RU2368643C2 - Способ очистки масел - Google Patents

Способ очистки масел Download PDF

Info

Publication number
RU2368643C2
RU2368643C2 RU2007136269/04A RU2007136269A RU2368643C2 RU 2368643 C2 RU2368643 C2 RU 2368643C2 RU 2007136269/04 A RU2007136269/04 A RU 2007136269/04A RU 2007136269 A RU2007136269 A RU 2007136269A RU 2368643 C2 RU2368643 C2 RU 2368643C2
Authority
RU
Russia
Prior art keywords
filter
water
porous
hydrophobic
separation
Prior art date
Application number
RU2007136269/04A
Other languages
English (en)
Inventor
Олег Дмитриевич Звягин (RU)
Олег Дмитриевич Звягин
Виталий Евгеньевич Константинов (RU)
Виталий Евгеньевич Константинов
Алексей Владимирович Фролов (RU)
Алексей Владимирович Фролов
Александр Фадеевич Бобров (RU)
Александр Фадеевич Бобров
Сергей Анатольевич Галко (RU)
Сергей Анатольевич Галко
Original Assignee
Общество с ограниченной ответственностью ООО "Вита Инвест"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью ООО "Вита Инвест" filed Critical Общество с ограниченной ответственностью ООО "Вита Инвест"
Priority to RU2007136269/04A priority Critical patent/RU2368643C2/ru
Application granted granted Critical
Publication of RU2368643C2 publication Critical patent/RU2368643C2/ru

Links

Images

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

Изобретение относится к энергетике, авиационной, пищевой, медицинской, электротехнической и автомобильной промышленности для очистки и возможной регенерации углеводородных сред минерального и растительного происхождения и, в частности масел. Изобретение касается способа очистки масел, в котором отделение, коагуляцию и сепарацию осуществляют в тангенциальном режиме на сепарирующих и коагулирующих пористых перегородках фильтра, выполненных в виде сэндвича из нескольких коаксиальных цилиндрических поверхностей из высокопористого ячеистого металла - ВПЯМ, при этом при отделении по внешней образующей наружной пористой перегородки с нанесенным гидрофобным фторопластовым покрытием, основная часть механических примесей и воды размером больше номинального размера пор турбулентным потоком постоянно выносится в собранный в виде двух сообщающихся коаксиальных обечаек разделитель, с установленным, с увеличивающимся размером пор по ходу потока набором круглых пористых перегородок из ВПЯМ для коагуляции микрокапель воды, на перфорированном дне стакана в верхней части внутренней обечайки, концентрации и сгущении загрязнений при седиментации в объеме последней, дальнейшем разделении на гидрофобной сетке, установленной в коаксиальном зазоре в нижней части обечаек, подаче отстоя на вход насоса, а очистка тангенциального потока жидкой среды осуществляется при коагуляции микрокапель воды на последующих цилиндрических перегородках из ВПЯМ фильтра, выполненных с увеличивающимся размером пор по ходу потока, сепарации прошедших микрокапель воды на гидрофобной, с горизонтальными и вертикальными дренажными окнами - проточками, внутренней поверхности последней перегородки со сбором и осаждением их в коллекторе и регенерации фильтра обратным током очищенной среды. 2 табл., 2 ил.

Description

Изобретение относится к области очистки масел и может быть использовано в энергетике, авиационной, пищевой, медицинской, электротехнической и автомобильной промышленности для очистки и возможной регенерации углеводородных жидкостей минерального и растительного происхождения и, в частности масла.
Известен способ (1) очистки масел, заключающийся в отделении механических примесей и воды в поле центробежных сил создаваемого при вращении ротора, приводимого в движение от какого-либо привода, или при использовании энергии жидкого потока. При этом механические примеси и вода как более тяжелые компоненты жидкой среды отбрасываются центробежной силой к стенке ротора и отводятся через отверстие регулировочной шайбы, а очищенная среда перемещается к оси ротора и поступает в отводящий патрубок центрифуги. Однако при осуществлении способа необходима закрутка большого объема масла, что приводит к увеличению габаритных размеров и массы последней, большой энергоемкости, потребности в постоянном обслуживании.
Известен способ (2) очистки масел, заключающийся в тангенциальном отделении механических примесей и воды при движении масла по внутренним объемам пористых гидрофобных трубок и последующей доочистке на коалесцирующих и сорбирующих фильтрах. Однако при его реализации необходимы дополнительные энергозатраты для подготовки жидкой среды (при нагревании часть эмульгированной воды переходит в растворенное состояние), а также для отделения накопленной воды из объемов сорбирующих фильтров и подохлаждения фильтрата, при этом эффективность разделения резко падает при накоплении мех. примесей и воды в объемах последних.
Известен способ (3), принятый за ближайший аналог, заключающийся в отделении механических примесей на фильтрующей перегородке, укрупнении микрокапель при прохождении среды через коагулирующую перегородку с последующим их отрывом от ее поверхности под действием сил тяжести, отделении нескоагулировавшихся микрокапель воды на поверхности водоотталкивающей перегородки, последующем осаждении скоагулировавшихся капель в отстойнике. При этом используется только кинетическая энергия потока очищаемой среды и отсутствует необходимость в использовании какой-либо механической или электрической энергии. Однако при осуществлении способа относительно невелик ресурс фильтрующей перегородки, велика трудоемкость замены выработавших свой ресурс водоотделяющих и фильтрующих элементов, а также резко снижается эффективность водоотделения при повышении вязкости углеводородных жидкостей, кроме того, эффективность очистки существенно зависит от конструктивных параметров коагулирующей и водоотделяющей перегородок, а также гидродинамических характеристик потока жидкой среды.
Анализ приведенного уровня техники свидетельствует о том, что задачей изобретения является снижение энергозатрат и повышение эффективности при очистке углеводородных жидкостей.
Это достигается тем, что согласно изобретению отделение и коагуляция осуществляются в тангенциальном режиме на сепарирующих и коагулирующих пористых перегородках фильтра, выполненных в виде сэндвича из нескольких коаксиальных цилиндрических поверхностей из высокопористого ячеистого металла - ВПЯМ, при этом при отделении по внешней образующей наружной пористой перегородки с нанесенным гидрофобным фторопластовым покрытием, основная часть механических примесей и воды размером больше номинального размера пор турбулентным потоком постоянно выносится в разделитель, который связан с линией подачи исходного масла, собранный в виде двух сообщающихся коаксиальных обечаек, с установленным, с увеличивающимся размером пор по ходу потока набором круглых пористых перегородок из ВПЯМ для коагуляции микрокапель, на перфорированном дне стакана в верхней части внутренней обечайки, концентрации и сгущении загрязнений при седиментации в объеме последней, дальнейшем разделении на гидрофобной сетке, установленной в коаксиальном зазоре нижней части обечаек, подаче отстоя на вход насоса. Очистка тангенциального потока жидкой среды осуществляется при коагуляции микрокапель воды на последующих цилиндрических перегородках из ВПЯМ фильтра, выполненных с увеличивающимся размером пор по ходу потока, отделении прошедших микрокапель воды на гидрофобной, с горизонтальными и вертикальными дренажными окнами - проточками, внутренней поверхности последней перегородки со сбором и осаждением их в коллекторе, при этом с фильтра выводят очищенное масло, а регенерацию фильтра осуществляют обратным потоком очищенной среды.
На фиг.1 представлена схема реализации способа.
Устройство содержит приемочный бак 1, связанный трубопроводом 2 с насосом 3. Выход насоса 3 соединен трубопроводом 4 с предфильтром 5 и трубопроводом 6 с фильтром 7. Один из выходов фильтра 7 связан трубопроводом 8 с краном 9 с внутренним объемом разделителя 10 его стаканом 11. Верхняя часть внешней обечайки разделителя 10 соединена трубопроводом 12 с краном 13 с входом насоса 3, а в нижней ее части имеется патрубок с краном 14 для эвакуации концентрата и слива воды. Второй выход фильтра 7 трубопроводами 15, 16 через кран 17 связан со сборным баком 18 для очищенной жидкой углеводородной среды. Первый и второй выходы фильтра 7 отделены краном 19. Сборный бак 18 трубопроводами 20, 21 через краны 22, 23 соединены с насосом 24 для подачи очищенного масла при регенерации обратным током фильтра 7. Насос 3 снабжен байпасным трубопроводом и кранами 25, 26. Предфильтр 5 и фильтр 7 в нижней своей части снабжены патрубками с кранами 27, 28 и 40 для удаления загрязнений воды и механических частиц при регенерации. Разделитель 10, связанный с линией подачи исходного масла, выполнен из двух сообщающихся в нижней части коаксиальных обечаек 29 и 30, в верхней части внутренней обечайки размещен стакан 11, на перфорированном дне которого установлен набор круглых пористых перегородок 31 из ВПЯМ с увеличивающимся размером пор по ходу потока, а в коаксиальном зазоре в нижней части обечаек 29, 30 размещена гидрофобная сетка 32 для отделения нескоагулированных микрокапель воды.
Фильтр 7, фиг.2, выполнен в виде сэндвича из нескольких коаксиальных цилиндрических пористых перегородок 33 из ВПЯМ, наружная из которых 34 - разделительная, а также внутренняя поверхность 35 с дренажными горизонтальными и вертикальными проточками последней перегородки 36 выполнены с гидрофобным покрытием. В нижней части фильтра 7 имеется коллектор 37 для сбора отделенной воды. Устройство снабжено разделительными кранами 38, 39. Для обеспечения режима многократной очистки сборный бак 18 с кранами 41 и 42 снабжен трубопроводом 43 с отсечным краном 44.
Способ осуществляется следующим образом.
Масло из приемочного бака 1 через трубопровод 2 насосом 3 подается по трубопроводу 4 на предфильтр 5, где происходит предварительная очистка от механических частиц, а далее по трубопроводу 6 на фильтр 7. На фильтре 7 в тангенциальном режиме на его гидрофобной перегородке 34, выполненной из высокопористого ячеистого металла (ВПЯМ) с нанесением фторопластового покрытия, часть потока с основным объемом загрязнений - механических частиц и капель воды размером больше номинального размера пор, постоянно подается в разделитель 10, связанный с линией подачи исходного масла, где происходит коагуляция капелек воды на наборе круглых пористых перегородок 31 из ВПЯМ с увеличивающимся размером пор по ходу потока, установленного на перфорированном дне стакана 11 в верхней части внутренней обечайки 30. Во внутреннем объеме обечайки 30 при седиментации в поле сил тяжести происходит концентрированно и сгущение загрязнений, а нескоагулированные микрокапли воды отделяются на гидрофобной сетке 32, установленной в коаксиальном зазоре в нижней части обечаек 29, 30. Отстой подается на вход насоса 3. Очистка тангенциального потока жидкой среды осуществляется при коагуляции микрокапель воды на последующих цилиндрических перегородках 33 из ВПЯМ фильтра, выполненных с возрастающим размером пор по ходу потока, и отделении прошедших микрокапель воды на гидрофобной внутренней поверхности 35 последней перегородки 36 с горизонтальными и вертикальными дренажными окнами - проточками и сборе и осаждении воды в коллекторе 37 фильтра 7. Для регенерации фильтра 7 закрываются краны 14, 9, 38, открываются краны 22, 23, 40, и насосом 24 чистая среда из сборного бака 18 обратным током подается на выход фильтра 7, накопленные механические частицы таким образом удаляются с пористых поверхностей перегородок фильтра 7, после его промывки закрываются краны 22, 23, 40 и открываются краны 14, 9, 38, подача чистой среды насосом 24 прекращается, устройство готово к работе.
Таким образом, использование предлагаемого способа за счет постоянного отделения основного объема механических частиц и эмульгированной воды из турбулентного потока жидкой среды и дальнейшей доочистке уже менее загрязненного потока позволяет существенно снизить энергозатраты и повысить эффективность очистки углеводородных сред.
Пример 1.
Для оценки возможности реализации способа очистки масла использовались образцы отработанного гидравлического МГЕ-10А (ГОСТ 8581-78) и турбинного масла Тп-22с (ГОСТ 32-74)(отработанные масла сливались с изделий). Однократно последовательно масла прокачивались насосом через предфильтр с 15-микронными фильтроэлементами и подавались на фильтр, где в тангенциальном режиме на гидрофобной перегородке, выполненной из высокопористого ячеистого металла (ВПЯМ) с нанесением фторопластового покрытия, часть потока с основным объемом загрязнений - механических частиц и капель воды размером больше номинального размера пор постоянно подавалась в разделитель, связанный с линией подачи исходного масла. В разделителе осуществлялась коагуляция капелек воды на наборе круглых пористых перегородок из ВПЯМ, установленных на перфорированном дне стакана с увеличивающимся размером пор по ходу потока в верхней части внутренней обечайки. В объеме внутренней обечайки при седиментации в поле сил тяжести происходило концентрирование и сгущение загрязнений. При этом нескоагулированные микрокапли воды отделялись на гидрофобной сетке, размещенной в коаксиальном зазоре в нижней части обечаек. Отстой подавался на вход насоса. Очистка тангенциального потока жидкой среды осуществлялась при коагуляции микрокапель воды на последующих цилиндрических пористых перегородках ВПЯМ фильтра, выполненных с увеличивающимся размером пор походу потока. Масло отделялось от проскоков микрокапель воды на гидрофобной внутренней поверхности последней перегородки с вертикальными и горизонтальными дренажными окнами - проточками. В коллекторе происходил сбор и осаждение капелек воды. Перед испытаниями гидравлического и турбинного масел была проведена отмывка фильтрующих элементов с последующей осушкой под вакуумом. Результаты стендовых испытаний с оценкой качества масел приведены в таблице 1.
Таблица 1
Результаты стендовых испытаний по очистке масла.
Показатель качества Значение показателя качества масла
Гидравлическое МГЕ-10А Турбинное Тп-22с
До очистки После очистки Свежее ГОСТ 8581-78 До очистки После очистки Свежее ГОСТ 32-74
Содержание механических загрязнений, % 1,23 0,03 не более 0,003 1,45 0,04 отс.
Содержание воды, % 3,52 0,08 отс. 2,63 0,07 отс.
Пример 2.
Оценка реализации заявленного способа проводилась на отработанном трансформаторном масле ТК ГОСТ 982-85, слитом с изделия. Последовательно масло подавалось на предфильтр и фильтр в тангенциальном режиме. При этом турбулентным потоком часть масла с отделенными твердыми частицами и капельками воды с характерными размерами больше номинального размера пор внешней пористой перегородки с гидрофобным фторопластовым покрытием фильтра постоянно выносилась в разделитель. Разделитель связан с линией подачи исходного масла и собран в виде двух сообщающихся обечаек, с установленным, с увеличивающимся размером пор по ходу потока набором круглых пористых перегородок из ВПЯМ для коагуляции микрокапель воды, на перфорированном дне стакана в верхней части внутренней обечайки. В объеме последней при седиментации происходила концентрация и сгущение загрязнений, причем дальнейшее разделение выполнялось на гидрофобной сетке, размещенной в коаксиальном зазоре в нижней части обечаек. Очистка тангенциального потока жидкой среды осуществлялась при коагуляции микрокапель воды на последующих цилиндрических перегородках ВПЯМ фильтра, выполненных с увеличивающимся размером пор по ходу потока, с отделением прошедших микрокапель воды на гидрофобной, с горизонтальными и вертикальными дренажными окнами - проточками внутренней поверхности последней перегородки, со сбором и осаждением их в коллекторе. После однократной перекачки проведена оценка массового содержания в масле твердых частиц и свободной воды. Результаты приведены в таблице 2.
Таблица 2
Результаты очистки отработанного трансформаторного масла
Вариант фильтрования Показатели содержания твердых частиц, мас.% Показатели содержания свободной воды, мас.%
До очистки После очистки До очистки После очистки
Один цикл 1,75 0,083 3,46 0,092
Таким образом, использование предложенного способа позволяет обеспечить значительную очистку отработанного масла от твердых частиц загрязнений и свободной воды.
Литература
1. Л.О.Маневич. Обработка трансформаторных масел. - М.: Энергия, 1975, гл.3.
2. Патент №2135256 кл. С1, РФ, 1999 г.
3. В.Г.Коваленко, В.В.Середа. Автомобильные транспортно-заправочные средства для нефтяных и газовых топлив. - М.: ООО «Владмар», 2005, гл.10.

Claims (1)

  1. Способ очистки масел, включающий подачу исходного масла, отделение механических примесей на разделительной перегородке фильтра, коагуляцию - укрупнение микрокапель при прохождении среды через коагулирующую перегородку с дальнейшим их отрывом от ее поверхности под действием сил тяжести, отделение нескоагулировавшихся микрокапель на поверхности его гидрофобной перегородки, последующее осаждение скоагулировавшихся капель в коллекторе, отличающийся тем, что масло подают в предфильтр, отделение и коагуляцию осуществляют в тангенциальном режиме на сепарирующих и коагулирующих пористых перегородках фильтра, выполненных в виде сэндвича из нескольких коаксиальных цилиндрических поверхностей из высокопористого ячеистого металла - ВПЯМ, при этом при отделении по внешней образующей наружной пористой перегородки с нанесенным гидрофобным фторопластовым покрытием основная часть механических примесей и воды размером больше номинального размера пор турбулентным потоком среды постоянно выносится в разделитель, который связан с линией подачи исходного масла, собранный в виде двух сообщающихся коаксиальных обечаек, с установленным, с увеличивающимся размером пор по ходу потока набором круглых пористых перегородок из ВПЯМ для коагуляции микрокапель воды, на перфорированном дне стакана в верхней части внутренней обечайки, концентрации и сгущении загрязнений при седиментации в объеме последней, дальнейшем разделении на гидрофобной сетке, установленной в коаксиальном зазоре в нижней части обечаек, подаче отстоя на вход насоса, а очистка тангенциального потока жидкой среды осуществляется при коагуляции микрокапель воды на последующих цилиндрических перегородках из ВПЯМ фильтра, выполненных с увеличивающимся размером пор по ходу потока, отделении прошедших микрокапель воды на гидрофобной, с горизонтальными и вертикальными дренажными окнами - проточками, внутренней поверхности последней перегородки со сбором и осаждением их в коллекторе, при этом с фильтра выводят очищенное масло, а регенерацию фильтра осуществляют обратным током очищенной среды.
RU2007136269/04A 2007-10-02 2007-10-02 Способ очистки масел RU2368643C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2007136269/04A RU2368643C2 (ru) 2007-10-02 2007-10-02 Способ очистки масел

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2007136269/04A RU2368643C2 (ru) 2007-10-02 2007-10-02 Способ очистки масел

Publications (1)

Publication Number Publication Date
RU2368643C2 true RU2368643C2 (ru) 2009-09-27

Family

ID=41169741

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007136269/04A RU2368643C2 (ru) 2007-10-02 2007-10-02 Способ очистки масел

Country Status (1)

Country Link
RU (1) RU2368643C2 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2443753C1 (ru) * 2010-12-28 2012-02-27 Общество с ограниченной ответственностью "ЭнергоСтройИнвест" Способ очистки жидких углеводородов
RU2547750C1 (ru) * 2014-01-31 2015-04-10 Федеральное автономное учреждение "25 Государственный научно-исследовательский институт химмотологии Министерства обороны Российской Федерации" Способ очистки технических масел
RU2763134C1 (ru) * 2020-09-15 2021-12-27 Иван Соломонович Пятов Фильтроэлемент для фильтрации жидкости
RU2815781C1 (ru) * 2023-05-24 2024-03-21 Федеральное государственное автономное образовательное учреждение высшего образования "Российский университет транспорта" (ФГАОУ ВО РУТ (МИИТ), РУТ (МИИТ) Способ очистки технических масел

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Коваленко В.Г., Середа В.В. Автомобильные транспортно-заправочные средства для нефтяных и газовых топлив. - М.: ООО "Владмар", 2005, гл.10. *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2443753C1 (ru) * 2010-12-28 2012-02-27 Общество с ограниченной ответственностью "ЭнергоСтройИнвест" Способ очистки жидких углеводородов
RU2547750C1 (ru) * 2014-01-31 2015-04-10 Федеральное автономное учреждение "25 Государственный научно-исследовательский институт химмотологии Министерства обороны Российской Федерации" Способ очистки технических масел
RU2763134C1 (ru) * 2020-09-15 2021-12-27 Иван Соломонович Пятов Фильтроэлемент для фильтрации жидкости
WO2022060248A1 (ru) * 2020-09-15 2022-03-24 Иван Соломонович ПЯТОВ Фильтроэлемент для фильтрации жидкости
RU2823404C1 (ru) * 2022-05-27 2024-07-23 Сани Хэви Эквипмент Ко., Лтд. Система оперативной очистки масла туннелепроходческой машины и туннелепроходческая машина
RU2815781C1 (ru) * 2023-05-24 2024-03-21 Федеральное государственное автономное образовательное учреждение высшего образования "Российский университет транспорта" (ФГАОУ ВО РУТ (МИИТ), РУТ (МИИТ) Способ очистки технических масел

Similar Documents

Publication Publication Date Title
KR101545021B1 (ko) 윤활제의 정화를 위한 장치와 방법 및 윤활제 회로
CN202724862U (zh) 一种油净化装置
US3450264A (en) Method of and apparatus for cleaning liquids
RU2524215C1 (ru) Устройство для очистки дизельного топлива от загрязнений
RU2368643C2 (ru) Способ очистки масел
JP2015073983A (ja) 船舶の機関室ビルジ処理システム
CN203807424U (zh) 由废润滑油再生基础油的装置
CN103752072A (zh) 一种带自动反冲洗功能的油水分离设备
RU2372295C1 (ru) Установка для очистки нефтесодержащих жидкостей
RU2472570C1 (ru) Сепаратор для очистки газа
CN108503055A (zh) 处理含油废水的新型油水分离装置
CN203079727U (zh) 一种处理油田采出水应用于回注的膜装置
CN108654180B (zh) 污水旋转过滤方法以及用于污水处理的过滤器
RU120100U1 (ru) Установка для очистки и осветления отработанных минеральных масел
US11104863B2 (en) Separation of contaminants from a liquid mixture
CN110078161A (zh) 一种海上平台生产废水紧凑高效除油的装置及方法
RU2547750C1 (ru) Способ очистки технических масел
RU2503622C1 (ru) Установка для очистки промышленных сточных вод
CN115557631A (zh) 一种集旋流-气浮-介质聚结于一体的油水分离装置和方法
RU2443753C1 (ru) Способ очистки жидких углеводородов
CN108865397B (zh) 一种废油、废乳化液处理再生装置
CN201704138U (zh) 铁路罐车机械清洗污水密闭处理装置
CN102583830A (zh) 一种一体化污水净化过滤机
CN207891149U (zh) 一种洗舱废水收集罐
CN205435173U (zh) 一种高粘度真空净油机***

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20091003