RU2382197C1 - Скважинная телеметрическая система - Google Patents

Скважинная телеметрическая система Download PDF

Info

Publication number
RU2382197C1
RU2382197C1 RU2008148991/03A RU2008148991A RU2382197C1 RU 2382197 C1 RU2382197 C1 RU 2382197C1 RU 2008148991/03 A RU2008148991/03 A RU 2008148991/03A RU 2008148991 A RU2008148991 A RU 2008148991A RU 2382197 C1 RU2382197 C1 RU 2382197C1
Authority
RU
Russia
Prior art keywords
packer
well
pressure
data
annulus
Prior art date
Application number
RU2008148991/03A
Other languages
English (en)
Inventor
Аркадий Юрьевич СЕГАЛ (RU)
Аркадий Юрьевич Сегал
Original Assignee
Шлюмберже Текнолоджи Б.В.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Шлюмберже Текнолоджи Б.В. filed Critical Шлюмберже Текнолоджи Б.В.
Priority to RU2008148991/03A priority Critical patent/RU2382197C1/ru
Priority to US12/637,074 priority patent/US9042200B2/en
Application granted granted Critical
Publication of RU2382197C1 publication Critical patent/RU2382197C1/ru

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • E21B47/14Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves
    • E21B47/18Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves through the well fluid, e.g. mud pressure pulse telemetry
    • E21B47/20Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves through the well fluid, e.g. mud pressure pulse telemetry by modulation of mud waves, e.g. by continuous modulation
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Remote Sensing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Geophysics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Acoustics & Sound (AREA)
  • Measuring Fluid Pressure (AREA)
  • Earth Drilling (AREA)

Abstract

Изобретение относится к области геологии, а именно к скважинным телеметрическим системам. Техническим результатом является повышение точности и эффективности способа телеметрии в скважине при отсутствии необходимости герметизации пакера. Для этого скважинная телеметрическая система оборудована по меньшей мере одним генератором импульсов давления, по меньшей мере одним датчиком давления, размещенным во внутреннем межтрубном пространстве в устье скважины, по меньшей мере одним датчиком давления, размещенным в затрубном пространстве вблизи скважины. Скважинная телеметрическая система снабжена пакером, обеспечивающим гидравлическую изоляцию затрубного пространства, по меньшей мере одним датчиком, расположенным ниже пакера и реагирующим на по меньшей мере одну физическую величину, характеризующую призабойную зону. Скважинная телеметрическая система включает устройство кодирования данных, расположенное ниже пакера. Устройство кодирования данных считывает показания датчика, расположенного ниже пакера и реагирующего на по меньшей мере одну физическую величину, характеризующую призабойную зону. Скважинная телеметрическая система включает устройство модулирования импульсов давления, расположенное в затрубном пространстве под пакером, блок сбора данных, расположенный на поверхности. Блок сбора данных преобразует выходные данные датчиков и предоставляет данные для анализа блоку декодирования данных, расположенному на поверхности. 3 з.п. ф-лы, 1 ил.

Description

Область техники, к которой относится изобретение
Изобретение относится к области геологии, а именно к скважинным телеметрическим системам.
Предлагается новое воплощение телеметрии по акустическому каналу связи во время гидроразрыва пласта для скважин, стимулируемых с помощью насосно-компрессорной трубы (НКТ). Установлено, что через пакер осуществляется акустическая связь между устьем скважины и затрубным пространством, при этом пакер не протекает, но акустически прозрачен. Следовательно, существует акустический канал, устье - затрубное пространство, и импульс давления может быть направлен с одного конца канала и надежно принят на другом. Кодирование данных обеспечивается путем модулирования импульса при помощи устройства, расположенного под пакером. Данный метод не требует дополнительной аппаратуры, кроме указанного модулирующего устройства, монтируемого под пакером с внешней стороны НКТ.
Уровень техники
Как и при бурении, при осуществлении гидроразрыва пласта (ГРП) большую пользу может принести наличие получаемых в реальном масштабе времени данных с забоя, например, о давлении на забое. Проводную связь установить трудно, т.к. незащищенный кабель будет обрезан раствором, содержащим расклинивающий наполнитель. Использование защищенного кабеля также представляется громоздким вариантом. Существуют решения, предполагающие использование оптического кабеля, защищенного колонной гибких труб, но они привносят новые сложности эксплуатационного характера и повышают затраты. Решения, связанные с оснащенной проводкой бурильной колонной, также могут не справиться с эрозией, возникающей вследствие использования расклинивающего наполнителя.
Существует ряд видов работ по ГРП, при которых в скважину вводится НКТ, например, с целью защиты скважины от воздействия высокого давления. Пакер устанавливается над перфорационными отверстиями между НКТ и обсадной колонной, таким образом, возникает затрубное пространство. Затрубное пространство заполняется жидкостью с низкой вязкостью для противодействия давлению в НКТ давление в затрубном пространстве поддерживается с помощью специального насоса. Таким образом, затрубное пространство представляет собой акустический волновод с низким затуханием. Реализация средств телеметрии, использующих данный канал, рассматривалась в ряде патентов (см. патенты RU 2209964, 10.08.2003, RU 2310215, 07.10/2005).
Наиболее близким аналогом изобретения (прототипом) является заявка US 2005/0168349, опубл. 04.08.2005. В соответствии с данной заявкой скважинная телеметрическая система содержит, по меньшей мере, один генератор импульсов давления, по меньшей мере, один датчик давления, размещенный во внутреннем межтрубном пространстве, по меньшей мере, один датчик давления, размещенный в затрубном пространстве вблизи скважины, и пакер.
Основным недостатком данной системы является необходимость изменения процедуры герметизации пакера, что приводит к усложнению процесса измерения с помощью скважинной телеметрической системы.
Сущность изобретения
Задача, на решение которой направлено заявляемое изобретение, состоит в создании скважинной телеметрической системы, обеспечивающей быстрый и точный способ телеметрии в скважине.
Технический результат, достигаемый при реализации заявляемого технического решения, заключается в создании скважинной телеметрической системы, в которой отсутствует необходимость изменения процедуры герметизации пакера, и, соответственно, упрощении процесса измерения с помощью заявленной системы.
Поставленный технический результат достигается за счет того, что скважинная телеметрическая система содержит по меньшей мере один генератор импульсов давления, по меньшей мере один датчик давления, размещенный во внутреннем межтрубном пространстве в устье скважины, по меньшей мере один датчик давления, размещенный в затрубном пространстве вблизи скважины, и пакер, обеспечивающий гидравлическую изоляцию затрубного пространства. Дополнительно система содержит по меньшей мере один датчик, расположенный ниже пакера и реагирующий на по меньшей мере одну физическую величину, характеризующую призабойную зону, устройство кодирования данных, расположенное ниже пакера и считывающее показания датчика, расположенного ниже пакера и реагирующего на по меньшей мере одну физическую величину, характеризующую призабойную зону, устройство модулирования импульсов давления, создаваемых генератором импульсов давления, расположенное в затрубном пространстве под пакером, блок сбора данных, расположенный на поверхности, преобразующий выходные данные датчиков и предоставляющий данные для анализа блоку декодирования данных, расположенному на поверхности.
Кроме того, устройство модулирования импульсов давления может быть выполнено в виде камеры со створками.
Кроме того, генератор импульсов давления представляет собой механическое устройство, способное повышать или понижать давление. Кроме того, физической величиной, характеризующей призабойную зону, на которую реагирует датчик, расположенный ниже пакера, является давление или температура.
При проведении поиска по патентной и научно-технической информации не было обнаружено решений, содержащих всей совокупности предлагаемых признаков, что позволяет сделать вывод о соответствии заявляемого устройства критерию «новизна».
Сведения, подтверждающие возможность осуществления изобретения
Изобретение поясняется чертежом, где представлен общий вид скважинной телеметрической системы, где
1 - Генератор импульсов давления
2 - Линия подачи жидкости ГРП
3 - Датчики давления
4 - Линия затрубного пространства
5 - Блок сбора данных
6 - Блок декодирования данных
7 - НКТ
8 - Пакер
9 - Устройство модулирования импульсов давления
10 - Система датчиков и устройство кодирования данных
11 - Перфорации
12 - Трещина гидроразрыва
Настоящее изобретение относится к скважинной телеметрической системе, т.е. к системе кодирования и передачи данных из расположенной на большой глубине точки скважины, выполненной таким образом, что существует внутренняя труба, а между данной трубой и стенкой скважины - затрубное пространство, при этом пакер обеспечивает гидравлическую изоляцию как минимум двух (верхней и нижней) частей затрубного пространства. Вышеупомянутая система состоит из:
- по меньшей мере одного генератора импульсов давления 1, соединенного либо с внутренним межтрубным пространством, либо с затрубным пространством; такой генератор представляет собой механическое устройство, такое как насос, гидравлический клапан, и т.д., способное повышать или понижать давление в определенном месте в трубе по определенному графику, например, производить импульс давления определенного вида определенное количество раз в единицу времени;
- по меньшей мере одного датчика давления 3, предназначенного для измерения давления во внутреннем межтрубном пространстве, желательно, но не обязательно в устье скважины, и по меньшей мере одного датчика давления для измерения давления в затрубном пространстве;
- пакера 8;
- по меньшей мере одного датчика, расположенного ниже пакера, реагирующего по меньшей мере на одну физическую величину, характеризующую призабойную зону, например, давление или температуру;
- устройства кодирования данных 10, расположенного в скважине ниже пакера, считывающего показания датчика и преобразующего их в кодированную последовательность сигналов, управляющих динамикой устройства модулирования импульсов;
- устройства модулирования импульсов давления 9, желательно смонтированного на внешней стороне НКТ 7 в затрубном пространстве под пакером 8, которое способно изменять амплитудные или фазовые характеристики импульса давления, создаваемого генератором импульсов давления 1; такое устройство является механическим устройством, управляемым устройством кодирования данных и изменяющим гидравлические характеристики (такие как гидравлический импеданс) той области трубы, в котором данное устройство помещено;
- блока сбора данных 5, преобразующего выходные данные датчиков в аналоговые или цифровые данные, желательно, но не обязательно обеспечивающего синхронную регистрацию данных по всем каналам сбора данных; такой блок состоит из последовательности электронных компонентов, принимающих электрические сигналы, порождаемые датчиками, и подающих эти сигналы на вход аналого-цифрового или аналогового преобразователя, предоставляющего данные для анализа блоку декодирования данных;
- блока декодирования данных 6, расположенного на поверхности и способного преобразовывать модулированный сигнал в данные, эквивалентные как минимум той части информации, которая считывается датчиками, с возможным сокращением по качеству и количеству данных.
При этом устройство модулирования импульсов давления 9 может быть выполнено в виде камеры со створками, монтируемой на части насосно-компрессорной трубы 7, расположенной ниже пакера 8, способными открывать и/или закрывать как минимум одно отверстие в камере, для соединения внутренней части камеры со скважиной под воздействием сигнала, поступающего с кодирующего устройства.
Другим вариантом исполнения устройства модулирования импульсов давления 9 может являться камера или набор камер, обладающих способностью расширяться или сужаться, тем самым уменьшая или увеличивая просвет между НКТ 7 и стенкой скважины, под воздействием сигнала, поступающего с устройства кодирования данных 10. Камера или набор камер монтируется на части насосно-компрессорной трубы 7, расположенной ниже пакера 8.
Возможны и другие варианты исполнения устройства модулирования импульсов давления 9, конкретный выбор которых будет обусловлен детальной геометрией пространства под пакером 8 и который может быть уточнен специалистами в области акустических фильтров.
Сигнал генерируется генератором импульсов давления 1, соединенным с линией подачи жидкости ГРП 2, и распространяется с высокой скоростью порядка 1 км/с вглубь скважины, где отражается от системы трещины и призабойной зоны и частично проникает в затрубную зону, где претерпевает изменения, вносимые устройством модулирования импульсов давления 9, проходит сквозь пакер 8 и распространяется вверх, где регистрируется датчиком давления 3 затрубного пространства. Альтернативно, сигнал генерируется в затрубном пространстве, а регистрируется в линии подачи жидкости ГРП 2 на поверхности, при этом путь распространения импульса тот же самый.
Предложение соответствует критерию «промышленная применимость», поскольку его осуществление возможно при использовании существующих средств производства с применением известных технологий.

Claims (4)

1. Скважинная телеметрическая система, содержащая по меньшей мере один генератор импульсов давления, по меньшей мере один датчик давления, размещенный во внутреннем межтрубном пространстве в устье скважины, по меньшей мере один датчик давления, размещенный в затрубном пространстве вблизи скважины, и пакер, обеспечивающий гидравлическую изоляцию затрубного пространства, отличающаяся тем, что система дополнительно содержит по меньшей мере один датчик, расположенный ниже пакера и реагирующий на по меньшей мере одну физическую величину, характеризующую призабойную зону, устройство кодирования данных, расположенное ниже пакера и считывающее показания датчика, расположенного ниже пакера и реагирующего на по меньшей мере одну физическую величину, характеризующую призабойную зону, устройство модулирования импульсов давления, создаваемых генератором импульсов давления, расположенное в затрубном пространстве под пакером, блок сбора данных, расположенный на поверхности, преобразующий выходные данные датчиков и предоставляющий данные для анализа блоку декодирования данных, расположенному на поверхности.
2. Система по п.1, отличающаяся тем, что устройство модулирования импульсов выполнено в виде камеры со створками.
3. Система по п.1, отличающаяся тем, что генератор импульсов давления представляет собой механическое устройство, способное повышать или понижать давление.
4. Система по п.1, отличающаяся тем, что физической величиной, характеризующей призабойную зону, на которую реагирует датчик, расположенный ниже пакера, является давление или температура.
RU2008148991/03A 2008-12-12 2008-12-12 Скважинная телеметрическая система RU2382197C1 (ru)

Priority Applications (2)

Application Number Priority Date Filing Date Title
RU2008148991/03A RU2382197C1 (ru) 2008-12-12 2008-12-12 Скважинная телеметрическая система
US12/637,074 US9042200B2 (en) 2008-12-12 2009-12-14 Downhole telemetry system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2008148991/03A RU2382197C1 (ru) 2008-12-12 2008-12-12 Скважинная телеметрическая система

Publications (1)

Publication Number Publication Date
RU2382197C1 true RU2382197C1 (ru) 2010-02-20

Family

ID=42127097

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008148991/03A RU2382197C1 (ru) 2008-12-12 2008-12-12 Скважинная телеметрическая система

Country Status (2)

Country Link
US (1) US9042200B2 (ru)
RU (1) RU2382197C1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2475643C2 (ru) * 2010-12-30 2013-02-20 Государственное образовательное учреждение высшего профессионального образования Уфимский государственный нефтяной технический университет (ГОУ ВПО УГНТУ) Способ и устройство для контроля и управления процессом одновременно-раздельной эксплуатации многопластовых обсаженных скважин (варианты) и исполнительный модуль в составе устройства (варианты)
RU2535324C2 (ru) * 2012-12-24 2014-12-10 Шлюмберже Текнолоджи Б.В. Способ определения параметров забоя и призабойной зоны скважины
US10563503B2 (en) 2013-09-05 2020-02-18 Evolution Engineering Inc. Transmitting data across electrically insulating gaps in a drill string
US11661813B2 (en) 2020-05-19 2023-05-30 Schlumberger Technology Corporation Isolation plugs for enhanced geothermal systems

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3450678B1 (en) 2013-01-16 2020-01-15 Saudi Arabian Oil Company Method and apparatus for in-well wireless control using infrasound sources
CN103195415A (zh) * 2013-03-27 2013-07-10 中国石油天然气集团公司 一种用于钻井工程中的井下高速信息传输***及方法
WO2019212499A1 (en) * 2018-04-30 2019-11-07 Halliburton Energy Services, Inc. Packer setting and real-time verification method

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2761111B1 (fr) 1997-03-20 2000-04-07 Schlumberger Services Petrol Procede et appareil d'acquisition de donnees dans un puits d'hydrocarbure
US6219301B1 (en) * 1997-11-18 2001-04-17 Schlumberger Technology Corporation Pressure pulse generator for measurement-while-drilling systems which produces high signal strength and exhibits high resistance to jamming
US20020036085A1 (en) * 2000-01-24 2002-03-28 Bass Ronald Marshall Toroidal choke inductor for wireless communication and control
GB2360800B (en) * 2000-03-29 2003-11-12 Geolink Improved signalling system for drilling
EP1466070A1 (en) * 2002-01-17 2004-10-13 Presssol Ltd. Two string drilling system
US6750783B2 (en) 2002-07-05 2004-06-15 Halliburton Energy Services, Inc. Low frequency electromagnetic telemetry system employing high cardinality phase shift keying
US6970398B2 (en) * 2003-02-07 2005-11-29 Schlumberger Technology Corporation Pressure pulse generator for downhole tool
US7397388B2 (en) * 2003-03-26 2008-07-08 Schlumberger Technology Corporation Borehold telemetry system
GB2399921B (en) * 2003-03-26 2005-12-28 Schlumberger Holdings Borehole telemetry system
GB2405725B (en) * 2003-09-05 2006-11-01 Schlumberger Holdings Borehole telemetry system
US6874361B1 (en) * 2004-01-08 2005-04-05 Halliburton Energy Services, Inc. Distributed flow properties wellbore measurement system
WO2005106191A1 (en) * 2004-04-23 2005-11-10 Shell International Research Maatschappij B.V. Inhibiting reflux in a heated well of an in situ conversion system
US7318471B2 (en) * 2004-06-28 2008-01-15 Halliburton Energy Services, Inc. System and method for monitoring and removing blockage in a downhole oil and gas recovery operation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2475643C2 (ru) * 2010-12-30 2013-02-20 Государственное образовательное учреждение высшего профессионального образования Уфимский государственный нефтяной технический университет (ГОУ ВПО УГНТУ) Способ и устройство для контроля и управления процессом одновременно-раздельной эксплуатации многопластовых обсаженных скважин (варианты) и исполнительный модуль в составе устройства (варианты)
RU2535324C2 (ru) * 2012-12-24 2014-12-10 Шлюмберже Текнолоджи Б.В. Способ определения параметров забоя и призабойной зоны скважины
US10563503B2 (en) 2013-09-05 2020-02-18 Evolution Engineering Inc. Transmitting data across electrically insulating gaps in a drill string
US11661813B2 (en) 2020-05-19 2023-05-30 Schlumberger Technology Corporation Isolation plugs for enhanced geothermal systems

Also Published As

Publication number Publication date
US20100149919A1 (en) 2010-06-17
US9042200B2 (en) 2015-05-26

Similar Documents

Publication Publication Date Title
RU2382197C1 (ru) Скважинная телеметрическая система
US10465505B2 (en) Reservoir formation characterization using a downhole wireless network
CA3033222C (en) Downhole wireless communication node and sensor/tools interface
US10480308B2 (en) Apparatus and method for monitoring fluid flow in a wellbore using acoustic signals
US10591623B2 (en) Multilateral well sensing system
CA2264632C (en) Wellbores utilizing fiber optic-based sensors and operating devices
US6899178B2 (en) Method and system for wireless communications for downhole applications
CN107923237A (zh) 具有高采样速率的井下压力测量工具
US20090034368A1 (en) Apparatus and method for communicating data between a well and the surface using pressure pulses
Baldwin Fiber optic sensors in the oil and gas industry: Current and future applications
SA518391548B1 (ar) مستشعر سدادة جسرية لقياسات أسفل البئر
US20110241897A1 (en) System and method for real time data transmission during well completions
AU2017321138B2 (en) Reservoir formation characterization using a downhole wireless network
US20210238983A1 (en) Downhole pressure sensing for fluid identification
CA3028103C (en) Energy efficient method of retrieving wireless networked sensor data
CN107735547A (zh) 流量监测工具
US20220206172A1 (en) Global Positioning System Encoding On A Data Stream
CN102797456B (zh) 连续管钻机井下通信装置的耐高温、耐高压封装方法
US11668153B2 (en) Cement head and fiber sheath for top plug fiber deployment
RU2801378C1 (ru) Бескабельная система контроля внутрискважинных параметров (варианты)
Kyle et al. Acoustic telemetry for oilfield operations
RU2008132635A (ru) Способ исследования негерметичности в скважинах с пакерами

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20181213