RU2377732C2 - Способ и устройство для исправления ошибок данных в канале связи - Google Patents

Способ и устройство для исправления ошибок данных в канале связи Download PDF

Info

Publication number
RU2377732C2
RU2377732C2 RU2006124562/09A RU2006124562A RU2377732C2 RU 2377732 C2 RU2377732 C2 RU 2377732C2 RU 2006124562/09 A RU2006124562/09 A RU 2006124562/09A RU 2006124562 A RU2006124562 A RU 2006124562A RU 2377732 C2 RU2377732 C2 RU 2377732C2
Authority
RU
Russia
Prior art keywords
data
bits
bit
protected
unit
Prior art date
Application number
RU2006124562/09A
Other languages
English (en)
Other versions
RU2006124562A (ru
Inventor
Таити МАДЗИМА (JP)
Таити МАДЗИМА
Original Assignee
Кабусики Кайся Кенвуд
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Кабусики Кайся Кенвуд filed Critical Кабусики Кайся Кенвуд
Publication of RU2006124562A publication Critical patent/RU2006124562A/ru
Application granted granted Critical
Publication of RU2377732C2 publication Critical patent/RU2377732C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0071Use of interleaving
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/09Error detection only, e.g. using cyclic redundancy check [CRC] codes or single parity bit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/35Unequal or adaptive error protection, e.g. by providing a different level of protection according to significance of source information or by adapting the coding according to the change of transmission channel characteristics
    • H03M13/356Unequal error protection [UEP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/10Frequency-modulated carrier systems, i.e. using frequency-shift keying
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0098Unequal error protection

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Theoretical Computer Science (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Error Detection And Correction (AREA)
  • Dc Digital Transmission (AREA)

Abstract

Изобретение относится к устройству передачи и приема, имеющему функцию исправления ошибок данных в канале связи. В устройстве передачи блок добавления избыточных битов добавляет избыточный бит к каждому биту данных, полученному с помощью блока деления по одному биту; и перемежитель выполняет перемежение. Устройство передачи передает сигнал, который был подвергнут частотной модуляции (ЧМ) блоком ЧМ. В устройстве приема блок распознавания символа выполняет распознавание символа в точке Найквиста для сигнала, демодулированного блоком демодуляции ЧМ-сигнала; блок преобразования битов выполняет преобразование битов согласно результату распознавания символа; и блок восстановления кадров удаляет избыточный бит, прибавленный блоком добавления избыточных битов устройства передачи, из строки битов, подвергнутой обращенному перемежению обращенным перемежителем. Технический результат - обеспечение выполнения исправления ошибок с использованием простой конфигурации, даже когда связь осуществляется в неблагоприятной окружающей среде. 4 н. и 11 з.п. ф-лы, 8 ил.

Description

ОБЛАСТЬ ТЕХНИКИ
Настоящее описание относится к устройству передачи, устройству приема, способу передачи данных и способу приема данных для функционирования с целью исправления ошибок данных в канале связи.
УРОВЕНЬ ТЕХНИКИ
Исследования по методам исправления ошибок данных в канале связи осуществляются в различных направлениях. Некоторые методы имеют возможности, близкие к шенновскому пределу.
В частности, в мобильной связи, поскольку характеристика ошибки в канале связи значительно изменяется, требуется очень существенное исправление ошибок.
Что касается методов исправления ошибок, известны методы повторной передачи, например, типа ARQ (автоматический запрос повторной передачи) и т.п. и FEC (прямое исправление ошибок). Методы ARQ заключаются в том, чтобы выполнять исправление ошибок посредством запроса передатчику повторно передать данные, которые имели ошибку, будучи принятыми (следовательно, методы классифицируются как обратные). Методы FEC заключаются в предварительной подготовке данных, которые должны передаваться и приниматься, чтобы передавать надежные данные и удалять ошибку в приемнике (следовательно, методы являются прямыми). Следует отметить, что при передаче данных обычной практикой является одновременное использование прямого исправления ошибок FEC и автоматического запроса повторной передачи ARQ и использование только исправления ошибок FEC, когда требуется одновременная обработка звукового сигнала и изображений.
Однако в устройстве передачи и приема с использованием ARQ-запроса и т.п. чем больше возрастает число повторных передач, тем больше снижается эффективность передачи. Кроме того, в устройстве передачи и приема с использованием ARQ-запроса и т.п. трудно передавать и принимать речевые данные или данные изображения, передаваемые посредством телефонного вызова или потоковой передачи данных, вследствие необходимости одновременной обработки.
По этой причине, что касается передачи данных для электронной почты и т.п., а также передачи речевых данных или данных изображения, было предложено устройство передачи и приема, использующее методы прямого исправления ошибок и т.п., для восстановления принятых данных в максимально возможной степени без повторной передачи, посредством выполнения исправления ошибок для принятых данных, как описано в японской выложенной патентной заявке №2002-3444413 (стр.6-8, фиг.1). Указанное устройство передачи и приема выполняет исправление ошибок, используя блочные коды или сверточные коды.
Однако в устройстве передачи и приема, использующем обычные методы FEC, вычисление исправления ошибок усложняется, приводя к увеличению объема вычислительных процессов. По этой причине в подобном устройстве передачи и приема для вычислений также требуется существенный объем памяти.
Кроме того, устройство передачи и приема по методу FEC имеет недостаток, заключающийся в том, что напротив, ошибок возникает больше, когда ошибки данных возрастают в канале связи в степени, превышающей ресурсы обработки для исправления ошибок.
В частности, при передаче информации, например, таком как телефонный вызов, указанный недостаток является нежелательным. Поскольку звук имеет много факторов, которые будут фиксироваться в человеческом восприятии, более важной оказывается способность распознать, какие слова произносятся в телефонном вызове, даже при наличии небольших шумов. Другими словами, если FEC-исправление вызывает еще больше ошибок, выполняется интерполяция данных, повторение или отбрасывание (пропуск) и т.п. Указанный процесс упоминается как процесс маскирования плохого кадра. Если указанный процесс маскирования плохого кадра происходит часто, то содержание самого вызова, вероятно, перестанет прослушиваться.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Настоящее изобретение создано ввиду указанных известных проблем, и задача настоящего изобретения заключается в создании технического способа, обеспечивающего уверенное выполнение исправления ошибок, а также устройства передачи, устройства приема, способа передачи данных и способа приема данных, использующих указанный технический способ.
Для решения указанной задачи изобретения устройство передачи согласно первому аспекту настоящего изобретения в своей основе состоит из модуля прибавления избыточных битов, предназначенного для прибавления данных избыточных битов к каждому биту обеспеченных данных для формирования кодированных данных, и модуля модуляции, предназначенного для передачи модулированного волнового сигнала, сформированного на основе кодированных данных, сформированных упомянутым модулем прибавления избыточных битов.
В устройстве передачи согласно настоящему изобретению упомянутый модуль прибавления избыточных битов предпочтительно упорядочивает символы, добавленные к упомянутым данным избыточных битов, так, что Евклидово расстояние данных, добавленных к данным избыточных битов, становится большим, или прибавляет данные избыточных битов к каждому биту упомянутых обеспеченных данных так, что генерируется код Грея.
Кроме того, данные, выданные на упомянутый модуль прибавления избыточных битов, являются данными, в которых предварительно определены их высокий и низкий уровни значимости, и упомянутый модуль прибавления избыточных битов может прибавить избыточный бит для битовых данных, имеющих высокий уровень значимости данных упорядоченных битов.
Кроме того, упомянутый модуль модуляции может выполнять модуляцию согласно способу многозначной частотной манипуляции (FSK, ЧМн).
Устройство приема согласно второму аспекту настоящего изобретения осуществляет прием сигнала, сформированного на основе данных, прибавленных к данным избыточных битов для формирования кодированных данных, и в основном состоит из модуля демодуляции, предназначенного для демодуляции упомянутого принятого сигнала; модуля распознавания символов, предназначенного для выполнения распознавания символов на каждом интервале Найквиста для сигнала, демодулированного упомянутым модулем демодуляции; модуля преобразования битов, предназначенного для преобразования значения символа, обеспеченного посредством выполнения распознавания символов упомянутым модулем распознавания символов, в битовое значение; и модуля восстановления данных, предназначенного для формирования строки данных посредством удаления прибавленного избыточного бита из данных битового значения, которое было получено упомянутым модулем преобразования битов, для восстановления исходных данных.
В устройстве приема согласно настоящему изобретению упомянутый принятый сигнал предпочтительно является сигналом, который был модулирован согласно способу многозначной ЧМн, упомянутый модуль демодуляции демодулирует принятый сигнал посредством преобразования принятого сигнала в сигнал напряжения, соответствующего частоте упомянутого принятого сигнала, и упомянутый модуль распознавания символов выполняет распознавание символа путем сравнения напряжения сигнала, демодулированного упомянутым блоком демодуляции, с заранее заданными пороговыми значениями.
Кроме того, битовые данные, генерированные упомянутым модулем преобразования битов, являются данными, в которых биты упорядочены так, что их высокий и низкий уровни значимости предварительно определены, и битовые данные, имеющие высокий уровень значимости, суммируются с избыточным битом. Упомянутый модуль восстановления данных может удалить избыточный бит, прибавленный к упомянутым битовым данным, имеющим высокий уровень значимости.
Способ передачи данных, согласно третьему аспекту настоящего изобретения, в основном, содержит этапы:
прибавление избыточных битов к каждому биту обеспеченных данных; и передача сигнала, сформированного на основе упомянутых кодированных данных.
Способ приема согласно четвертому аспекту настоящего изобретения, в основном, содержит этапы: прием сигнала, сформированного на основе данных, суммированных с данными избыточных битов для формирования кодированных данных; демодуляция принятого сигнала; выполнение распознавания символов на каждом интервале Найквиста для демодулированного сигнала; преобразование значения символа, полученного в результате распознавания символов, в битовое значение; и формирование строки данных посредством удаления прибавленного избыточного бита из данных упомянутого битового значения, которое было преобразовано для восстановления исходных данных.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
В дальнейшем изобретение поясняется описанием конкретных вариантов его осуществления со ссылками на чертежи, на которых представлено следующее:
фиг.1 - блок схема, показывающая конфигурацию устройства передачи и приема согласно варианту осуществления настоящего изобретения,
фиг.2 - диаграмма, иллюстрирующая конфигурацию кадра данных речевого вокодера,
фиг.3 - диаграмма, иллюстрирующая уровни значимости кадров данных,
фиг.4 - диаграмма, иллюстрирующая содержимое глазковой индикации и распознавания символов в случае использования 4-значной ЧМн Найквиста,
фиг.5 - диаграмма, иллюстрирующая операции устройства передачи, показанного на фиг.1,
фиг.6 - диаграмма, иллюстрирующая операции устройства приема, показанного на фиг.1,
фиг.7 - диаграмма, иллюстрирующая характеристику ошибок в устройстве передачи и приема, показанном на фиг.1, и
фиг.8 - диаграмма, иллюстрирующая соотношение между частотой ошибок по битам (BER) и оценкой восприятия качества речи (PESQ) в устройстве передачи и приема, показанном на фиг.1.
ПОДРОБНОЕ ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНЫХ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ
Устройство передачи и приема согласно варианту осуществления настоящего изобретения описано ниже со ссылкой на чертежи.
Фиг.1 показывает конфигурацию устройства передачи и приема согласно указанному варианту осуществления.
Устройство передачи и приема согласно данному варианту осуществления состоит из устройства 11 передачи и устройства 21 приема.
Устройство 11 для передачи сигнала, который был модулирован согласно обеспеченным данным, содержит модуль 12 деления, модуль 13 прибавления избыточных битов, перемежитель 14, модуль 15 генерации сигнала базовой полосы, модуль 16 частотной модуляции и передающую антенну 17.
В данном варианте осуществления на примере описан случай, в котором речевой вокодер передается согласно способу 4-значной корневой частотной манипуляции (ЧМн) Найквиста.
Речевой вокодер представляет собой систему для представления звукового сигнала в цифровом формате, в котором набор параметров звука анализируется и извлекается для повторного восстановления звукового сигнала из параметров.
Данные речевого вокодера компонуются в кадры и обрабатываются, и информация в них разграничивается во временные блоки, как показано на фиг.2.
Данные речевого вокодера компонуются в кадры блоками по 20 мс. Кадр данных речевого вокодера состоит из речевых данных и данных исправления ошибок, и число битов в одном кадре должно быть равно 72 битам (3600 бит в секунду). Речевые данные представляют собой данные, описывающие звуковую информацию, и данные исправления ошибок представляют собой данные для исправления ошибок и обнаружения ошибок в речевых данных.
Данные исправления ошибок состоят из 5 битов данных контроля циклическим избыточным кодом (CRC, ЦИК), 5 битов данных защиты ЦИК и 18 битов данных защиты звукового сигнала.
Число битов речевых данных должно быть равно 44 битам в одном кадре, и число битов в данных исправления ошибок должно быть равно 28 битам.
Каждые битовые данные речевых данных сортируются в убывающем порядке уровня значимости для слухового восприятия человека. Речевые данные конфигурируются с 18 битами защищенных речевых данных и 26 битами незащищенных речевых данных.
Защищенные речевые данные представляют собой данные высокого уровня значимости, которые должны защищаться, даже когда условия связи реализуются в неблагоприятной окружающей среде, так что вероятно возникновение множества ошибок. Например, в сеансе связи, таком как звуковой вызов, поскольку звук имеет много факторов, фиксируемых в восприятии человека, важно иметь возможность распознавать, какие слова произнесены в звуковом сигнале, даже с наложенными шумами.
В случае передачи звука или изображения, если ошибка возникает в бите высокой значимости, этот бит должен восприниматься человеком как шум, не относящийся к информации. В речевом вокодере такими важными данными для конфигурирования звука манипулируют как защищенные речевые данные.
Например, в случае звука, в данных вокодера имеются данные звукового давления, данные частоты основного тона и т.п., как показано на фиг.3, предполагается, что данные вокодера состоят из 16 битов данных звукового давления, 10 битов информации первого основного тона и 10 битов информации второго основного тона. Фиг.3 показывает, что крайний слева бит является старшим битом (MSB), и крайний справа бит является младшим битом (LSB) в соответствующих данных. В примере, показанном на фиг.3, предполагается, что эти биты данных упорядочены согласно уровню значимости, в котором заштрихованные биты являются битами высокой значимости, и наиболее значимый бит имеет самый высокий уровень значимости. Следует отметить, что биты рассматриваются как имеющие высокий уровень значимости, могут быть предварительно определены путем верификации или моделирования алгоритма вокодера и т.п.
По мере того как значимость бита повышается, влияние ошибки на информацию становится более значительным. Например, в данных "FFFF", когда ошибка возникает в старшем бите, данные становятся такими "7FFF", приводя к разности 32768 в десятичном числе. Однако, когда ошибка возникает в младшем бите, возникающая разность равна всего 1.
Аналогичная ситуация имеет место с данными изображения. Например, желтый цвет генерируется путем синтезирования красного и зеленого. Если ошибка возникает в старшем бите, цвет изменяется.
Таким образом, важно, каким образом защищать данные битов высокого уровни значимости. Данный вариант осуществления обеспечивает защиту таких битовых данных высокого уровня значимости с помощью простой конфигурации.
Согласно фиг.1, на модуль 12 деления подаются данные речевого вокодера, как показано на фиг.2. Модуль 12 делит поданные данные по одному биту. Как описано выше, должно быть понятно, что биты, которые рассматриваются как имеющие высокий уровень значимости, могут быть предварительно определены путем верификации или моделирования алгоритма вокодера и т.п., и что биты данных речевого вокодера упорядочены в убывающем порядке уровня значимости.
Модуль 13 прибавления избыточных битов прибавляет бит со значением "1" к биту высокого уровня значимости из соответствующих битовых данных, разделенных модулем 12 деления, и генерирует 2-битовые данные.
Перемежитель 14 перемежает биты защищенных речевых данных и биты незащищенных речевых данных блоками из 2-битовых данных, сформированных модулем 13 прибавления избыточных битов, для распределения размещения значимых битов или ЦИК кода в кадре и формирует строку данных для снижения влияния блочных ошибок, обусловленных фазированием и т.п.
Модуль 15 формирования сигнала базовой полосы генерирует сигнал базовой полосы на основе строки данных, перемеженной перемежителем 14.
Модуль 16 ЧМ модуляции модулирует несущее колебание согласно способу 4-значной корневой частотной манипуляции Найквиста сигналом базовой полосы, сформированным модулем 15 формирования сигнала базовой полосы. Модуль 16 ЧМ модуляции снабжен косинусным корневым фильтром и генерирует сигнал, в котором формируется глазковая индикация, как показано на фиг.4, с сигналом базовой полосы, сформированным модулем 15 формирования сигнала базовой полосы. Передающая антенна 17 передает сигнал, модулированный по частоте с помощью модуля 16 ЧМ модуляции, в виде радиоволны.
Устройство 21 приема содержит приемную антенну 22, модуль 23 демодуляции ЧМ-сигнала, модуль 24 распознавания символов, модуль 25 преобразования битов, обращенный перемежитель 26 и модуль 27 восстановления кадров.
Приемная антенна 22 принимает радиоволну, переданную устройством 11 передачи, и преобразует радиоволну в ЧМн-сигнал.
Модуль 23 демодуляции ЧМ-сигнала выполняет демодуляцию ЧМ-сигнала посредством преобразования ЧМн-сигнала с выхода приемной антенны 22 в сигнал напряжения, причем напряжение сигнала зависит от его частоты, и формирует сигнал обнаружения.
Модуль 24 распознавания символов выполняет распознавание символа в точке Найквиста сигнала обнаружения, сформированного модулем 23 демодуляции ЧМ-сигнала. С помощью сигнала обнаружения модуля 23 демодуляции ЧМ-сигнала формируется глазковая индикация, как показано на фиг.4. В соответствии со способом 4-значной ЧМн, в данной глазковой индикации наблюдается до трех участков открытия.
Указанная точка задается как точка Найквиста, и три пороговых значения th+, th0 и th- предварительно задаются для выполнения распознавания символов. Модуль 24 распознавания символов выполняет распознавание символа путем сравнения трех пороговых значений th+, th0 и th- с напряжением сигнала обнаружения в точке Найквиста.
Если напряжение сигнала обнаружения в точке Найквиста превышает пороговое значение th+, то модуль 24 распознавания символа принимает решение, что значение символа равно+3. Если напряжение сигнала обнаружения в точке Найквиста равно или больше, чем пороговое значение th0, и равно или меньше, чем пороговое значение th+, то модуль 24 распознавания символа принимает решение, что значение символа равно+1. Если напряжение сигнала обнаружения в точке Найквиста меньше, чем пороговое значение th0, и равно или больше, чем пороговое значение th-, то модуль 24 распознавания символа принимает решение, что значение символа равно -1. Если напряжение сигнала обнаружения в точке Найквиста меньше, чем пороговое значение th-, то модуль 24 распознавания символа принимает решение, что значение символа равно -3.
Модуль 25 преобразования битов преобразует значение символа, по которому принималось решение модулем 24 распознавания символа, в биты со значением битов, основанным на значении символа. Как показано на фиг.4, если значение символа, по которому принималось решение модулем 24 распознавания символа, равно+3, то модуль 25 преобразования битов преобразует значение символа+3 в битовое значение "0,1". Если значение символа равно+1, то модуль 25 преобразования битов преобразует значение символа+1 в битовое значение "0,0". Если значение символа равно -1, то модуль 25 преобразования битов преобразует значение символа -1 в битовое значение "1,0". Если значение символа равно -3, то модуль 25 преобразования битов преобразует значение символа -3 в битовое значение "1,1". Следует отметить, что комбинация битов, преобразованных модулем 25 преобразования битов, представляет собой код Грея.
Обращенный перемежитель 26 осуществляет обращенное перемежение данных, преобразованных модулем 25 преобразования битов, в блоки из 2 битов.
Модуль 27 восстановления кадров удаляет избыточный бит из обращено перемеженных данных с выхода обращенного перемежителя 26 и формирует исходный кадр данных.
Ниже описана работа устройства передачи и приема согласно варианту осуществления.
Модуль 12 деления устройства 11 передачи разделяет защищенные речевые данные, включающие в себя 5 битов ЦИК кода в данных речевого вокодера, обеспеченных как показано на фиг.5(a), по одному биту и формирует битовые данные, каждые из которых имеют по одному биту, как показано на фиг.5(b). Кроме того, модуль 12 деления разделяет незащищенные речевые данные по два бита.
Модуль 13 прибавления избыточных битов, как показано на фиг.5(c), прибавляет бит со значением "1" к каждым битовым данным, которые были получены разделением защищенных речевых данных, включающих в себя 5 битов ЦИК кода, и формирует 2-битовые данные.
Как показано на фиг.5(c), при прибавления избыточного бита "1" к каждым данным бита защищенных речевых данных посредством модуля 13 прибавления избыточных битов, битовые данные защищенных речевых данных могли бы соответствовать значению символа+3 или -3. Другими словами, интервал между значением символа+3 и значением символа -3 увеличивается, в связи с чем коэффициент усиления в точке Найквиста становится большим.
Перемежитель 14 перемежает между собой пары битов, состоящие из прибавленного избыточного бита и бита защищенных речевых данных, и 2 бита незащищенных речевых данных в виде блоков 2-битовых данных, сформированных модулем 13 прибавления избыточных битов, и формирует строку данных, как показано на фиг.5(d).
Модуль 15 формирования сигнала базовой полосы генерирует сигнал базовой полосы на основе строки данных с выхода перемежителя 14.
Модуль 16 ЧМ модулирует несущее колебание способом 4-значной корневой ЧМн Найквиста сигналом базовой полосы, сформированным модулем 15 формирования сигнала базовой полосы. Передающая антенна 17 передает сигнал, сформированный модулем 16 ЧМ, в виде радиоволны.
Приемная антенна 22 устройства 21 приема принимает радиоволну, переданную устройством 11 передачи, и преобразует радиоволну в ЧМн-сигнал. Модуль 23 демодуляции ЧМ-сигнала преобразует ЧМн-сигнал с выхода приемной антенны 22 в сигнал напряжения, причем напряжение сигнала зависит от частоты и формирует сигнал обнаружения.
Модуль 24 распознавания символов выполняет распознавание символа путем сравнения напряжения в точке Найквиста сигнала обнаружения, сформированного модулем 23 демодуляции ЧМ-сигнала с тремя заранее заданными пороговыми значениями th+, th0 и th-.
Модуль 25 преобразования битов преобразует символ, по которому принималось решение модулем 24 распознавания символа, в биты со значением битов, основанным на значении символа.
Как показано на фиг.6(e), если значение символа в результате распознавания модулем 24 распознавания символа равно -3, то модуль 25 преобразования битов преобразует значение символа в битовое значение "1,1", как показано на фиг.6(f). Точно так же модуль 25 преобразования битов выполняет преобразование битов согласно значению распознавания символа. Следует отметить, что комбинация преобразованных битов данных представляет собой код Грея.
Как показано на фиг.6(g), обращенный перемежитель 26 осуществляет обращенное перемежение данных, преобразованных модулем 25 преобразования битов, в комбинации из пар битных данных, состоящих из прибавленного избыточного бита и бита защищенных речевых данных и соответственно из 2 битов незащищенных речевых данных.
Модуль 27 восстановления кадра удаляет избыточный бит, прибавленный к защищенным речевым данным, из данных с выхода обращенного перемежителя 26, как показано на фиг.6(h), и компонует соответствующие биты для формирования исходного кадра данных, как показано на фиг.6(i).
Принимая во внимание только защищенные битовые данные, в результате, устройство 11 передачи выполнило 2-значную модуляцию вместо 4-значной модуляции. Кроме того, устройство 21 приема только удаляет младшие биты, и, в результате, процесс, выполняемый устройством 21 приема, был бы эквивалентным выполнению демодуляции двух значений.
Поэтому, хотя каждый интервал символов равен "2" в случае 4 значений, интервал символов должен бы быть равен величине "6", которая в три раза больше 2, и, согласно теории, BER (частота ошибок по битам) должна быть улучшена приблизительно на 4,8 дБ согласно данному варианту осуществления.
Таким образом, устройство передачи 11 прибавляет избыточный бит согласно способу 4-значной ЧМн, а устройство 21 приема удаляет избыточный бит, который был прибавлен устройством 11 передачи. В результате, хотя по характеристикам это эквивалентно способу 2-значной ЧМн, однако способ модуляции остается способом 4-значной ЧМн.
На фиг.7 показаны кривые частоты ошибок по битам (BER) при учете только защищенных битов.
На фиг.7 кривая L10 представляет характеристику устройства передачи и приема согласно данному варианту осуществления. Кривая L11 представляет характеристику в случае, когда декодирование выполнялось декодером Витерби, имеющим коэффициент кодирования равный 1/2. Кривая L12 представляет характеристику в случае без исправления ошибок. Кроме того, правый край графика представляет случай, когда условия связи являются наиболее предпочтительными, и согласно графику, условия связи ухудшаются по мере того как значение Eb/No изменяется в направлении к левой стороне.
Как показано на фиг.7, если условия связи являются предпочтительными, как показано кривой L11, то эффект исправления ошибок с помощью декодирования декодером Витерби больше, а частота BER ниже. Однако по мере ухудшения условий связи эффект исправления ошибок с помощью декодирования, реализуемого устройством передачи и приема согласно данному варианту осуществления, увеличивается за счет его исправляющей способности по сравнению с декодированием посредством декодера Витерби.
На фиг.8 показаны характеристики качества звука в случае, когда устройство передачи и приема согласно данному варианту осуществления применяется в реальном вокодере.
Для оценки качества речи используется PESQ (оценка восприятия качества речи), которая рекомендована Международным союзом электросвязи. Следует отметить, что на фиг.8 кривые L10, L11 и L12 представляют характеристику устройства передачи и приема согласно данному варианту осуществления, характеристику декодера Витерби и характеристику для случая отсутствия исправления ошибок, соответственно, подобно фиг.7.
Как показано на фиг.8, если частота BER низкая, другими словами, если условия связи являются предпочтительным, то качество звука при декодировании с помощью декодера Витерби является более предпочтительным, чем в случае устройства передачи и приема согласно данному варианту осуществления. Однако указанная разница незначительна и не различима при реальном прослушивании и сравнении звука. Если частота BER высокая, другими словами, если условия связи не являются предпочтительными, то качество звука при декодировании с помощью устройства передачи и приема согласно данному варианту осуществления более предпочтительно, чем в случае декодера Витерби, при этом может быть реализовано высокое качество звука.
Как описано выше, согласно данному варианту осуществления, устройство 11 передачи прибавляет избыточный бит к каждому биту данных речевого вокодера и после перемежения модулирует по частоте и передает этот сигнал. Устройство 21 приема выполняет распознавание символа после выполнения демодуляции ЧМ-сигнала, выполняет обращенное перемежение с преобразованием по битам и затем удаляет избыточный бит, прибавленный устройством передачи.
Следовательно, даже когда связь осуществляется в неблагоприятной окружающей среде, можно более уверенно выполнять исправление ошибок. Устройство передачи и приема данного варианта осуществления особенно пригодно для использования при передаче звука или изображения при телефонном вызове или потоковой передаче данных.
Кроме того, исправление ошибок выполняется с использованием простой обработки, в которой устройство 11 передачи прибавляет избыточный бит к данным, а устройство 21 приема удаляет избыточный бит демодулированных данных. Поэтому, по сравнению со способом прямого исправления ошибок (FEC), в котором выполняется много операций, и с использованием декодера Витерби и т.п., в котором требуется значительный объем памяти, обеспечивается простая конфигурация, поскольку для исправления ошибок не требуется ни операций, ни объема памяти. В дополнение можно реализовать более низкое потребление электроэнергии, поскольку нет необходимости иметь быстродействующий процессор.
Следует отметить, что настоящее изобретение может быть реализовано в различных формах, которые не ограничиваются вышеописанными вариантами осуществления.
Например, выше описан вариант осуществления, в котором телефонный вызов осуществляется с использованием 4-значной корневой ЧМн Найквиста. Однако обрабатываемые данные не ограничиваются речевыми данными, а могут представлять собой данные изображения. Частотная манипуляция не ограничивается 4-значной, а может быть многозначной, использующей 4 и более значений. Кроме того, помимо ЧМн могут быть использованы и другие способы модуляции, такие как фазовая манипуляция (PSK, ФМн) и т.п.
Кроме того, выше описан пример с телефонным вызовом или потоковой передачей данных, в которых задается уровень значимости бита. Однако настоящее изобретение также может применяться в ситуации, когда желательно повысить выигрыш от обработки просто в протоколе или передаче электронной почты.
Данный вариант осуществления может быть реализован на основе программного обеспечения. В этом случае, устройство 11 передачи и устройство 21 приема снабжаются процессорами для выполнения программного обеспечения. Даже если этот вариант осуществления реализуется на основе программного обеспечения, то поскольку нет необходимости выполнять такие операции как при прямом исправлении ошибок, программы становятся простыми, и обеспечивается возможность уменьшения объема памяти, требуемого для программ.
В данном варианте осуществления речевой вокодер описан в качестве примера. Однако данный вариант осуществления может применяться не только к речевому вокодеру, но и к передаче данных. В таком случае сегменты данных, которые желательно защитить в большей степени, и другие данные могут применяться аналогично защищенным данным и незащищенным данным в данном варианте осуществления, соответственно.
Кроме того, в данных, которые должны использоваться в передаче данных и т.п., число битов может изменяться каждый раз, когда изменяется содержание передачи. В дополнение, например, как в случае, где "FF" и "FE" являются флагами для обозначения передачи и приема, соответственно, даже младший бит также может иметь такой же уровень значимости, как и бит более высокой значимости. В этом случае, данный вариант осуществления становится значительно более эффективным, например, если 3 бита флага управления прибавляются к концу данных, чтобы повысить устойчивость к ошибкам только этих трех битов, при этом уровень значимости может быть задан соответственно.
Кроме того, в данном варианте осуществления модуль 13 прибавления избыточных битов прибавляет данные избыточных битов к каждому биту обеспеченных данных, так что генерируется код Грея. Однако последнее не ограничивается вышеописанными вариантами осуществления, если модуль 13 прибавления избыточных битов упорядочивает символы, суммированные избыточными битовыми данными так, что Евклидово расстояние данных с добавленными избыточными битовыми данными становится большим.
ПРОМЫШЛЕННАЯ ПРИМЕНИМОСТЬ
Согласно настоящему изобретению можно обеспечить устройство передачи и устройство приема, которые могут выполнять исправление ошибок более надежно несмотря на их простые конфигурации, даже когда связь в канале передачи осуществляется в неблагоприятной окружающей среде.

Claims (15)

1. Устройство передачи, содержащее
блок добавления избыточных битов для добавления избыточных битов данных к каждому из подлежащих защите конкретных битов, которые выбираются из обеспеченных данных, для формирования кодированных данных, и
блок модуляции для модулирования волнового сигнала на основе кодированных данных, сформированных блоком добавления избыточных битов, в блок из двух битов для конкретных битов, подлежащих защите, причем два бита являются каждым подлежащим защите битом, и к каждому биту добавлены избыточные битовые данные, причем в блоке из двух битов для других данных, формирования посредством этого модулированного волнового сигнала и передачи сформированного модулированного волнового сигнала.
2. Устройство передачи по п.1, в котором конкретные биты, подлежащие защите, включают в себя данные флага.
3. Устройство передачи по п.1, в котором упомянутый блок модуляции осуществляет модуляцию согласно способу 4-значной частотной манипуляции (FSK).
4. Устройство передачи по п.1, в котором обеспеченные данные
включают в себя биты для обнаружения ошибок, и конкретные биты, подлежащие защите, включают в себя биты для обнаружения ошибок.
5. Устройство передачи по п.1, в котором обеспеченные данные включают в себя биты для исправления ошибок, и конкретные биты, подлежащие защите, включают в себя биты для исправления ошибок.
6. Устройство передачи по п.1, в котором количество конкретных битов, подлежащих защите, является меньшим, чем количество битов, не подлежащих защите.
7. Устройство передачи по п.1, в котором данные, которые должны обеспечиваться для блока добавления избыточных битов являются данными, в которых заранее определены высокий и низкий уровни значимости, и в котором блок добавления избыточных битов выполнен с возможностью добавлять избыточные биты к битам данных, имеющим высокий уровень значимости.
8. Устройство передачи по п.1, в котором обеспеченные данные представляют собой множество частей информации, и в котором блок добавления избыточных битов выполнен с возможностью добавлять избыточные битовые данные к каждому из конкретных битов, подлежащих защите, для соответствующих частей из множества частей информации, чтобы формировать кодированные данные.
9. Устройство передачи по п.1, в котором блок добавления избыточных битов выполнен с возможностью упорядочивать символы с добавленными избыточными битовыми данными так, что Евклидово расстояние данных с добавленными избыточными битовыми данными становится большим.
10. Устройство передачи по п.1, в котором блок добавления избыточных битов выполнен с возможностью добавлять избыточные битовые данные к каждому из битов обеспеченных данных так, что формируется код Грея.
11. Устройство приема для приема сигнала, сформированного путем добавления избыточных битовых данных к каждому из конкретных битов, подлежащих защите, которые выбираются из обеспеченных данных, чтобы формировать кодированные данные, и путем модулирования волнового сигнала на основе сформированных кодированных данных в блоке из двух битов для конкретных битов, подлежащих защите, причем два бита являются каждым подлежащим защите битом, и к каждому биту добавлены избыточные битовые данные, причем в блоке из двух битов для других данных, при этом устройство приема содержит
блок демодуляции для демодуляции упомянутого принятого сигнала;
блок распознавания символов для выполнения распознавания символов на каждом интервале Найквиста для сигнала, демодулированного упомянутым блоком демодуляции;
блок преобразования битов для преобразования значения символа, полученного посредством выполнения распознавания символов упомянутым блоком распознавания символов, в битовое значение; и
блок восстановления данных для составления строки данных посредством удаления добавленных избыточных битовых данных из данных битового значения, преобразованного блоком преобразования битов, для восстановления исходных данных.
12. Устройство приема по п.11, в котором принятый сигнал является сигналом, модулированным согласно способу 4-значной FSK, в котором блок демодуляции выполнен с возможностью демодулировать принятый сигнал путем преобразования принятого сигнала в сигнал напряжения, соответствующего частоте принятого сигнала, и в котором блок распознавания символов выполнен с возможностью выполнять распознавание символа путем сравнения напряжения сигнала, демодулированного блоком демодуляции, с представленными пороговыми значениями.
13. Устройство приема по п.11, в котором битовые данные, сформированные блоком преобразования битов, являются данными, в которых биты упорядочены так, что заранее определены их высокий и низкий уровни значимости, и к битовым данным, имеющим высокий уровень значимости, добавляется избыточный бит, и в котором блок восстановления данных выполнен с возможностью удалять избыточный бит, добавленный к битовым данным, имеющим высокий уровень значимости.
14. Способ передачи данных, содержащий этапы, на которых
добавляют избыточные битовые данные к каждому из конкретных битов, подлежащих защите, которые выбираются из обеспеченных данных, для формирования кодированных данных;
модулируют волновой сигнал на основе сформированных кодированных данных в блоке из двух битов для конкретных битов, подлежащих защите, причем два бита являются каждым подлежащим защите битом, и к каждому биту добавлены избыточные битовые данные, причем в блоке из двух битов для других данных посредством этого формируют модулированный волновой сигнал; и
передают сформированный модулированный волновой сигнал.
15. Способ приема данных, содержащий этапы, на которых
принимают сигнал, который формируется путем добавления данных избыточных битов к каждому из подлежащих защите конкретных битов, которые выбираются из обеспеченных данных, чтобы формировать кодированные данные, и путем модулирования волнового сигнала на основе сформированных кодированных данных в блоке из двух битов для конкретных битов, подлежащих защите, причем два бита являются каждым подлежащим защите битом, и к каждому биту добавлены избыточные битовые данные, причем в блоке из двух битов для других данных;
демодулируют принятый сигнал;
выполняют распознавания символов на каждом интервале Найквиста для демодулированного сигнала;
преобразуют значения символа, полученного путем выполнения распознавания символов, в битовое значение; и
составляют строку данных, посредством удаления прибавленных избыточных битовых данных из данных преобразованного бита для восстановления исходных данных.
RU2006124562/09A 2003-12-08 2004-12-07 Способ и устройство для исправления ошибок данных в канале связи RU2377732C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003409688A JP4220365B2 (ja) 2003-12-08 2003-12-08 送信装置、受信装置、データ送信方法及びデータ受信方法
JP2003-409688 2003-12-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
RU2009115010/08A Division RU2488225C2 (ru) 2003-12-08 2004-12-07 Способ и устройство для исправления ошибок данных в канале связи

Publications (2)

Publication Number Publication Date
RU2006124562A RU2006124562A (ru) 2008-01-20
RU2377732C2 true RU2377732C2 (ru) 2009-12-27

Family

ID=34650415

Family Applications (2)

Application Number Title Priority Date Filing Date
RU2006124562/09A RU2377732C2 (ru) 2003-12-08 2004-12-07 Способ и устройство для исправления ошибок данных в канале связи
RU2009115010/08A RU2488225C2 (ru) 2003-12-08 2004-12-07 Способ и устройство для исправления ошибок данных в канале связи

Family Applications After (1)

Application Number Title Priority Date Filing Date
RU2009115010/08A RU2488225C2 (ru) 2003-12-08 2004-12-07 Способ и устройство для исправления ошибок данных в канале связи

Country Status (7)

Country Link
US (1) US8498355B2 (ru)
EP (2) EP1694016B1 (ru)
JP (1) JP4220365B2 (ru)
CN (2) CN1890934B (ru)
DE (2) DE09005333T1 (ru)
RU (2) RU2377732C2 (ru)
WO (1) WO2005055542A1 (ru)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8494071B2 (en) 2003-12-08 2013-07-23 Kabushiki Kaisha Kenwood Device and method for correcting a data error in communication path
JP4388366B2 (ja) * 2003-12-26 2009-12-24 株式会社ケンウッド 送信装置、受信装置、データ送信方法、データ受信方法及びプログラム
JP4542405B2 (ja) * 2004-09-30 2010-09-15 株式会社ケンウッド ベースバンド信号生成装置、ベースバンド信号生成方法及びプログラム
KR101225082B1 (ko) * 2006-01-17 2013-01-22 삼성전자주식회사 비압축 aⅴ 데이터를 송수신하는 장치 및 방법
KR100763207B1 (ko) * 2006-05-03 2007-10-04 삼성전자주식회사 비압축 aⅴ 데이터를 송수신하는 방법, 장치, 및 전송프레임 구조
CN102412937B (zh) * 2007-02-02 2014-04-16 华为技术有限公司 一种数据的交织方法和装置
US8208917B2 (en) * 2007-10-29 2012-06-26 Bose Corporation Wireless and dockable audio interposer device
US8060014B2 (en) * 2007-10-30 2011-11-15 Joji Ueda Wireless and dockable audio interposer device
US8660055B2 (en) * 2007-10-31 2014-02-25 Bose Corporation Pseudo hub-and-spoke wireless audio network
KR101597523B1 (ko) * 2009-04-10 2016-02-25 엘지전자 주식회사 가전기기 서비스 장치 및 그 제어방법
CN104303476B (zh) * 2012-04-03 2017-03-01 松下知识产权经营株式会社 影像数据发送装置以及接收装置、影像数据发送方法以及接收方法
EP2693673A1 (en) 2012-08-01 2014-02-05 Alcatel Lucent Bit-interleaver for an optical line terminal
US11663073B2 (en) * 2020-12-10 2023-05-30 Advanced Micro Devices, Inc. Method and apparatus for data protection in memory devices

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4047151A (en) 1974-12-24 1977-09-06 Rydbeck Nils R C Adaptive error correcting transmission system
SE7605253L (sv) * 1976-05-10 1977-11-11 Persson Paul Manfred System for att overfora information
US4534040A (en) 1983-01-04 1985-08-06 At&T Information Systems Method and apparatus for coding a binary signal
US4616702A (en) 1984-05-01 1986-10-14 Comdisco Resources, Inc. Tool and combined tool support and casing section for use in transmitting data up a well
US4888799A (en) 1986-01-03 1989-12-19 Scientific Atlanta, Inc. Scrambling of signals by inversion
JPS63172535A (ja) 1987-01-09 1988-07-16 Mitsubishi Electric Corp 冗長ビツト可変デイジタル通信装置
JPS63174445A (ja) 1987-01-13 1988-07-18 Nec Corp 暗号化デ−タ送受信方式
FR2620246B1 (fr) * 1987-03-31 1989-11-24 Smh Alcatel Memoire non volatile a faible taux d'ecriture et machine a affranchir en faisant application
JPS6468161A (en) 1987-09-09 1989-03-14 Man Design Co Fsk demodulator
US4901072A (en) * 1988-02-17 1990-02-13 Westinghouse Electric Corp. Position detector utilizing gray code format
US5214656A (en) * 1990-12-13 1993-05-25 At&T Bell Laboratories Multiplexed coded modulation with unequal error protection
JP2768169B2 (ja) * 1992-09-22 1998-06-25 日本電気株式会社 データ伝送方式
ES2188456T3 (es) 1992-09-25 2003-07-01 Matsushita Electric Ind Co Ltd Transmision de resoluciones multiples, en particular para sistemas de portadoras multiples.
JP3265339B2 (ja) 1993-06-25 2002-03-11 シャープ株式会社 音声復号化装置
RU2108667C1 (ru) * 1994-01-19 1998-04-10 Акционерное общество "Тейвас" Способ кодирования и декодирования данных для системы персонального радиовызова и декодер для системы персонального радиовызова
JPH0856376A (ja) * 1994-08-10 1996-02-27 Fujitsu Ltd 無線呼出システムにおける符号伝送方法及び携帯呼出装置
US6249212B1 (en) * 1994-10-05 2001-06-19 Avid Marketing, Inc. Universal electronic identification tag
US5473612A (en) * 1994-11-28 1995-12-05 Motorola, Inc. Method and apparatus for minimizing false detection of packet data in a communication receiver
JPH08223624A (ja) 1995-02-15 1996-08-30 Nec Corp 無線選択呼出受信機及び無線データ伝送方式
US5566213A (en) * 1995-03-09 1996-10-15 Motorola, Inc. Selective call receiving device with improved symbol decoding and automatic frequency control
JP3455934B2 (ja) * 1995-04-11 2003-10-14 日本電信電話株式会社 変調器
WO1997033402A1 (en) 1996-03-04 1997-09-12 Ericsson Inc. Digital communication system for adapting communications protocol based on a current communication channel condition
JP3679853B2 (ja) * 1996-03-15 2005-08-03 株式会社日立グローバルストレージテクノロジーズ ディジタル記録再生方法および信号処理装置
US5923711A (en) * 1996-04-02 1999-07-13 Zenith Electronics Corporation Slice predictor for a signal receiver
US5828672A (en) * 1997-04-30 1998-10-27 Telefonaktiebolaget Lm Ericsson (Publ) Estimation of radio channel bit error rate in a digital radio telecommunication network
US6125148A (en) 1997-08-29 2000-09-26 Telefonaktiebolaget Lm Ericsson Method for demodulating information in a communication system that supports multiple modulation schemes
JP3305644B2 (ja) * 1998-01-30 2002-07-24 株式会社エヌ・ティ・ティ・ドコモ 無線呼出符号化制御装置
JP2972740B1 (ja) 1998-09-01 1999-11-08 静岡日本電気株式会社 4値fsk受信機およびその信号判定方法
JP2000307665A (ja) * 1999-04-22 2000-11-02 Matsushita Electric Ind Co Ltd 無線受信装置の復調回路及び復調方法
US6311306B1 (en) * 1999-04-26 2001-10-30 Motorola, Inc. System for error control by subdividing coded information units into subsets reordering and interlacing the subsets, to produce a set of interleaved coded information units
SE515050C2 (sv) 1999-10-01 2001-06-05 Ericsson Telefon Ab L M Metod och anordning i mobilradiosystem med möjlighet att växla kanalkodningsschema och att byta från frekvenshoppande kanal till icke frekvenshoppande kanal
US6757860B2 (en) 2000-08-25 2004-06-29 Agere Systems Inc. Channel error protection implementable across network layers in a communication system
US6934317B1 (en) 2000-10-11 2005-08-23 Ericsson Inc. Systems and methods for communicating spread spectrum signals using variable signal constellations
EP1388965B1 (en) * 2001-02-27 2011-12-28 Toa Corporation Receiver with parity decoding
JP3731496B2 (ja) 2001-05-14 2006-01-05 株式会社ケンウッド 直交周波数分割多重信号受信装置及び直交周波数分割多重信号受信方法
US6738370B2 (en) 2001-08-22 2004-05-18 Nokia Corporation Method and apparatus implementing retransmission in a communication system providing H-ARQ
JP3851143B2 (ja) 2001-11-05 2006-11-29 三菱電機株式会社 変調方式識別回路、これを備えた受信装置、無線局、及び変調方式識別方法
JP3591726B2 (ja) * 2001-12-07 2004-11-24 ソニー株式会社 データ通信制御システム、送信機及び送信方法
AU2003210505A1 (en) 2002-01-16 2003-09-02 Aviom, Inc. System and method for transmitting audio or video data using multiple levels of protection
JP3882673B2 (ja) 2002-05-01 2007-02-21 双葉電子工業株式会社 4値fsk変調方式
JP2004200972A (ja) 2002-12-18 2004-07-15 Kepusutoramu:Kk 信号のスクランブル・スクランブル解除方法及びシステム
JP3836810B2 (ja) 2003-05-02 2006-10-25 松下電器産業株式会社 データ送信装置
US7876838B2 (en) 2003-06-19 2011-01-25 Univ Sydney Low complexity multi-channel modulation method and apparatus
US8494071B2 (en) 2003-12-08 2013-07-23 Kabushiki Kaisha Kenwood Device and method for correcting a data error in communication path
JP4388366B2 (ja) 2003-12-26 2009-12-24 株式会社ケンウッド 送信装置、受信装置、データ送信方法、データ受信方法及びプログラム
JP4287778B2 (ja) * 2004-03-31 2009-07-01 株式会社ケンウッド 通信品質判定装置及び通信品質判定方法
US7356088B2 (en) 2004-04-29 2008-04-08 Texas Instruments Incorporated M-dimension M-PAM trellis code system and associated trellis encoder and decoder
JP4542405B2 (ja) 2004-09-30 2010-09-15 株式会社ケンウッド ベースバンド信号生成装置、ベースバンド信号生成方法及びプログラム

Also Published As

Publication number Publication date
RU2009115010A (ru) 2010-10-27
US8498355B2 (en) 2013-07-30
CN1890934B (zh) 2011-10-12
JP2005175645A (ja) 2005-06-30
WO2005055542A1 (ja) 2005-06-16
CN1890934A (zh) 2007-01-03
EP1694016B1 (en) 2012-08-15
EP1694016A1 (en) 2006-08-23
EP1694016A4 (en) 2009-01-14
RU2006124562A (ru) 2008-01-20
DE09005333T1 (de) 2010-01-21
RU2488225C2 (ru) 2013-07-20
JP4220365B2 (ja) 2009-02-04
CN101567757A (zh) 2009-10-28
EP2081341A1 (en) 2009-07-22
US20070136637A1 (en) 2007-06-14
EP2081341B1 (en) 2011-05-25
DE04801682T1 (de) 2007-02-08

Similar Documents

Publication Publication Date Title
US6345251B1 (en) Low-rate speech coder for non-speech data transmission
US6158041A (en) System and method for I/Q trellis coded modulation
JP5377757B2 (ja) エンコーダ、デコーダ、符号化、及び復号化方法
US5134635A (en) Convolutional decoder using soft-decision decoding with channel state information
RU2377732C2 (ru) Способ и устройство для исправления ошибок данных в канале связи
US6944206B1 (en) Rate one coding and decoding methods and systems
US8218682B2 (en) Digital signal transmitting apparatus
US6389572B1 (en) Method of extracting bits from modulated waveforms
US8396219B2 (en) Scrambler, scramble processing method, and program
US8023585B2 (en) Apparatus and method for transmitting or receiving data
US8494071B2 (en) Device and method for correcting a data error in communication path
RU2375830C2 (ru) Способ для генерирования сигнала основной полосы и устройство для его осуществления, а также программа, заставляющая компьютер выполнять упомянутый способ
JP4983754B2 (ja) 送信装置、受信装置、データ送信方法、データ受信方法及び無線通信システム
Lu et al. Reducing signal distortion due to transmission error via multiresolution digital modulations
KR101524780B1 (ko) 유사 골레이 시퀀스를 이용한 통신 장치 및 그 데이터 송수신 방법
Ajibodu et al. Reduction of white noise in a communication channel
KR101713063B1 (ko) 복수 프레임 전송 시스템의 패러티 프레임 전송 및 복호 방법
JP4542623B2 (ja) スクランブラ、スクランブル処理方法及びプログラム