» (патент РФ №2003157, G04С 11/02, 1991) и «Устройство синхронизации часов» (патент РФ №2001423, G04С 11/02, 1992), которые и выбраны в качестве прототипов.
Указанные способ и устройство обеспечивают сличение шкал времени, разнесенных на большое расстояние, и основаны на использовании дуплексного метода связи через геостационарный ИСЗ-ретранслятор и корреляционной обработке шумоподобных сигналов.
Основное достоинство дуплексного метода связи состоит в том, что в нем исключается длина трассы прохождения сигнала. Поэтому его точность в основном зависит от параметров бортового ретранслятора, типа используемого сигнала и техники измерения временных интервалов.
Для измерения временных интервалов используется корреляционная обработка шумоподобных сигналов, которые имеют ряд достоинств, одним из которых является хорошее свойство корреляционной функции R(τ) указанных сигналов: она имеет относительно высокий уровень центрального лепестка и низкий уровень боковых лепестков.
Следует отметить, что ИСЗ-ретранслятор, размещенный на геостационарной орбите, под действием различных дестабилизирующих факторов совершает определенные движения относительно предполагаемого устойчивого положения. Поэтому корреляционную обработку шумоподобных сигналов целесообразно проводить с использованием корреляционной экстремальной системы.
В указанной системе вычисления корреляционной функции R(τ) между зондирующим и ретранслированными шумоподобными сигналами и отслеживается перемещение ее экстремума вдоль оси абсцисс. Процесс слежения осуществляется с помощью беспоисковой системы экстремального регулирования. Положение экстремума корреляционной функции R(τ) на оси абсцисс может быть определено с высокой точностью.
Технической задачей изобретения является повышение точности измерения относительного временного сдвига между зондирующим и ретранслированным шумоподобными сигналами путем автоматического отслеживания перемещения экстремума корреляционной функции указанных сигналов вдоль оси абсцисс.
Поставленная задача решается тем, что способ синхронизации часов, основанный, в соответствии с ближайшим аналогом, на одновременном приеме разнесенными наземными пунктами шумоподобных СВЧ-сигналов с борта искусственного спутника Земли, когерентном их преобразовании к видеочастоте, цифровой регистрации принятых сигналов и определении временной задержки прихода одного и того же сигнала в пункты синхронизации методом корреляционной обработки зарегистрированных сигналов, по величине которой производится сличение шкал времени, при этом в начальный момент времени t1 по часам первого пункта с помощью кодовой последовательности формируют шумоподобный СВЧ-сигнал, регистрируют его на этом же пункте, сформированный сигнал преобразуют на частоту f1, усиливают его по мощности, излучают усиленный сигнал в направлении на искусственный спутник Земли - ретранслятор, в тот же момент времени t1 по часам второго пункта с помощью такой же кодовой последовательности формируют такой же шумоподобный СВЧ-сигнал, регистрируют его на втором пункте, принимают бортовой аппаратурой ИСЗ-ретранслятора сигнал на частоте f1, переизлучают его на первый и второй пункты на частоте f2 с сохранением фазовых соотношений, в произвольный момент времени t3 по часам второго пункта аналогично формируют и регистрируют шумоподобный СВЧ-сигнал, сформированный сигнал преобразуют на частоту f1 усиливают его по мощности, излучают усиленный сигнал в направлении того же ИСЗ-ретранслятора, в тот же момент времени t3 по часам первого пункта с помощью той же кодовой последовательности формируют такой же шумоподобный СВЧ-сигнал, регистрируют его на первом пункте, принимают бортовой аппаратурой ИСЗ-ретранслятора сигнал на частоте f1 и переизлучают его на первый и второй пункты на частоте f2 с сохранением фазовых соотношений, отличается от ближайшего аналога тем, что зарегистрированный зондирующий сигнал пропускают через блок регулируемой задержки, перемножают его с зарегистрированным ретранслированным сигналом, выделяют низкочастотное напряжение, формируя тем самым корреляционную функцию R(τ), где τ - текущая временная задержка, изменением задержки τ поддерживают корреляционную функцию R(τ) на максимальном уровне, фиксируют временную задержку τi (i=1, 2, 3, 4) между двумя парами зарегистрированных зондирующих и ретранслируемых сигналов, по величине которой производится сличение шкал времени.
Поставленная задача решается тем, что устройство синхронизации часов, содержащее, в соответствии с ближайшим аналогом, ИСЗ-ретранслятор, первый и второй наземные пункты, каждый из которых содержит последовательно включенные эталон времени и частоты, первый гетеродин, первый смеситель, второй вход которого через переключатель соединен с первым выходом генератора псевдослучайного сигнала, первый усилитель промежуточной частоты, первый усилитель мощности, дуплексер, вход-выход которого связан с приемо-передающей антенной, второй усилитель мощности, второй смеситель, второй вход которого через второй гетеродин соединен с первым выходом эталона времени и частоты, второй усилитель промежуточной частоты, второй клиппер, второй вход которого соединен с третьим выходом эталона времени и частоты, второй блок памяти и коррелятор, при этом к второму выходу генератора псевдослучайного сигнала последовательно подключены первый клиппер, второй вход которого соединен с вторым выходом эталона времени и частоты, и первый блок памяти, выход которого подключен к второму входу коррелятора, отличается от ближайшего аналога тем, что коррелятор выполнен в последовательно подключенных к выходу первого блока памяти блока регулируемой задержки, перемножителя, второй вход которого соединен с выходом второго блока памяти, фильтра нижних частот и экстремального регулятора, выход которого соединен с вторым входом блока регулируемой задержки, к второму выходу которого подключен микропроцессор.
Геометрическая схема расположения наземных пунктов A и B и ИСЗ-ретранслятора S изображена на фиг.1, где введены следующие обозначения: О - центр масс Земли; d - база интерферометра; r - радиус-вектор ИСЗ.
Временная диаграмма дуплексного метода сличения часов представлена на фиг.2, где введены следующие обозначения: S, A, B - шкалы времени ИСЗ-ретранслятора и пунктов A и B соответственно.
Синхронизация часов по предлагаемому способу осуществляется следующим образом:
в момент времени
Figure 00000001
по часам первого пункта A с помощью кодовой последовательности формируют шумовой СВЧ-сигнал (сигнал α1);
регистрируют его на этом же пункте;
сформированный сигнал преобразуют на частоте f1;
усиливают его по мощности;
излучают усиленный сигнал в направлении на ИСЗ-ретранслятор;
в тот же момент времени
Figure 00000002
по часам второго пункта B с помощью той же кодовой последовательности формируют такой же шумовой СВЧ-сигнал (сигнал β1);
регистрируют его на втором пункте B (сигнал β1, который, однако, не отправляют на ретрансляцию);
принимают бортовой аппаратурой ИСЗ-ретранслятора сигнал на частоте f1 (сигнал α1);
переизлучают его в пунктах A и B на частоте f2 с сохранением фазовых соотношений на интервале tc;
принимают ретранслированный сигнал в обоих пунктах;
преобразуют его на видеочастоту;
регистрируют его в моменты времени
Figure 00000003
и
Figure 00000004
соответственно (сигналы α2, β2);
в произвольный момент времени
Figure 00000005
по часам второго пункта аналогично формируют и регистрируют шумовой СВЧ-сигнал (сигнал β3);
сформированный сигнал преобразуют на частоте f1;
усиливают его по мощности;
излучают усиленный сигнал в направлении того же ИСЗ-ретранслятора;
в тот же момент времени
Figure 00000006
по часам первого пункта A с помощью той же кодовой последовательности формируют такой же шумовой СВЧ-сигнал (сигнал α3);
регистрируют его на первом пункте A (сигнал α3, который, однако, не регистрируют);
принимают бортовой аппаратурой ИСЗ-ретранслятора сигнал на частоте f1 (сигнал α3);
Figure 00000007
Figure 00000008
Figure 00000009
Figure 00000010
и соответствующие им частоты интерференции Fi(i=l,2,3,4), которые определяют производные этих задержек:
Figure 00000011
где
Figure 00000012
aj,bl (j=1,2,3) - время распространения сигнала между ИСЗ и пунктами A и В соответственно (фиг.1);
Figure 00000013
- задержки сигналов в излучающей аппаратуре обоих пунктов;
Figure 00000014
- задержки сигналов в приемо-регистрирующей аппаратуре;
Δs - задержка сигналов в бортовом ретрансляторе ИСЗ;
Δt=tB-tA - искомая разность показаний часов в один и тот же
физический момент.
Полагая aj и bj линейными функциями с производными
Figure 00000015
Figure 00000016
,
Figure 00000017
, получаем:
Figure 00000018
где
Figure 00000019
Figure 00000020
переизлучают его в пункты A и B на частоте f2 с сохранением фазовых соотношений на интервале tc;
принимают ретранслированный сигнал в обоих пунктах;
преобразуют его на видеочастоту;
регистрируют его в моменты времени
Figure 00000021
и
Figure 00000022
соответственно (сигналы α4, β4);
Figure 00000023
Figure 00000024
ΔA.B', ΔA.B” - задержки сигнала в атмосфере на частотах f1 и f2
соответственно;
ν - релятивистская поправка (эффект Саньяка);
c - скорость света;
Д - площадь четырехугольника OA'SB', образуемого в экваториальной плоскости центром масс Земли, проекциями пунктов A и B и ИСЗ-ретранслятора.
Поправку γ за подвижность ИСЗ-ретранслятора во времени единичного измерения проще всего свести к нулю соответствующим выбором свободного параметра θ:
Figure 00000025
который следует в начале измерений рассчитывать по приближенным эфемеридным данным, а затем уточнить по результатам текущих измерений. Что касается поправки δ за аппаратные задержки, то ее можно найти путем калибровки по методу «нулевой базы».
Атмосферная поправка ε также учитывается.
Оценка ошибки измерения временных задержек τi(i=1,2,3,4).
Радиоинтерферометрическое отношение сигнал/шум составит
Figure 00000026
(3)
А ошибки измерения временной задержки τ и частоты интерференции F имеют вид
Figure 00000027
Figure 00000028
где Δf - полоса принимаемых и регистрируемых частот псевдошумового сигнала;
Рc, Рш - мощности сигнала и шума на входе приемника;
tc - интервал когерентности сигнала при его ретрансляции.
Тогда для получения ошибки στ=0,1 нс необходимо, чтобы QΔf≥5·109. Например, при Δf=10 МГц получаем Q≥500, что вполне достижимо даже при использовании наземных приемо-передающих антенн малого диаметра.
Для Q=500, Δf=10 МГц и
Figure 00000029
согласно (4) оказывается достаточным и
tc=5·10-6 с. Как легко показать, такое время когерентности обеспечивается уже при нестабильности гетеродина бортового ретранслятора σf=2·10-6.
Что касается ошибки измерения частоты интерференции F, то при использовании в качестве ретранслятора ИСЗ-геостационара обычно выполняются следующие ограничения: [Θ]<τ ≈0,3c, [ν]=с[τ]<100
Figure 00000030
, поэтому для вычисления γ с ошибкой 0,1 нс необходимо F знать с ошибкой σF= 3Гц. Тогда, используя формулы (4) и (5), получаем tC=0,4·10-3, что требует более высокой стабильности бортового гетеродина 3σf≈3·10-8.
Структурная схема аппаратуры одного из пунктов (A), реализующей предлагаемый способ синхронизации часов, представлена на фиг.3, где введены следующие обозначения: 1 - стандарт частоты и времени, 2 - блок гетеродинов - первый 2.1 и второй 2.2 гетеродины, 4 - переключатель, 5, 13 - смесители, 6, 14 - усилители промежуточной частоты, 7, 12 - усилители мощности, 8 - дуплексер, 9 - приемо-передающая антенна, 10, 15 - клипперы, 11, 16 - буферные запоминающие устройства, 17 - измеритель задержки и их производных, измеритель 17 задержек содержит блок 18 регулируемой задержки, перемножитель 19, фильтр 20 нижних частот, экстремальный регулятор 21 и микропроцессор 22.
Принцип работы аппаратуры заключается в следующем. На первом шаге единичных измерений псевдошумовой сигнал α1(фиг.2), созданный генератором 3 с помощью стандарта 1 частоты и времени, преобразуется с помощью смесителя 5 и усилителя 6 промежуточной частоты к частоте f1, усиливается в усилителе 7 мощности и излучается через дуплексер 8 и антенну 9 в направлении ИСЗ-ретранслятора. Вместе с тем, этот же сигнал клиппируется в клиппере 10 тактовой частоты того же стандарта частоты 1 и записывается в буферное запоминающее устройство 11. Регистрация синхронизируется стандартом частоты 1.
Ретрансляционный сигнал α2 на частоте f2 принимается той же антенной 9 и после усиления в усилителе 12 мощности и преобразований к видеочастоте в смесителе 13 и усилителе 14 промежуточной частоты клиппируется в клиппере 15 и записывается в буферное запоминающее устройство 16. Регистрация синхронизируется стандартом частоты 1. На втором шаге (при передаче сигнала из пункта B) переключатель 4 должен быть разомкнут, и сигнал α3 из генератора 3 через клиппер 10 поступает в то же запоминающее устройство 11. Ретранслированный сигнал α4 записывается, как и α2, в запоминающее устройство 16. Затем в перерыве между актами измерений пары сигналов α1, α2 и α3, α4 подвергаются корреляционной обработке в измерителе 17, и вычисляются задержки τ2, τ3 и их производные
Figure 00000031
,
Figure 00000032
.
Зарегистрированный зондирующий сигнал с выхода блока 11 памяти поступает через блок 18 регулируемой задержки на первый вход перемножителя 19, на второй вход которого подается зарегистрированный ретранслированный сигнал с выхода блока 16 памяти. Полученное на выходе перемножителя 19 напряжение пропускается через фильтр 20 нижних частот, на выходе которого формируется корреляционная функция R(τ). Экстремальный регулятор 21, предназначенный для поддержания максимального значения корреляционной функции R(τ) и подключенный к выходу фильтра 20 нижних частот, воздействует на управляющий вход блока 18 регулируемой задержки и поддерживает вводимую им задержку τ равной τi(i=1,2,3,4), что соответствует максимальному значению корреляционной функции R(τ). Измерения значения τi поступают в микропроцессор 22, где определяются их производные.
В пункте B аппаратура работает аналогично, только порядок шагов там обратный. Для вычисления разности показаний часов Δt по формуле (2) теперь достаточно обменяться между пунктами, полученными цифровыми данными, что можно делать по обычным телефонным или телеграфным каналам связи.
Описанные операции позволяют:
- достичь предельной точности измерений (около ±0,1 нc) с помощью PCДБ техники и техники ретрансляции, которая уже широко используется на практике;
- формировать необходимые для проведения измерений СВЧ-сигналы на наземных пунктах, что дает возможность постепенно наращивать точность измерений за счет оптимизации структуры сигнала и усовершенствования наземной техники регистрации без вмешательства в бортовую аппаратуру ИСЗ;
- повысить оперативность измерений, т.е. довести интервал времени от начала измерений до получения результатов вплоть до нескольких десятков секунд (практически до времени корреляционной обработки сигналов);
- избежать установки на борту ИСЗ высокостабильных хранителей времени и измерителей временных интервалов, ограничить бортовую аппаратуру только системой фазостабильной регистрации СВЧ-сигналов.
Таким образом, предлагаемые способ и устройство по сравнению с прототипами обеспечивают повышение точности измерения относительного временного сдвига между зондирующим и ретранслированным шумоподобными сигналами. Это достигается путем автоматического отслеживания перемещения экстремума корреляционной функции указанных сигналов вдоль оси абсцисс.
С точки зрения техники измерения предлагаемая корреляционная экстремальная система является компенсационной измерительной системой, т.е. в ней измеряемая величина (временной интервал) сравнивается с некоторой эталонной величиной (временной задержкой). Компенсационный метод позволяет осуществлять измерение с очень высокой точностью. Предлагаемая корреляционная измерительная система обеспечивает методическую погрешность измерений равную долям процента.

Claims (2)

1. Способ синхронизации часов, основанный на одновременном приеме разнесенными наземными пунктами шумоподобных СВЧ-сигналов с борта искусственного спутника Земли, когерентном их преобразовании к видеочастоте, цифровой регистрации принятых сигналов и определении временной задержки прихода одного и того же сигнала в пункты синхронизации методом корреляционной обработки зарегистрированных сигналов, по величине которой производится сличение шкал времени, при этом в начальный момент времени t1 по часам первого пункта с помощью кодовой последовательности формируют шумоподобный СВЧ-сигнал, регистрируют его на этом же пункте, сформированный сигнал преобразуют на частоту f1 усиливают его по мощности, излучают усиленный сигнал в направлении на искусственный спутник Земли - ретранслятор, в тот же момент времени t1 по часам второго пункта с помощью такой же кодовой последовательности формируют такой же шумоподобный СВЧ-сигнал, регистрируют его на втором пункте, принимают бортовой аппаратурой искусственного спутника Земли-ретранслятора сигнала на частоте f1, переизлучают его на первый и второй пункты на частоте f2 с сохранением фазовых соотношений, в произвольный момент времени t3 по часам второго пункта аналогично формируют и регистрируют шумоподобный СВЧ-сигнал, сформированный сигнал преобразуют на частоту f1, усиливают его по мощности, излучают усиленный сигнал в направлении того же искусственного спутника Земли-ретранслятора, в тот же момент времени t3 по часам первого пункта с помощью той же кодовой последовательности формируют такой же шумоподобный СВЧ-сигнал, регистрируют его на первом пункте, принимают бортовой аппаратурой искусственного спутника Земли-ретранслятора сигнал на частоте f1 и переизлучают его на первый и второй пункты на частоте f2 с сохранением фазовых соотношений, отличающийся тем, что зарегистрированный зондирующий сигнал пропускают через блок регулируемой задержки, перемножают его с зарегистрированным ретранслированным сигналом, выделяют низкочастотное напряжение, формируя тем самым корреляционную функцию R(τ), где τ - текущая временная задержка, изменением задержки τ поддерживают корреляционную функцию R(τ) на максимальном уровне, фиксируют временную задержку τi(i=1, 2, 3, 4) между двумя парами зарегистрированных зондирующих и регистрированных сигналов, по величине которой производится сличение шкал времени.
2. Устройство синхронизации часов, содержащее ИС3-ретранслятор, первый и второй наземные пункты, каждый из которых содержат последовательно включенные эталон времени и частоты, первый гетеродин, первый смеситель, второй вход которого через переключатель соединен с первым выходом генератора псевдошумового сигнала, первый усилитель промежуточной частоты, первый усилитель мощности, дуплексер, вход-выход которого связан с приемопередающей антенной, второй усилитель мощности, второй смеситель, второй вход которого соединен через второй гетеродин с первым выходом эталона времени и частоты, второй усилитель промежуточной частоты, второй клипер, второй вход которого соединен с третьим выходом эталона времени и частоты, второй блок памяти и коррелятор, при этом к второму выходу генератора псевдошумового сигнала последовательно подключены первый клипер, второй вход которого соединен с вторым выходом эталона времени и частоты и первый блок памяти, выход которого подключен к второму входу коррелятора, отличающееся тем, что коррелятор выполнен в виде последовательно подключенных к выходу первого блока памяти блока регулируемой задержки, перемножителя, второй вход которого соединен с выходом второго блока памяти, фильтра нижних частот и экстремального регулятора, выход которого соединен с вторым входом блока регулируемой задержки, к второму выходу которого подключен микропроцессор.
RU2008141954/28A 2008-10-22 2008-10-22 Способ синхронизации часов и устройство для его реализации RU2383914C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2008141954/28A RU2383914C1 (ru) 2008-10-22 2008-10-22 Способ синхронизации часов и устройство для его реализации

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2008141954/28A RU2383914C1 (ru) 2008-10-22 2008-10-22 Способ синхронизации часов и устройство для его реализации

Publications (1)

Publication Number Publication Date
RU2383914C1 true RU2383914C1 (ru) 2010-03-10

Family

ID=42135358

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008141954/28A RU2383914C1 (ru) 2008-10-22 2008-10-22 Способ синхронизации часов и устройство для его реализации

Country Status (1)

Country Link
RU (1) RU2383914C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2539914C1 (ru) * 2013-06-07 2015-01-27 Федеральное государственное бюджетное учреждение науки Институт прикладной астрономии Российской академии наук Способ синхронизации часов и устройство для его реализации
RU2583894C2 (ru) * 2013-11-21 2016-05-10 Акционерное общество "Институт прикладной астрономии" Способ синхронизации часов и устройство для его реализации
RU2623718C1 (ru) * 2016-04-11 2017-06-28 Акционерное общество "Институт прикладной астрономии" Модем сигналов передачи времени по дуплексному каналу спутниковой связи

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2539914C1 (ru) * 2013-06-07 2015-01-27 Федеральное государственное бюджетное учреждение науки Институт прикладной астрономии Российской академии наук Способ синхронизации часов и устройство для его реализации
RU2583894C2 (ru) * 2013-11-21 2016-05-10 Акционерное общество "Институт прикладной астрономии" Способ синхронизации часов и устройство для его реализации
RU2623718C1 (ru) * 2016-04-11 2017-06-28 Акционерное общество "Институт прикладной астрономии" Модем сигналов передачи времени по дуплексному каналу спутниковой связи

Similar Documents

Publication Publication Date Title
CN109358487B (zh) 一种基于gnss精密授时的伪卫星***及方法
US7656352B2 (en) Troposphere corrections for ground based positioning systems
RU2565386C2 (ru) Способ, устройство и система для определения позиции объекта, имеющего приемник глобальной навигационной спутниковой системы, посредством обработки неразностных данных, подобных измерениям фазы несущей, и внешних данных, подобных ионосферным данным
RU2476996C2 (ru) Способ синхронизации узлов сети, система и устройство для его осуществления
US8081111B2 (en) Method and apparatus for locating the source of an unknown signal
Breit et al. Bistatic synchronization and processing of TanDEM-X data
US9453917B2 (en) Methods for subnanosecond time synchronizing using RTK receivers and devices thereof
EA027845B1 (ru) Способ калибровки и система оценки разности пути целевого сигнала, передаваемого космическим аппаратом или самолетом
US20220334217A1 (en) Radar method and radar system
RU2115137C1 (ru) Дальномерный способ определения местоположения и составляющих вектора скорости объектов по радиосигналам космических аппаратов спутниковых радионавигационных систем
JPWO2006121023A1 (ja) 測位装置および測位システム
US11346955B2 (en) Satellite system for navigation and/or geodesy
Herique et al. Philae localization from CONSERT/Rosetta measurement
RU2383914C1 (ru) Способ синхронизации часов и устройство для его реализации
RU2516432C2 (ru) Способ определения местоположения источника радиоизлучения
KR100899545B1 (ko) 항법 위성 전체 관측법을 이용한 시각 전송방법
RU2623718C1 (ru) Модем сигналов передачи времени по дуплексному каналу спутниковой связи
RU2301437C1 (ru) Способ сличения шкал времени
RU2613865C2 (ru) Способ синхронизации часов и устройство для его реализации
RU2426167C1 (ru) Способ синхронизации часов и устройство для его реализации
RU2539914C1 (ru) Способ синхронизации часов и устройство для его реализации
Younis et al. Performance prediction and verification for the synchronization link of TanDEM-X
Nothnagel et al. Very long baseline interferometry: dependencies on frequency stability
US20120188126A1 (en) Synthetic Aperture Antenna Device for Transmitting Signals of a Satellite Navigation System Comprising a Carrier and Means for Determining its Trajectory
RU2040035C1 (ru) Способ синхронизации часов

Legal Events

Date Code Title Description
NF4A Reinstatement of patent

Effective date: 20110810

MM4A The patent is invalid due to non-payment of fees

Effective date: 20131023

NF4A Reinstatement of patent

Effective date: 20150227