RU2368024C1 - Скважинный импульсный нейтронный генератор - Google Patents

Скважинный импульсный нейтронный генератор Download PDF

Info

Publication number
RU2368024C1
RU2368024C1 RU2007146641/28A RU2007146641A RU2368024C1 RU 2368024 C1 RU2368024 C1 RU 2368024C1 RU 2007146641/28 A RU2007146641/28 A RU 2007146641/28A RU 2007146641 A RU2007146641 A RU 2007146641A RU 2368024 C1 RU2368024 C1 RU 2368024C1
Authority
RU
Russia
Prior art keywords
vacuum
neutron tube
neutron
tube
central
Prior art date
Application number
RU2007146641/28A
Other languages
English (en)
Other versions
RU2007146641A (ru
Inventor
Евгений Петрович Боголюбов (RU)
Евгений Петрович Боголюбов
Алексей Алексеевич Битулёв (RU)
Алексей Алексеевич Битулёв
Валентин Иванович Рыжков (RU)
Валентин Иванович Рыжков
Игорь Гаврилович Курдюмов (RU)
Игорь Гаврилович Курдюмов
Юрий Павлович Кузнецов (RU)
Юрий Павлович Кузнецов
Андрей Николаевич Пономарёв (RU)
Андрей Николаевич Пономарёв
Original Assignee
Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" (ФГУП "ВНИИА")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" (ФГУП "ВНИИА") filed Critical Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" (ФГУП "ВНИИА")
Priority to RU2007146641/28A priority Critical patent/RU2368024C1/ru
Publication of RU2007146641A publication Critical patent/RU2007146641A/ru
Application granted granted Critical
Publication of RU2368024C1 publication Critical patent/RU2368024C1/ru

Links

Landscapes

  • Particle Accelerators (AREA)

Abstract

Использование: для проведения геофизических исследований скважин импульсными нейтронными методами. Сущность: заключается в том, что все элементы электрической схемы питания вакуумной нейтронной трубки выполнены в виде тел вращения с центральными отверстиями, соединены между собой механически и электрически с помощью резьбовых электрических контактов с центральными отверстиями, а с вакуумной нейтронной трубкой - через чашеобразные резьбовые втулки с центральным и боковыми отверстиями, установленные на мишени и аноде вакуумной нейтронной трубки, вакуумная нейтронная трубка и электрическая схема питания помещены в полый тонкостенный цилиндр с наружным диаметром, меньшим внутреннего диаметра герметичного корпуса, между наружной стенкой тонкостенного цилиндра и внутренней стенкой герметичного корпуса образована наружная полость, заполненная жидким диэлектриком, сообщающаяся с внутренней полостью, образованной центральными отверстиями в охлаждаемых элементах электрической схемы питания вакуумной нейтронной трубки. Технический результат: повышение ресурса работы нейтронного генератора при повышенной температуре окружающей среды. 1 ил.

Description

Изобретение относится к области физического приборостроения, в частности к источникам нейтронного излучения, и предназначено для проведения геофизических исследований скважин импульсными нейтронными методами.
Известен малогабаритный генератор нейтронов (см., например, Геофизическая аппаратура. Недра, вып.43, 1970 г., с.132-146), содержащий нейтронную трубку и высоковольтный источник напряжения питания, выполненный на накопительном конденсаторе, включенном между высоковольтным источником питания и первичной обмоткой высоковольтного импульсного трансформатора (в случае биполярного питания - первичными обмотками высоковольтного импульсного трансформатора).
Однако известный генератор нейтронов имеет малый ресурс работы.
Поскольку для работы нейтронной трубки требуется высоковольтное питающее напряжение, то при малом диаметре генератора нейтронов с плотной компоновкой элементов схемы основное внимание уделяют обеспечению электропрочности схемы. При этом теплоотдача от источников энергии на внешнюю поверхность корпуса генератора происходит только через теплопроводность материалов.
Так как применяемые электроизоляционные материалы имеют низкую теплопроводность, то температура тепловыделяющих элементов внутри объема генератора может на (60-100)°С превышать температуру окружающей среды, что приводит к быстрому старению изоляции и сокращению срока службы нейтронного генератора.
Известно охлаждающее устройство с замкнутым циклом циркулирующего теплоносителя (см., например, патент РФ №2127456, кл. G12B 15/02, 1997), выполненное в защитном герметичном кожухе и содержащее соосный шток относительного перемещения, охлаждаемый элемент, теплоноситель, рабочую камеру и две кольцевые полости, примыкающие к ней с двух сторон. Рабочая камера связана с первой полостью обратным клапаном, а со второй - регулирующим клапаном. Первая полость примыкает к поршню на штоке. Вторая кольцевая полость образована сообщающимися двойными с зазором стенками, полыми торцем и теплоотводом и через второй обратный клапан - с первой кольцевой полостью.
Однако известное устройство требует установки в объем охлаждающего устройства дополнительных элементов (штока с поршнем, клапанов), что при ограниченных габаритах устройства недопустимо.
За прототип выбран малогабаритный генератор нейтронов, описанный в журнале Геофизическая аппаратура. Недра, вып.43, 1970 г., с.132-146.
Предложенный скважинный импульсный нейтронный генератор решает задачу повышения ресурса работы при повышенной температуре окружающей среды простыми средствами.
Для этого в скважинном импульсном нейтронном генераторе, содержащем вакуумную нейтронную трубку и электрическую схему питания вакуумной нейтронной трубки, состоящую из двух импульсных высоковольтных трансформаторов, конденсатора накопительного схемы формирования ускоряющего импульса, конденсатора источника питания нейтронной трубки и зарядного дросселя, размещенных в герметичном корпусе, все элементы электрической схемы питания вакуумной нейтронной трубки выполнены в виде тел вращения с центральными отверстиями, соединены между собой механически и электрически с помощью резьбовых электрических контактов с центральными отверстиями, а с вакуумной нейтронной трубкой - через чашеобразные резьбовые втулки с центральным и боковыми отверстиями, установленные на мишени и аноде вакуумной нейтронной трубки, вакуумная нейтронная трубка и электрическая схема питания помещены в полый тонкостенный цилиндр с наружным диаметром, меньшим внутреннего диаметра герметичного корпуса, между наружной стенкой тонкостенного цилиндра и внутренней стенкой герметичного корпуса образована наружная полость, заполненная жидким диэлектриком, сообщающаяся с внутренней полостью, образованной центральными отверстиями в охлаждаемых элементах электрической схемы питания вакуумной нейтронной трубки.
На чертеже представлена функциональная схема скважинного импульсного нейтронного генератора
Скважинный импульсный нейтронный генератор содержит вакуумную нейтронную трубку 1 и электрическую схему питания вакуумной нейтронной трубки, состоящую из высоковольтного трансформатора 2 отрицательной полярности импульсов, высоковольтного трансформатора 3 положительной полярности импульсов, конденсатора 4 источника питания нейтронной трубки, зарядного дросселя 5, конденсатора накопительного 6 схемы формирования ускоряющего импульса. Все элементы электрической схемы питания вакуумной нейтронной трубки 1 выполнены в виде цилиндров с центральными отверстиями, установлены последовательно, соединены между собой резьбовыми электрическими контактами 7 и размещены в тонкостенном цилиндре 8, наружный диаметр которого меньше внутреннего диаметра герметичного корпуса 9. На мишени 10 и аноде 11 нейтронной трубки 1 установлены чашеобразные резьбовые втулки 12 и 13 с центральными и боковыми отверстиями.
В торце герметичного корпуса 9 размещен компенсатор 14.
Между наружной стенкой тонкостенного цилиндра 8 и внутренней стенкой герметичного корпуса 9 образуется наружная полость 15, сообщающаяся с внутренней полостью 16, образованной центральными отверстиями в элементах электрической схемы питания вакуумной нейтронной трубки. Полости 15 и 16 заполнены жидким диэлектриком и обеспечивают циркуляцию жидкого диэлектрика в скважинном импульсном нейтронном генераторе.
Конвективный теплообмен происходит следующим образом.
В качестве теплоносителя используется жидкий диэлектрик.
Для организации конвективного теплообмена в скважинном импульсном нейтронном генераторе образован замкнутый контур для циркуляции жидкого диэлектрика, состоящий из коаксиальных полостей 15, 16, образованных промежутком между внутренней стенкой корпуса 9 генератора и тонкостенным цилиндром 8 и центральными отверстиями элементов электрической схемы питания нейтронной трубки 1, соединенных между собой через отверстия в чашеобразных резьбовых втулках 12 и 13.
Рабочее положение скважинного импульсного нейтронного генератора - вертикальное мишенью вверх. Жидкий диэлектрик, заполняющий внутреннюю полость 16, нагревается от мишени 10 и анода 11 нейтронной трубки 1, являющихся основными источниками тепла, и, расширяясь, выходит во внешнюю полость 15. Во внешней полости 15 через поверхность герметичного корпуса 9 жидкий диэлектрик охлаждается и опускается вниз, обеспечивая таким образом циркуляцию жидкого диэлектрика - теплоносителя.
Компенсатор 14, выполненный, например, в виде сильфона, служит для компенсации изменения объема жидкого диэлектрика при изменении температуры.
Использование для охлаждения элементов схемы естественного конвективного теплообмена позволило по сравнению с известными техническими решениями осуществить охлаждение элементов схемы простыми средствами без использования дополнительных элементов, усложняющих устройство.
Выполнение скважинного импульсного генератора в соответствии с предложенным техническим решением позволило более чем в два раза снизить перегрев электродов нейтронной трубки, являющихся основным источником тепла.
Ресурс работы скважинного импульсного нейтронного генератора достигает 50-ти часов при температуре окружающей среды 150°С и 100 часов при температуре 120°С, т.е. приблизительно на порядок выше, чем у прототипа.

Claims (1)

  1. Скважинный импульсный нейтронный генератор, содержащий вакуумную нейтронную трубку и электрическую схему питания вакуумной нейтронной трубки, состоящую из двух высоковольтных трансформаторов, конденсатора накопительного, схемы формирования ускоряющего импульса, конденсатора источника питания нейтронной трубки и зарядного дросселя, размещенных в герметичном корпусе, отличающийся тем, что все элементы электрической схемы питания вакуумной нейтронной трубки выполнены в виде тел вращения с центральными отверстиями, соединены между собой механически и электрически с помощью резьбовых электрических контактов с центральными отверстиями, а с вакуумной нейтронной трубкой - через чашеобразные резьбовые втулки с центральным и боковыми отверстиями, установленные на мишени и аноде вакуумной нейтронной трубки, вакуумная нейтронная трубка и электрическая схема питания помещены в полый тонкостенный цилиндр с наружным диаметром, меньшим внутреннего диаметра герметичного корпуса, между наружной стенкой тонкостенного цилиндра и внутренней стенкой герметичного корпуса образована наружная полость, заполненная жидким диэлектриком, сообщающаяся с внутренней полостью, образованной центральными отверстиями в охлаждаемых элементах электрической схемы питания вакуумной нейтронной трубки.
RU2007146641/28A 2007-12-19 2007-12-19 Скважинный импульсный нейтронный генератор RU2368024C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2007146641/28A RU2368024C1 (ru) 2007-12-19 2007-12-19 Скважинный импульсный нейтронный генератор

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2007146641/28A RU2368024C1 (ru) 2007-12-19 2007-12-19 Скважинный импульсный нейтронный генератор

Publications (2)

Publication Number Publication Date
RU2007146641A RU2007146641A (ru) 2009-06-27
RU2368024C1 true RU2368024C1 (ru) 2009-09-20

Family

ID=41026467

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007146641/28A RU2368024C1 (ru) 2007-12-19 2007-12-19 Скважинный импульсный нейтронный генератор

Country Status (1)

Country Link
RU (1) RU2368024C1 (ru)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2550088C1 (ru) * 2014-01-29 2015-05-10 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" (ФГУП "ВНИИА") Скважинный импульсный нейтронный генератор
RU2551485C1 (ru) * 2014-03-04 2015-05-27 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" (ФГУП "ВНИИА") Скважинный излучатель нейтронов
RU2574414C1 (ru) * 2014-11-25 2016-02-10 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" (ФГУП "ВНИИА") Скважинное устройство с двумя зондами из нескольких детекторов
RU2578050C1 (ru) * 2014-11-25 2016-03-20 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" (ФГУП "ВНИИА") Скважинное устройство с двухсторонним расположением измерительных зондов
RU2578048C1 (ru) * 2014-11-25 2016-03-20 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" (ФГУП "ВНИИА") Устройство для радиационного измерения плотности
RU2586450C2 (ru) * 2013-02-20 2016-06-10 Роук Технолоджис Лтд. Нейтронное измерение с использованием нескольких источников, устройство, система для его осуществления и их применение
RU2611591C1 (ru) * 2015-12-02 2017-02-28 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" (ФГУП "ВНИИА") Скважинное устройство гамма-гамма каротажа
RU2703449C1 (ru) * 2019-04-17 2019-10-17 Федеральное Государственное Унитарное Предприятие "Всероссийский Научно-Исследовательский Институт Автоматики Им.Н.Л.Духова" (Фгуп "Внииа") Блок излучателя нейтронов
RU2703518C1 (ru) * 2019-04-17 2019-10-18 Федеральное Государственное Унитарное Предприятие "Всероссийский Научно-Исследовательский Институт Автоматики Им.Н.Л.Духова" (Фгуп "Внииа") Импульсный нейтронный генератор
RU209936U1 (ru) * 2021-11-24 2022-03-24 Федеральное Государственное Унитарное Предприятие "Всероссийский Научно-Исследовательский Институт Автоматики Им.Н.Л.Духова" (Фгуп "Внииа") Импульсный нейтронный генератор

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Геофизическая аппаратура. - Недра, вып.43, 1970, с.132-146. *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2586450C2 (ru) * 2013-02-20 2016-06-10 Роук Технолоджис Лтд. Нейтронное измерение с использованием нескольких источников, устройство, система для его осуществления и их применение
RU2550088C1 (ru) * 2014-01-29 2015-05-10 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" (ФГУП "ВНИИА") Скважинный импульсный нейтронный генератор
RU2551485C1 (ru) * 2014-03-04 2015-05-27 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" (ФГУП "ВНИИА") Скважинный излучатель нейтронов
RU2574414C1 (ru) * 2014-11-25 2016-02-10 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" (ФГУП "ВНИИА") Скважинное устройство с двумя зондами из нескольких детекторов
RU2578050C1 (ru) * 2014-11-25 2016-03-20 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" (ФГУП "ВНИИА") Скважинное устройство с двухсторонним расположением измерительных зондов
RU2578048C1 (ru) * 2014-11-25 2016-03-20 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" (ФГУП "ВНИИА") Устройство для радиационного измерения плотности
RU2611591C1 (ru) * 2015-12-02 2017-02-28 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" (ФГУП "ВНИИА") Скважинное устройство гамма-гамма каротажа
RU2703449C1 (ru) * 2019-04-17 2019-10-17 Федеральное Государственное Унитарное Предприятие "Всероссийский Научно-Исследовательский Институт Автоматики Им.Н.Л.Духова" (Фгуп "Внииа") Блок излучателя нейтронов
RU2703518C1 (ru) * 2019-04-17 2019-10-18 Федеральное Государственное Унитарное Предприятие "Всероссийский Научно-Исследовательский Институт Автоматики Им.Н.Л.Духова" (Фгуп "Внииа") Импульсный нейтронный генератор
RU209936U1 (ru) * 2021-11-24 2022-03-24 Федеральное Государственное Унитарное Предприятие "Всероссийский Научно-Исследовательский Институт Автоматики Им.Н.Л.Духова" (Фгуп "Внииа") Импульсный нейтронный генератор
RU2773038C1 (ru) * 2021-11-24 2022-05-30 Федеральное Государственное Унитарное Предприятие "Всероссийский Научно-Исследовательский Институт Автоматики Им.Н.Л.Духова" (Фгуп "Внииа") Импульсный нейтронный генератор
RU2776026C1 (ru) * 2021-11-26 2022-07-12 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" (ФГУП "ВНИИА") Импульсный нейтронный генератор

Also Published As

Publication number Publication date
RU2007146641A (ru) 2009-06-27

Similar Documents

Publication Publication Date Title
RU2368024C1 (ru) Скважинный импульсный нейтронный генератор
Liang et al. Triboelectric nanogenerator network integrated with charge excitation circuit for effective water wave energy harvesting
CN115917953A (zh) 使用电脉冲的冷却模块
RU2399977C1 (ru) Блок излучателя нейтронов
RU71804U1 (ru) Скважинный импульсный нейтронный генератор
RU2551485C1 (ru) Скважинный излучатель нейтронов
RU2551840C1 (ru) Импульсный нейтронный генератор
RU2703518C1 (ru) Импульсный нейтронный генератор
RU155328U1 (ru) Импульсный нейтронный генератор
CN217426508U (zh) 一种油浸空心绝缘筒试验电抗器
RU165286U1 (ru) Импульсный нейтронный генератор
RU2541509C1 (ru) Блок излучателя нейтронов
RU2703449C1 (ru) Блок излучателя нейтронов
CN110071347B (zh) 一种用于低温地带的电池
Appelgren et al. Modeling of a small helical magnetic flux-compression generator
RU209634U1 (ru) Блок излучения нейтронов
RU147590U1 (ru) Скважинный генератор
RU2776026C1 (ru) Импульсный нейтронный генератор
RU139810U1 (ru) Скважинный импульсный нейтроный генератор
RU209869U1 (ru) Импульсный нейтронный генератор
RU2717091C1 (ru) Газоразрядный генератор высокочастотных импульсов
RU2550088C1 (ru) Скважинный импульсный нейтронный генератор
RU2491669C1 (ru) Блок излучателя нейтронов
CN106992481B (zh) 66kV至500kV电压等级的穿墙套管
UA137102U (uk) Пристрій для охолодження приладу свердловини