RU2366804C2 - Система и способ оптимизации добычи в скважине с искусственным подъемом - Google Patents

Система и способ оптимизации добычи в скважине с искусственным подъемом Download PDF

Info

Publication number
RU2366804C2
RU2366804C2 RU2006131565/03A RU2006131565A RU2366804C2 RU 2366804 C2 RU2366804 C2 RU 2366804C2 RU 2006131565/03 A RU2006131565/03 A RU 2006131565/03A RU 2006131565 A RU2006131565 A RU 2006131565A RU 2366804 C2 RU2366804 C2 RU 2366804C2
Authority
RU
Russia
Prior art keywords
pump
well
data
production
pressure
Prior art date
Application number
RU2006131565/03A
Other languages
English (en)
Other versions
RU2006131565A (ru
Inventor
Джулиан Р. КАДМОР (GB)
Джулиан Р. КАДМОР
Джулиан Б. ХАСКЕЛЛ (GB)
Джулиан Б. ХАСКЕЛЛ
Фрэнсис Кс. Т. МИРАНДА (GB)
Фрэнсис Кс. Т. МИРАНДА
Original Assignee
Шлюмбергер Текнолоджи Б.В.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Шлюмбергер Текнолоджи Б.В. filed Critical Шлюмбергер Текнолоджи Б.В.
Publication of RU2006131565A publication Critical patent/RU2006131565A/ru
Application granted granted Critical
Publication of RU2366804C2 publication Critical patent/RU2366804C2/ru

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/008Monitoring of down-hole pump systems, e.g. for the detection of "pumped-off" conditions
    • E21B41/0092
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/12Methods or apparatus for controlling the flow of the obtained fluid to or in wells
    • E21B43/121Lifting well fluids
    • E21B43/128Adaptation of pump systems with down-hole electric drives

Landscapes

  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • Operations Research (AREA)
  • Control Of Non-Positive-Displacement Pumps (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Controlling Sheets Or Webs (AREA)
  • Control Of Conveyors (AREA)

Abstract

Группа изобретений относится к системе и способу оптимизации добычи из нефтяной или газовой скважины, использующих электрические погружные насосы. Обеспечивает повышение эффективности добычи за счет возможности своевременного исключения потенциальных проблем, негативно влияющих на добычу. Сущность изобретения: по изобретениям отслеживают параметры добычи на поверхности и в стволе скважины, такие как давление и температура в насосно-компрессорной колонне, вязкость текучей среды, скорость потока, давление во всасывающем отверстии и в нагнетательном отверстии насоса, и температура во всасывающем отверстии насоса. Используют систему датчиков для отслеживания параметров в стволе скважины. При этом датчики распределяют по скважине и позволяют получать потоковую передачу данных в реальном времени. Оценивают измеренные данные, полученные из множества параметров добычи и множества параметров скважины согласно модели оптимизации. Регулируют работу механизма искусственного подъема на основе автоматической оценки данных и их трендов, 4 н. и 22 з.п. ф-лы, 16 ил.

Description

Уровень техники
Область техники, к которой относится изобретение
Настоящее изобретение относится к нефтяным и газовым скважинам с искусственным подъемом и, в частности, к таким скважинам, использующим электрические погружные насосы.
Описание предшествующего уровня техники
Во многих скважинах с искусственным подъемом имеется потенциал существенного улучшения работы и повышения добычи. Существует множество механизмов искусственного подъема текучей среды из резервуара, в том числе системы электрических погружных насосов и системы газлифтов. При использовании этих систем искусственного подъема множество механических и системных компонентов могут ограничивать оптимизацию использования системы. Например, компоненты системы искусственного подъема могут быть заблокированы, уничтожены, иметь некорректный размер, управляться на неоптимальных скоростях или иным образом представлять ограничения для улучшения оптимального использования всей системы.
Предпринимались попытки обнаружить определенные конкретные проблемы. Тем не менее, оказалось, что всеобъемлющий анализ скважины и/или компонентов системы затруднен после того, как система помещена в забой скважины и введена в действие.
Сущность из обретения
В общем, настоящее изобретение предоставляет способ и систему оптимизации добычи в скважине. Система искусственного подъема, такая как система электрических погружных насосов, управляется в стволе скважины. В ходе работы множество параметров добычи отслеживаются на поверхности. Одновременно множество параметров скважины отслеживается в стволе скважины. Параметры добычи и параметры скважины оцениваются согласно модели оптимизации для того, чтобы определить, является ли добыча оптимизированной. Если нет, работа механизма искусственного подъема корректируется на основе оценки различных параметров добычи и параметров скважины.
Краткое описание чертежей
Далее описываются конкретные варианты осуществления со ссылкой на прилагаемые чертежи, на которых аналогичные номера ссылок обозначают аналогичные элементы, и:
фиг.1 - это схематическая иллюстрация методологии оптимизации добычи в скважине согласно варианту осуществления настоящего изобретения;
фиг.2 - это вертикальный разрез системы электрических погружных насосов, используемой в скважине для того, чтобы поднимать текучую среду на поверхность, согласно варианту осуществления настоящего изобретения;
фиг.3 - это схема последовательности операций способа выбора и оптимизации добычи в скважине согласно варианту осуществления настоящего изобретения;
фиг.4 - это схематическое представление варианта осуществления системы управления, которая может быть использована для того, чтобы автоматически осуществлять методологию или части методологии, проиллюстрированной на фиг.3;
фиг.5 - это иллюстрация параметров, используемых в варианте выбора;
фиг.6 - это иллюстрация системы, которая может быть использована для того, чтобы получать данные для обработки согласно методологии оптимизации скважины, проиллюстрированной на фиг.3;
фиг.7 - это иллюстрация одного варианта осуществления системы и подхода, который может быть использован при моделировании скважины;
фиг.8 - это схема последовательности операций, иллюстрирующая подход к проверке достоверности полученных данных;
фиг.9 иллюстрирует пример графического пользовательского интерфейса, который может быть использован для того, чтобы упростить проверку достоверности данных;
фиг.10 - это графическое представление характеристики притока, которая может быть использована в процессе проверки достоверности;
фиг.11 - это графическое представление вычислений над насосом, используемых в процессе проверки достоверности;
фиг.12 - это графическое представление вычислений в насосе, используемых в процессе проверки достоверности;
фиг.13 - это графическое представление вычислений под насосом, используемых в процессе проверки достоверности;
фиг.14 - это схема последовательности операций, иллюстрирующая подход к проверке достоверности полученных данных;
фиг.15 - это схема последовательности операций, иллюстрирующая методологию диагностики потенциальных ограничений на оптимизацию использования системы; и
фиг.16 - это схема, представляющая множество корректирующих действий, которые могут быть применены для того, чтобы оптимизировать добычу в скважине.
Подробное описание изобретения
В последующем описании изложено множество подробностей для того, чтобы предоставить понимание настоящего изобретения. Тем не менее, специалисты в данной области техники должны понимать, что настоящее изобретение может быть применено на практике без этих подробностей и что возможно множество вариантов или модификаций описанных вариантов осуществления.
Настоящее изобретение, в общем, относится к системе и способу оптимизации использования системы искусственного подъема, такой как система электрических погружных насосов. Процесс дает возможность системе искусственного подъема быть проанализированной и диагностированной для того, чтобы предоставить входные данные для оптимизации добычи скважины. Тем не менее, критерии оптимизации могут относиться к различным категориям в зависимости от результатов диагностики. Например, оптимизация может относиться к оптимизации снижения давления в пласте, оптимизации времени пуска, оптимизации конструкции и/или размеров или оптимизации эффективности. Оптимизация данной скважины может учитывать один или более из вышеперечисленных критериев, а также другие потенциальные критерии.
Общий подход к оптимизации изложен на схеме последовательности операций фиг.1. Первоначально идентифицируются скважины с искусственным подъемом с недостаточной производительностью, как показано на этапе 20. После идентификации скважин с недостаточной производительностью идентифицируется причина недостаточной производительности, как показано этапом 22. Идентификация причины недостаточной производительности позволяет реализацию корректирующих процедур, как проиллюстрировано на этапе 24. В итоге причина проблемы идентифицируется и выполняется действие или корректировка для того, чтобы оптимизировать производительность. В зависимости от используемой среды и конкретного оборудования причины и выбранные действия, т.е. корректирующие действия, могут варьироваться, как подробнее описано далее.
Хотя этот общий подход может быть применен к множеству скважин с искусственным подъемом, настоящее описание главным образом связано с оптимизацией скважины, в которой система электрических погружных насосов используется для того, чтобы искусственно поднимать текучую среду из скважины. На фиг.2 проиллюстрирован вариант осуществления системы 26 электрических погружных насосов. В этом варианте осуществления система 26 насоса размещается в стволе 28 скважины, пробуренном или иным образом сформированном в геологической формации 30. Система 26 электрических погружных насосов подвешивается ниже устья скважины 32, размещенного, например, на поверхности 33 земли. Система 26 насосов подвешивается посредством системы 34 развертывания, такой как эксплуатационная насосно-компрессорная колонна, колонна в бухтах или другая система развертывания. В проиллюстрированном варианте осуществления система 34 развертывания содержит насосно-компрессорную колонну 36, через которую текучая среда скважины подается в устье 32 скважины.
Как проиллюстрировано, ствол 28 скважины облицован обсадной колонной 38 ствола скважины, имеющей перфорацию интервалы 40, через которые текучая среда течет между формацией 30 и стволом 28 скважины. Например, текучая среда на углеводородной основе может течь из формации 30 через перфорацию 40 и в ствол 28 скважины рядом с системой 26 электрических погружных насосов. После входа в ствол 28 скважины система 26 насосов может выдавать жидкость вверх посредством насосно-компрессорной колонны 36 в устье 32 скважины и в требуемый пункт сбора.
Хотя система 26 электрических погружных насосов может содержать множество компонентов, пример на фиг.2 проиллюстрирован как имеющий погружной насос 42, всасывающее отверстие 44 и электродвигатель 46, который питает погружной насос 32. Двигатель 46 принимает электрическую энергию посредством силового кабеля 48 и защищен от вредоносной текучей среды ствола скважины посредством протектора 50 двигателя. Помимо этого, система 26 насосов может содержать другие компоненты, в том числе соединитель 52 для соединения компонентов с системой 34 развертывания. Другой проиллюстрированный компонент - это блок 54 датчиков, используемый для обнаружения множества параметров ствола скважины. Тем не менее, следует заметить, что множество систем датчиков, развернутых в системе 26 электрических погружных насосов, обсадная колонна 38 или другие зоны устья скважины могут быть использованы для того, чтобы получать данные, как подробнее описано ниже. Более того, множество систем датчиков может быть использовано на поверхности 33 для того, чтобы получить требуемые данные, помогающие в процессе оптимизации скважины.
Один пример методологии оптимизации добычи в скважине может быть описан со ссылкой на проиллюстрированную схему последовательности операций способа по фиг.3. Первоначально варианты скважин выбираются на основе указания недостаточной производительности (этап 56). В выбранной скважине или скважинах данные получаются для того, чтобы измерить производительность системы искусственного подъема, к примеру, системы 26 электрических погружных насосов (этап 58). (В этом примере измерения данных синхронизированы и осуществляются в реальном времени для того, чтобы значительно повысить точность и полноту "картины функционирования", используемой при анализе потенциальных проблем, которые вносят вклад в недостаточную производительность.) Далее скважина моделируется на основе известных параметров, связанных со скважиной и системой электрических погружных насосов. Моделированная скважина сопоставляется с измеренными данными, как проиллюстрировано на этапе 60. Затем проверяется достоверность данных (этап 62). После проверки достоверности может быть выполнена диагностика системы искусственного подъема, имеет ли скважина фактически недостаточную производительность, и если да, условия, вносящие вклад в недостаточную производительность (этап 64). Диагностика системы дает возможность реализации изменений, таких как предоставление новых настроек в отношении работы системы 26 электрических погружных насосов (этап 66).
Часть или вся методология, обозначенная со ссылкой на фиг.3, автоматизируется посредством системы 68 обработки, как схематично проиллюстрировано на фиг.4. Система 68 обработки может быть вычислительной системой, имеющей центральный процессор (ЦП) 70. ЦП 70 оперативно соединен с запоминающим устройством 72, а также устройством 74 ввода и устройством 76 вывода. Устройство 74 ввода может содержать множество устройств, такие как клавиатура, мышь, блок распознавания речи, сенсорный экран, другие устройства ввода или комбинации вышеозначенных устройств. Устройство 76 вывода может содержать устройство визуального или аудиовывода, такое как монитор, имеющий графический пользовательский интерфейс. Дополнительно, обработка может выполняться на отдельном устройстве или нескольких устройствах в скважине, удаленно от скважины или с помощью некоторых устройств, расположенных в скважине, и других устройств, расположенных удаленно.
Система 68 обработки может быть использована, например, для того чтобы вводить параметры, касающиеся вариантов выбора, принимать данные в ходе фазы получения данных, моделировать скважину и проверять достоверность связанных данных. Диагностика системы искусственного подъема, а также реализация новых настроек может также автоматически управляться системой обработки, такой как система 68. Тем не менее, следует принимать во внимание, что структура и реализация системы 68 обработки может существенно варьироваться между вариантами применения, и требуемое взаимодействие между системой 68 и специалистом по оптимизации может отличаться в зависимости от конструктивных требований и ограничений к структуре и ограничений вариантов применения.
Как вкратце описано со ссылкой на фиг.3, первоначально выбираются варианты скважин. К примеру, в месторождениях нефти с большим количеством систем электрических погружных насосов важно, чтобы вероятные варианты оптимизации отфильтровались из скважин, которые уже запущены при оптимальных условиях и на оптимальных скоростях. В одном подходе вариант выбора может быть использован для того, чтобы отфильтровывать скважины согласно приоритету увеличения добычи нефти, чтобы помочь в достижении максимального успеха за минимальное время. Распознавание субоптимальных скважин с подъемом относительно других скважин в месторождении не является простой задачей и требует оценки различных данных и информации.
Возможность определять вероятные варианты оптимизации часто зависит от получения точных данных, связанных с рассматриваемыми скважинами. Например, может быть полезно отслеживать тренд данных для того, чтобы определить согласованность и, следовательно, точность исходных данных при определении вероятных вариантов оптимизации.
Кроме того, важно определить то, какие параметры являются ключевыми параметрами, которые помогут в выборе вероятных вариантов. В отношении систем электрических погружных насосов, примеры потенциальных ключевых параметров проиллюстрированы на схеме фиг.5. Другие ключевые параметры допустимы, но проиллюстрированные примеры - это обводненность 78, индекс 80 производительности скважины, доступность привода 82 с регулируемой скоростью и устьевое давление 84. В этом случае более высокие уровни обводненности указывают меньший потенциал повышения добычи нефти. Тем не менее, более высокий индекс производительности указывает больший потенциал в увеличении добычи нефти при небольших рабочих изменениях. Доступность привода с регулируемой скоростью в скважине позволяет осуществлять изменение скорости, что может значительно влиять на текущий дебит. Кроме того, если указано высокое устьевое давление, уменьшение этого давления зачастую вызывает существенное увеличение добычи нефти.
При выборе варианта скважины получаются данные для того, чтобы измерить производительность системы искусственного подъема. Типично данные получаются посредством множества датчиков, которые могут содержать, например, распределенные датчики температуры и манометры. Кроме того, может быть выгодно использовать системы датчиков, позволяющие предоставлять потоковую передачу данных в реальном времени. Отслеживаемые тренды данных с общим временем и датой облегчают выбор точек интереса из линий тренда, тем самым предоставляя более точные "моментальные снимки" работы скважины для того, чтобы помочь при анализе.
На фиг.6 проиллюстрирован вариант осуществления системы датчиков, используемой для того, чтобы облегчить оптимизацию электрического погружного насоса. Различные датчики могут быть подсоединены к системе 68 обработки, которая может сравнивать данные и отображать значимую информацию специалисту и/или использовать данные при выполнении анализа скважины. Хотя множество параметров может быть использовано при анализе данной скважины, фиг.6 иллюстрирует примеры поверхностных измерений 86 и измерений 88 в стволе скважины, которые могут быть получены в реальном времени и предоставлены в систему 68 обработки для анализа. Примеры поверхностных датчиков и/или контролируемых параметров включают в себя датчики 90 давления и температуры в насосно-компрессорных колоннах, датчики 92 давления в обсадных колоннах, датчики 94 частоты для обнаружения частоты электрического сигнала, датчики 96 данных многофазных потоков, датчики 98 общих потоков и датчики 100 мощности. Примеры датчиков и/или контролируемых параметров ствола скважины включают в себя датчики 102 давления во всасывающем отверстии насоса, датчики давления 104 в нагнетательном отверстии насоса, датчики 105 температуры во всасывающем отверстии, распределенные датчики 106 температуры, датчики 107 скорости подачи насоса, датчики 108 температуры двигателя и датчики 109 вибрации. Тем не менее, множество других датчиков, предназначенных для того, чтобы обнаруживать дополнительные параметры, может быть добавлено. Например, некоторые варианты осуществления могут быть разработаны для того, чтобы использовать датчики 110 вязкости для обнаружения вязкости текучей среды, датчики 111 плотности и датчики 112 для определения наступления температуры начала кипения. Дополнительно, может быть необязательно использовать все проиллюстрированные датчики. Например, в некоторых вариантах осуществления методология, описываемая в данном документе, может осуществляться с уникальным поднабором проиллюстрированных датчиков, например датчиками 90, 92, 94, 96, 102, 104 и 106.
Помимо получения данных рассматриваемая скважина моделируется. Тем не менее, моделирование скважины варьируется в зависимости от среды, в которой сверлится ствол скважины, параметров месторождения и типа и компонентов системы искусственного подъема. Надлежащее моделирование скважины дает возможность противопоставления измеренных данных, извлеченных из отслеживаемых параметров, с моделью оптимизации для того, чтобы упростить анализ данных и, в итоге, оптимизацию скважины. Как проиллюстрировано на фиг.7, программа 114 моделирования скважины может быть использована в системе 68 обработки для того, чтобы сравнивать измеренные или входные данные для отображения специалисту на устройстве 76 вывода или для последующей обработки в ходе проверки достоверности и диагностики данных. В качестве примера, программа 114 моделирования может сравнивать измеренные данные на основе отслеживаемых параметров с соответствующими расчетными значениями модели и предоставлять графические сравнения, к примеру график 116 (коэффициент газ/нефть в зависимости от давления), 118 (коэффициент пластового объема - нефть в зависимости от давления) и 120 (вязкость в зависимости от давления), проиллюстрированные на фиг.7. Тем не менее, конкретные собранные данные и требуемое моделирование может существенно отличаться в зависимости от конкретного варианта применения. Пример программы, реализованной программно, которая может быть использована в системе 68 обработки для моделирования скважины, - это программный продукт ALXP (увеличение добычи в системах с искусственным подъемом), предлагаемый компанией Schlumberger Technology Corporation из Sugar Land, штат Техас, США. ALXP может быть использована для того, чтобы моделировать скважины, в которых развернуты системы электрических погружных насосов, а также помогать в проверке достоверности и анализе данных.
Как вкратце описано выше, сбор данных в реальном времени из множества датчиков и усвоение данных для сравнения с заранее определенной моделью является важной основой для оптимизации данной скважины. Тем не менее, эффективность корректирующего действия повышается посредством проверки достоверности фактических собранных данных, а также использования этих данных при моделировании скважины. В описанном в данном документе примере системы электрических погружных насосов надлежащая оптимизация может зависеть от данных PVT (давление, объем и температура), градиента текучей среды над насосом 42, перепада давления в насосе 42 и расхода в сравнении с притоком. Следовательно, один подход к проверке достоверности данного типа системы - проверять достоверность каждого из этих параметров. Как проиллюстрировано на фиг.8, процесс проверки достоверности может содержать проверку достоверности PVT-данных (этап 122), проверку достоверности градиента текучей среды над насосом (этап 124), проверку достоверности перепада давления в насосе (этап 126) и проверку достоверности расхода в сравнении с притоком (этап 128).
Достоверность PVT-данных может быть проверена множеством способов в зависимости от конкретных анализируемых PVT-данных. Например, фактический коэффициент газ/нефть (GOR), коэффициент пластового объема нефти (Во) и данные по вязкости нефти часто могут быть получены от оператора скважины. Другие данные также могут быть определены или откоррелированы. Например, неподвижная корреляция может быть использована для того, чтобы определять расчетное значение давления температуры начала кипения и коэффициента пластового объема нефти. Корреляция Беггса может быть использована для того, чтобы вычислять вязкость нефти. Заранее определенные или расчетные значения используются для того, чтобы составить модель скважины, с которой измеренные PVT-данные могут быть сравнены для проверки достоверности. Как проиллюстрировано на фиг.9, система 68 обработки и устройство 76 вывода могут быть использованы для того, чтобы отображать, например, графики корреляции, сравнивая вычисленные или моделированные значения с измеренными значениями для того, чтобы отмечать все расхождения.
Точные данные по притоку также могут быть важны при проверке достоверности множества связанных с потоком параметров. Вычисления отношения производительности притока (IPR) могут осуществляться согласно множеству способов. Например, могут быть использованы значения притока от оператора скважины; прямой индекс добычи (PI) может быть вычислен из данных скоростей контрольного потока и гидродинамического давления скважины; прямое IPR может быть определено из данного PI и статического пластового давления или вычислен из скоростей контрольного потока и контрольного давления; либо график Вогеля, или составного IPR может быть извлечен из данных скоростей контрольного потока, гидродинамического давления скважины и коэффициента Вогеля. Результаты могут быть графически отображены на устройстве 76 вывода. Один пример такого графического отображения предоставлен на фиг.10, на котором проиллюстрировано прямое IPR, в котором скорость потока жидкости коррелирована с гидродинамическим давлением скважины.
Проверка достоверности градиента текучей среды над насосом использует расчеты "над насосом". Используется следующее уравнение: давление в нагнетательном отверстии насоса = устьевое давление (WHP)+дельта Р насосно-компрессорной колонны (плотность)+дельта Р насосно-компрессорной колонны (трение). Расчет "над насосом" вычерчивает градиент текучей среды от измеренного устьевого давления к давлению в нагнетательном отверстии насоса. Если уровень давления в нагнетательном отверстии насоса известен, это значение может быть использовано для того, чтобы точно определить или сопоставить градиент для того, чтобы обеспечить возможность проверки достоверности информации о плотности текучей среды (95 процентов падения давления в насосно-компрессорной колонне). Если уровень давления в нагнетательном отверстии неизвестен, требуется точное измерение обводненности, GOR и общей скорости потока. Проверка достоверности градиента текучей среды, как графически проиллюстрировано на фиг.11, важна, поскольку последующие этапы в процессе проверки достоверности базируются на точном определении удельной массы откачиваемой текучей среды. Ссылаясь в общем на фиг.11, градиент текучей среды над насосом проиллюстрирован в поле 130.
Чтобы сопоставить градиент текучей среды из устьевого давления с давлением в нагнетательном отверстии насоса, свойства текучей среды, влияющие на плотность текучей среды, могут быть откорректированы. Надлежащее базовое допущение состоит в том, что, по меньшей мере, 95 процентов потерь давления в насосно-компрессорной колонне состоит из потерь давления вследствие плотности текучей среды, а потери давления вследствие трения относительно малы. Поэтому можно точно определять градиент текучей среды, чтобы сопоставлять измеренное давление в нагнетательном отверстии посредством корректировки данных, которые влияют на плотность текучей среды. Это может быть осуществлено посредством корректировки, например, значений обводненности и/или общего GOR. Совпадение возникает, когда вычисленное давление в нагнетательном отверстии насоса соответствует измеренному давлению в нагнетательном отверстии насоса.
Далее могут быть выполнены расчеты "в насосе". Используется следующее уравнение: давление во всасывающем отверстии насоса = давление в нагнетательном отверстии насоса - перепад давления в насосе. Перепад давления в насосе (фунт на квадратный дюйм) равен значению, кратному напору (ножки) удельной массы/2,31. Вычисления в насосе определяют перепад давления в насосе и чертят вычисленное давление во всасывающем отверстии насоса из проверенного давления в нагнетательном отверстии насоса. Плотность текучей среды (удельная масса), достоверность которой проверена, позволяет использовать измеренные данные для того, чтобы помочь проверить достоверность информации о скорости потока. Информация о скорости потока затем может быть подвергнута перекрестной проверке с расчетами производительности притока. Градиент в насосе графически проиллюстрирован на фиг.12 посредством поля 132.
Как описано выше, вычисленная скорость подачи насоса - это функция от перепада давления в насосе и плотности текучей среды. Достоверность плотности текучей среды проверена ранее посредством сопоставления градиента над насосом, тем самым позволяя сопоставление перепада давления в насосе с давлением всасывания, используя поток в качестве параметра калибровки. Следует отметить, что это предполагает, что характеристика насоса не ухудшилась вследствие вязкости или износа. Дополнительная проверка достоверности потока может быть выполнена позднее посредством перекрестной проверки с притоком.
Дополнительно, расчеты "под насосом" также могут быть выполнены для того, чтобы дополнительно проверить достоверность измеренных параметров. Используется следующее уравнение: гидродинамическое давление скважины (FBHP) = давление во всасывающем отверстии + потери давления в обсадной колонне. Используется еще одно уравнение: гидродинамическое давление скважины = пластовое давление - (индекс поток/добыча). Достоверность скорости потока может быть проверена в рабочих условиях, используя оба значения выхода (потери давления в насосно-компрессорной колонне, устьевое давление и т.д.) и значений притока (IPR-данных).
Градиент расхода окончательно определяется с помощью вычисления под насосом, которое генерирует градиент текучей среды от всасывающего отверстия насоса к гидродинамическому давлению скважины в перфорационных отверстиях в обсадных колоннах. Вычисление "до дна" определяет гидродинамическое давление скважины из данных о притоке и чертит градиент до глубины всасывающего отверстия насоса. График под насосом и график до дна должны соответствовать общему давлению во всасывающем отверстии и гидродинамическому давлению скважины. Градиент под насосом графически проиллюстрирован на фиг.13 посредством поля 134.
В общем, под насосом выполняются такие же вычисления, как не выполнялись над насосом. Расход получается сверху вниз, а приток (до дна) получается из пластового давления к всасывающему отверстию насоса. Если измеренные скорость потока, пластовое давление и индекс добычи корректны, вычисленные графики должны соответствовать измеренным данным.
На фиг.14 проиллюстрирован пример методологии проверки достоверности измеренных данных, связанных с системой электрических погружных насосов. Методология включает в себя многие вышеописанные этапы или подходы. Вначале проверяется достоверность данных по расходу, как показано этапом 136. Проверка достоверности данных по расходу может содержать сопоставление градиентов над насосом на основе измеренных и вычисленных значений (этап 138). Проверка достоверности данных по расходу может дополнительно включать в себя выполнение вычислений в насосе (этап 140) и составление графиков градиентов под насосом (этап 142). Далее проверяется достоверность данных по притоку, как проиллюстрировано посредством этапа 144. Проверка достоверности влечет за собой вычисление гидродинамического давления скважины и сравнение вычисленного значения с измеренным значением (этап 146). Проверка достоверности данных притока также может содержать использование графиков градиентов до дна для сравнения данных (этап 148). Далее получается рабочая точка насоса, как проиллюстрировано посредством этапа 150. Рабочая точка получается для сравнения измеренных и вычисленных значений (этап 152).
Как описано выше, вычисленные значения используются для того, чтобы сконструировать модель оптимальной производительности скважины, которая может быть противопоставлена измеренным данным, извлеченным из отслеживаемых параметров. Этот процесс проверки достоверности измеренных данных раскрывает все расхождения между значениями модели и измеренными данными. Расхождения, которые возникают, эффективно направляют диагностику потенциальных проблем, ограничивающих производительность скважины. Диагностика может быть выполнена в системе 68 обработки для того, чтобы упросить быструю и точную оценку потенциальных проблем. При использовании системы электрических погружных насосов, поднимающих текучую среду, диагноз может быть выполнен, например, согласно схеме последовательности операций способа, проиллюстрированной на фиг.15.
Как проиллюстрировано, первоначально собираются данные, касающиеся множества связанных с добычей параметров, к примеру, PVT-данные, глубина скважины, производительность скважины, геометрия скважины, данные насоса, данные о пластовом резервуаре и другие данные, как проиллюстрировано на этапе 154. Последующий этап диагностики - это сравнение измеренных PVT-значений с вычисленными PVT-значениями (этап 156). Программа проверяет все расхождения (этап 158) между измеренными данными и вычисленными значениями. Если расхождение имеется, указание этого расхождения может быть отображено на устройстве 76 вывода для просмотра специалистом, как показано на этапе 160. Расхождение может быть устранено посредством проверки полученных корреляций и/или проверки связанных с добычей значений, предоставляемых оператором скважины.
Далее проверяется градиент над насосом (этап 162), как описано выше. Вычисленный градиент сравнивается с измеренными данными для того, чтобы определить, соответствует ли градиент измеренным данным (этап 164). Если градиент не соответствует измеренным данным (этап 166), различные значения, такие как обводненность, глубина, устьевое давление и т.д., проверяются, и программа возвращается к этапу 162 для того, чтобы снова проверить градиент над насосом. С другой стороны, если градиент над насосом соответствует измеренным данным, выполняется вычисление в насосе (этап 168), как описано выше.
При запуске вычисления в насосе выполняется определение того, может ли перепад давления в насосе быть сопоставлен с измеренным давлением во всасывающем отверстии, как проиллюстрировано на этапе 170. Если перепад давления совпадает, то проверятся достоверность подавления производительности притока (этап 172) и выполняется определение того, надлежащим ли образом приток соответствует расходу (этап 174). Если да (этап 176), то существует совпадение между вычисленными значениями и измеренными значениями. Если нет (этап 178), то должна быть выполнена дополнительная диагностика для того, чтобы определить источник расхождения и потенциальные проблемы, мешающие оптимизации потенциала скважины.
Возвращаясь к этапу 170, если перепад давления не совпадает с измеренным давлением во всасывающем отверстии, то различные параметры должны быть проверены, как проиллюстрировано на этапе 180. Например, скорость потока, частота, сведения о насосе, подача насоса в зависимости от притока и другие параметры должны быть проверены и выявлена их достоверность для того, чтобы определить, возникла ли ошибка. Если выполнены корректировки параметров (этап 182), то вычисления над насосом должны быть запущены снова. В противном случае должна быть выполнена дополнительная диагностика (этап 184) для того, чтобы определить источник расхождения и потенциальные проблемы, мешающие оптимизации потенциала скважины.
Сравнение вычисленных значений с измеренными значениями и расхождения между этими значениями могут предоставить индикацию конкретных проблем, которые вызвали субоптимальную добычу. Смысл отношений и расхождений данных, тем не менее, может варьироваться в зависимости от типа используемой системы искусственного подъема, компонентов системы искусственного подъема и факторов внешней среды. Дополнительно, расхождения иногда могут быть разрешены посредством простых операционных корректировок, таких как корректировка штуцера или клапана, чтобы обеспечить больший или меньший поток, или корректировка выходной частоты привода с регулируемой скоростью. Другие расхождения могут означать изношенные компоненты, неисправные компоненты, заблокированные компоненты или другую требуемую корректировку. Например, в вышеописанной системе, в которой используется система электрических погружных насосов для того, чтобы добывать текучую среду скважины, предполагается, что если всасывающее отверстие насоса заблокировано, выполняются следующие условия:
- недостижимо совпадение между измеренным и вычисленным давлением во всасывающем отверстии при выполнении вычислений в насосе (измеренное давление во всасывающем отверстии выше, чем вычисленное давление во всасывающем отверстии);
- градиент до дна может быть сопоставлен с давлением во всасывающем отверстии; и
- фактическое давление во всасывающем отверстии насоса низкое, а измеренные данные более высокие, при условии что точка, в которой измерены данные датчика давления во всасывающем отверстии, находится выше блокировки.
В качестве еще одного примера, рециркуляция текучей среды в стволе скважины, к примеру, вследствие утечки в насосно-компрессорной колонне может предполагаться, если выполняются следующие условия:
- вычисленный приток может быть сопоставлен с давлением во всасывающем отверстии с помощью данной исходной скорости потока, измеренной на поверхности;
- вычисления над насосом соответствуют использованию данной исходной скорости потока, измеренной на поверхности; и
- вычисления характеристик насоса показывают, что скорость потока должна быть существенно выше, чтобы получить совпадение в рабочей точке. Тем не менее, эта более высокая скорость потока генерирует более высокий показатель давления в нагнетательном отверстии над насосом.
После того как диагностика завершена, осуществляется соответствующее корректирующее действие для того, чтобы оптимизировать производительность скважины. Как проиллюстрировано на фиг.16, корректирующее действие (этап 186) может содержать реализацию новых настроек и/или другие корректирующие действия, как проиллюстрировано этапами 188, 190, 192, 194 и 196 действий. В зависимости от проектных целей всей системы, по меньшей мере, некоторые корректирующие действия должны быть автоматизированы посредством программирования системы 68 обработки, чтобы выполнять такое корректирующее действие на основе результатов моделирования, проверки и диагностики скважины. Например, если оптимизация влечет за собой корректировку скорости потока, соответствующие сигналы могут быть предоставлены системой 68 обработки для того, чтобы, например, отрегулировать штуцер (этап 188) или отрегулировать частоту привода с регулируемой скоростью (этап 190). Другие корректирующие действия, такие как очистка всасывающего отверстия (этап 192) или устранение утечки в насосно-компрессорной колонне (этап 194), могут влечь за собой существенные действия по ремонту или замене компонентов, которые требуют вмешательства человека.
Хотя только несколько вариантов осуществления настоящего изобретения подробно описано выше, специалисты в данной области техники должны принимать во внимание, что множество модификаций допустимо без отступления по сути от методик изобретения. Следовательно, эти модификации предназначены для того, чтобы быть включенными в область применения данного изобретения, задаваемую формулой изобретения.

Claims (26)

1. Способ оптимизации добычи в скважине, содержащий этапы, на которых:
отслеживают параметры добычи на поверхности и в стволе скважины, такие, как давление и температура в насосно-компрессорной колонне, вязкость текучей среды, скорость потока, давление во всасывающем отверстии и в нагнетательном отверстии насоса и температура во всасывающем отверстии насоса;
используют систему датчиков для отслеживания параметров в стволе скважины, причем датчики распределены по скважине и позволяют получать потоковую передачу данных в реальном времени;
оценивают измеренные данные, полученные из множества параметров добычи и множества параметров скважины, согласно модели оптимизации и
регулируют работу механизма искусственного подъема на основе автоматической оценки данных и их трендов.
2. Способ по п.1, в котором механизм искусственного подъема содержит систему электрических погружных насосов.
3. Способ по п.1, в котором отслеживание множества параметров добычи содержит этап, на котором измеряют давление в обсадной колонне.
4. Способ по п.1, в котором отслеживание множества параметров добычи содержит этап, на котором измеряют данные многофазных потоков.
5. Способ по п.1, в котором отслеживание множества параметров добычи содержит этап, на котором измеряют давление в обсадной колонне и данные многофазных потоков.
6. Способ по п.1, в котором отслеживание множества параметров скважины содержит этап, на котором измеряют распределенную температуру.
7. Способ по п.1, в котором отслеживание множества параметров скважины содержит этап, на котором измеряют температуру начала кипения нефти.
8. Способ по п.1, в котором, по меньшей мере, одно из отслеживания множества параметров добычи и отслеживания множества параметров скважины содержит этап, на котором используют многофазный расходометр.
9. Способ по п.1, в котором оценка содержит этап, на котором обрабатывают данные на вычислительной машине.
10. Способ по п.1, в котором регулировка содержит этап, на котором изменяют выходную частоту привода с регулируемой скоростью.
11. Способ по п.1, в котором регулировка содержит этап, на котором регулируют штуцер для того, чтобы изменять скорость потока.
12. Способ по п.1, в котором регулировка содержит этап, на котором устраняют утечку в насосе.
13. Система оптимизации добычи в скважине, содержащая:
систему электрических погружных насосов, расположенных в скважине;
систему датчиков, размещенных на поверхности скважины и в скважине так, чтобы измерять потоковые данные по давлению, объему и температуре текучей среды, в том числе перепаду давлений над насосом, в насосе и под насосом в реальном времени;
модуль проверки достоверности измеренных данных;
модуль моделирования скважины, способный принимать входящие от датчиков данные, сопоставлять значения модели с измеренными данными, указывать тренд данных и конкретную проблему, мешающую оптимизации добычи из скважины, такую, как наличие утечки или блокировки отверстий насоса, и оптимизировать добычу с возможностью изменения частоты привода и изменения скорости текучей среды.
14. Система по п.13, в которой модуль проверки достоверности способен проверять достоверность данных по давлению, объему и температуре.
15. Система по п.13, в которой модуль проверки достоверности способен проверять достоверность градиента текучей среды над насосом.
16. Система по п.13, в которой модуль проверки достоверности способен проверять достоверность перепада давления в насосе.
17. Система по п.13, в которой модуль проверки достоверности способен проверять достоверность расхода в сравнении с притоком текучей среды в насос.
18. Система по п.13, в которой добычу оптимизируют при помощи регулировки штуцера для того, чтобы изменять скорость потока.
19. Система по п.13, в которой добычу оптимизируют при помощи устранения утечки.
20. Способ диагностирования работы системы электрических погружных насосов, питаемых посредством погружных двигателей, содержащий этапы, на которых:
измеряют параметры добычи на поверхности и в стволе скважины, такие, как давление, объем, температура текучей среды, с использованием системы распределенных по скважине датчиков, позволяющих получать потоковые данные в реальном времени;
сравнивают вычисленные значения давления, объема и температуры с измеренными данными и выявляют тренды данных в общем времени добычи;
сопоставляют ранее вычисленные значения перепада давлений над насосом с измеренными данными;
сопоставляют ранее вычисленные значения в насосе с измеренными данными;
сопоставляют ранее вычисленные значения перепада давления под насосом с измеренными данными;
сопоставляют вычисленные значения перепада давления в насосе и измеренное давление в его всасывающем отверстии;
определяют все нежелательные расхождения между вычисленными значениями и измеренными данными.
21. Способ по п.20, дополнительно содержащий этап, на котором графически отображают вычисленные значения в сравнении с измеренными данными на устройстве вывода.
22. Способ по п.20, дополнительно содержащий этап, на котором выполняют рабочие регулировки системы электрических погружных насосов для того, чтобы оптимизировать добычу из скважины.
23. Способ оптимизации добычи с системой электрических погружных насосов, содержащей погружные двигатели, используемой для искусственного подъема текучей среды во время ее добычи, содержащий этапы, на которых:
измеряют параметры добычи на поверхности и в стволе скважины, такие, как давление, объем, температура текучей среды, и используют систему распределенных в скважине датчиков, позволяющую получать потоковые данные в реальном времени;
сопоставляют ранее вычисленные значения перепада давлений над насосом, в насосе или под насосом с измеренными данными;
сопоставляют вычисленные значения перепада давления в насосе и измеренное давление в его всасывающем отверстии;
сопоставляют данные притока с данными расхода и
оптимизируют добычу на основе тренда данных и расхождений, определенных между измеренными и вычисленными данными.
24. Способ по п.23, в котором оптимизация содержит этап, на котором изменяют скорость потока посредством регулировки клапана.
25. Способ по п.23, в котором оптимизация содержит этап, на котором изменяют скорость потока посредством регулировки штуцера.
26. Способ по п.23, в котором оптимизация содержит этап, на котором изменяют скорость потока посредством регулировки частоты привода с регулируемой скоростью.
RU2006131565/03A 2004-02-03 2004-12-21 Система и способ оптимизации добычи в скважине с искусственным подъемом RU2366804C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/770,918 US7114557B2 (en) 2004-02-03 2004-02-03 System and method for optimizing production in an artificially lifted well
US10/770,918 2004-02-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
RU2009129360/03A Division RU2496974C2 (ru) 2004-02-03 2004-12-21 Способ оптимизации добычи в скважине с искусственным подъемом

Publications (2)

Publication Number Publication Date
RU2006131565A RU2006131565A (ru) 2008-03-10
RU2366804C2 true RU2366804C2 (ru) 2009-09-10

Family

ID=34826551

Family Applications (2)

Application Number Title Priority Date Filing Date
RU2009129360/03A RU2496974C2 (ru) 2004-02-03 2004-12-21 Способ оптимизации добычи в скважине с искусственным подъемом
RU2006131565/03A RU2366804C2 (ru) 2004-02-03 2004-12-21 Система и способ оптимизации добычи в скважине с искусственным подъемом

Family Applications Before (1)

Application Number Title Priority Date Filing Date
RU2009129360/03A RU2496974C2 (ru) 2004-02-03 2004-12-21 Способ оптимизации добычи в скважине с искусственным подъемом

Country Status (6)

Country Link
US (1) US7114557B2 (ru)
AU (1) AU2004316883B2 (ru)
CA (1) CA2555170C (ru)
GB (1) GB2427224B (ru)
RU (2) RU2496974C2 (ru)
WO (1) WO2005085590A1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2682381C2 (ru) * 2014-06-30 2019-03-19 Веллтек А/С Скважинная измерительная система
RU2700358C1 (ru) * 2015-10-22 2019-09-16 Статойл Петролеум Ас Способ и система для оптимизации добавления понижателя вязкости в нефтяную скважину, содержащую внутрискважинный насос
WO2020224681A1 (es) * 2019-05-06 2020-11-12 Ecopetrol S.A. Proceso de control de inyección de diluyente en fondo de pozo para dilución de crudo extrapesado

Families Citing this family (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080262737A1 (en) * 2007-04-19 2008-10-23 Baker Hughes Incorporated System and Method for Monitoring and Controlling Production from Wells
US8682589B2 (en) * 1998-12-21 2014-03-25 Baker Hughes Incorporated Apparatus and method for managing supply of additive at wellsites
US20070017672A1 (en) * 2005-07-22 2007-01-25 Schlumberger Technology Corporation Automatic Detection of Resonance Frequency of a Downhole System
US7114557B2 (en) * 2004-02-03 2006-10-03 Schlumberger Technology Corporation System and method for optimizing production in an artificially lifted well
US7539604B1 (en) * 2005-10-17 2009-05-26 The Mathworks, Inc. Automatic modification of the behavior of system from a graphical representation of the behavior
US7624800B2 (en) * 2005-11-22 2009-12-01 Schlumberger Technology Corporation System and method for sensing parameters in a wellbore
US20070175633A1 (en) * 2006-01-30 2007-08-02 Schlumberger Technology Corporation System and Method for Remote Real-Time Surveillance and Control of Pumped Wells
US7953584B2 (en) * 2006-12-07 2011-05-31 Schlumberger Technology Corp Method for optimal lift gas allocation
US8078444B2 (en) * 2006-12-07 2011-12-13 Schlumberger Technology Corporation Method for performing oilfield production operations
NO20080645L (no) * 2007-02-05 2008-08-06 Weatherford Lamb Real time optimization of power in electrical submersible pump variable speed applications
US8898018B2 (en) * 2007-03-06 2014-11-25 Schlumberger Technology Corporation Methods and systems for hydrocarbon production
US7711486B2 (en) * 2007-04-19 2010-05-04 Baker Hughes Incorporated System and method for monitoring physical condition of production well equipment and controlling well production
US7805248B2 (en) 2007-04-19 2010-09-28 Baker Hughes Incorporated System and method for water breakthrough detection and intervention in a production well
US20080257544A1 (en) * 2007-04-19 2008-10-23 Baker Hughes Incorporated System and Method for Crossflow Detection and Intervention in Production Wellbores
GB2464030A (en) * 2007-07-25 2010-04-07 Services Tech Schlumberger Methods and systems of planning a procedure for cleaning a wellbore
US7580797B2 (en) * 2007-07-31 2009-08-25 Schlumberger Technology Corporation Subsurface layer and reservoir parameter measurements
US7861777B2 (en) * 2007-08-15 2011-01-04 Baker Hughes Incorporated Viscometer for downhole pumping
US20090044938A1 (en) * 2007-08-16 2009-02-19 Baker Hughes Incorporated Smart motor controller for an electrical submersible pump
US8121790B2 (en) * 2007-11-27 2012-02-21 Schlumberger Technology Corporation Combining reservoir modeling with downhole sensors and inductive coupling
US8214186B2 (en) * 2008-02-04 2012-07-03 Schlumberger Technology Corporation Oilfield emulator
US8775085B2 (en) * 2008-02-21 2014-07-08 Baker Hughes Incorporated Distributed sensors for dynamics modeling
US8028753B2 (en) * 2008-03-05 2011-10-04 Baker Hughes Incorporated System, method and apparatus for controlling the flow rate of an electrical submersible pump based on fluid density
GB2472519A (en) * 2008-03-10 2011-02-09 Schlumberger Holdings System and method for well test design, interpretation and test objectives verification
EP2279329A2 (en) * 2008-03-20 2011-02-02 BP Corporation North America Inc. Management of measurement data being applied to reservoir models
US9482233B2 (en) * 2008-05-07 2016-11-01 Schlumberger Technology Corporation Electric submersible pumping sensor device and method
US8670966B2 (en) * 2008-08-04 2014-03-11 Schlumberger Technology Corporation Methods and systems for performing oilfield production operations
US20100047089A1 (en) * 2008-08-20 2010-02-25 Schlumberger Technology Corporation High temperature monitoring system for esp
GB2471139A (en) * 2009-06-19 2010-12-22 Kongsberg Maritime As Oil And Gas Method for providing reconciled estimates of three phase flow for individual wells and at individual locations in a hydrocarbon production process facility
US9703006B2 (en) 2010-02-12 2017-07-11 Exxonmobil Upstream Research Company Method and system for creating history matched simulation models
US8421251B2 (en) * 2010-03-26 2013-04-16 Schlumberger Technology Corporation Enhancing the effectiveness of energy harvesting from flowing fluid
US8731892B2 (en) 2011-08-02 2014-05-20 Saudi Arabian Oil Company Systems and program product for performing a fully automated workflow for well performance model creation and calibration
WO2013019557A2 (en) * 2011-08-02 2013-02-07 Saudi Arabian Oil Company Systems and program product for performing a fully automated workflow for well performance model creation and calibration
US8688426B2 (en) 2011-08-02 2014-04-01 Saudi Arabian Oil Company Methods for performing a fully automated workflow for well performance model creation and calibration
RU2482265C2 (ru) * 2011-08-17 2013-05-20 Открытое акционерное общество "Инженерно-производственная фирма "СИБНЕФТЕАВТОМАТИКА" (ОАО ИПФ "СибНА") Способ обустройства куста нефтяных скважин и устройство для сбора и транспорта нефти куста нефтяных скважин
US10480312B2 (en) * 2011-09-29 2019-11-19 Saudi Arabian Oil Company Electrical submersible pump flow meter
WO2014082074A2 (en) * 2012-11-26 2014-05-30 Moog Inc. Methods and system for controlling a linear motor for a deep well oil pump
RU2525094C1 (ru) * 2013-04-05 2014-08-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Уфимский государственный нефтяной технический университет" Устройство для оценки технического состояния установок электроцентробежных насосов в процессе эксплуатации
US20150095100A1 (en) * 2013-09-30 2015-04-02 Ge Oil & Gas Esp, Inc. System and Method for Integrated Risk and Health Management of Electric Submersible Pumping Systems
WO2015073600A1 (en) * 2013-11-13 2015-05-21 Schlumberger Canada Limited Well alarms and event detection
US11408270B2 (en) 2013-11-13 2022-08-09 Sensia Llc Well testing and monitoring
MX2016003925A (es) * 2013-11-27 2016-06-17 Landmark Graphics Corp Analisis de flujo termico, esfuerzo y carga de pozo con bomba de chorro.
CA2944635A1 (en) * 2014-04-03 2015-10-08 Schlumberger Canada Limited State estimation and run life prediction for pumping system
US9957783B2 (en) * 2014-05-23 2018-05-01 Weatherford Technology Holdings, Llc Technique for production enhancement with downhole monitoring of artificially lifted wells
US10677041B2 (en) 2014-06-16 2020-06-09 Sensia Llc Fault detection in electric submersible pumps
CN104141478B (zh) * 2014-06-19 2015-10-21 东北石油大学 一种三元复合驱采出井结垢卡泵监测***
WO2016003998A1 (en) 2014-07-03 2016-01-07 Schlumberger Canada Limited System and method for downhole and surface meaurements for an electric submersible pump
US9951601B2 (en) 2014-08-22 2018-04-24 Schlumberger Technology Corporation Distributed real-time processing for gas lift optimization
US10443358B2 (en) 2014-08-22 2019-10-15 Schlumberger Technology Corporation Oilfield-wide production optimization
GB2547852B (en) 2014-12-09 2020-09-09 Sensia Netherlands Bv Electric submersible pump event detection
BR112017023023B1 (pt) 2015-04-27 2022-03-03 Statoil Petroleum As Método para inverter fluxo contínuo de óleo em fluxo contínuo de água
RU2608838C2 (ru) * 2015-06-09 2017-01-25 Общество С Ограниченной Ответственностью "Газпром Трансгаз Краснодар" Способ определения момента постановки скважины на ремонт
US20180112517A1 (en) * 2015-06-17 2018-04-26 Landmark Graphics Corporation Automated PVT Characterization and Flow Metering
US10619462B2 (en) * 2016-06-18 2020-04-14 Encline Artificial Lift Technologies LLC Compressor for gas lift operations, and method for injecting a compressible gas mixture
US10077642B2 (en) * 2015-08-19 2018-09-18 Encline Artificial Lift Technologies LLC Gas compression system for wellbore injection, and method for optimizing gas injection
AT518106B1 (de) * 2016-01-26 2017-10-15 Engel Austria Gmbh Hydraulische Antriebseinheit und Verfahren zum Betreiben
CN105863607B (zh) * 2016-03-31 2019-04-16 东北石油大学 基于整体区块抽油机井运行状况评价与整改方法
CN108071626B (zh) * 2016-11-17 2021-03-26 恩格尔机械(上海)有限公司 成型机及其运行方法
US10364655B2 (en) * 2017-01-20 2019-07-30 Saudi Arabian Oil Company Automatic control of production and injection wells in a hydrocarbon field
CN109869137B (zh) * 2017-12-05 2021-06-15 中国科学院沈阳自动化研究所 一种基于流量计和示功图的抽油井定产模式控制方法
US11649704B2 (en) 2018-04-12 2023-05-16 Lift Ip Etc, Llc Processes and systems for injection of a liquid and gas mixture into a well
US11162331B2 (en) * 2018-05-10 2021-11-02 Agile Analytics Corp. System and method for controlling oil and/or gas production
US11674366B2 (en) * 2018-06-25 2023-06-13 ExxonMobil Technology and Engineering Company Method and system of producing hydrocarbons using physics-based data-driven inferred production
CA3096657A1 (en) * 2018-08-29 2020-03-05 Halliburton Energy Services, Inc. Electrical submersible pump (esp) string and esp orientation system
WO2020117252A1 (en) * 2018-12-06 2020-06-11 Halliburton Energy Services, Inc. Distributed and centralized adaptive control of electric submersible pumps
US12001762B2 (en) * 2018-12-21 2024-06-04 ExxonMobil Technology and Engineering Company Method for performing well performance diagnostics
US11408271B2 (en) 2019-06-11 2022-08-09 Noven, Inc. Well pump diagnostics using multi-physics sensor data
US11572770B2 (en) 2019-06-11 2023-02-07 Noven, Inc. System and method for determining load and displacement of a polished rod
US11560784B2 (en) 2019-06-11 2023-01-24 Noven, Inc. Automated beam pump diagnostics using surface dynacard
RU2730252C1 (ru) * 2019-06-14 2020-08-19 Дмитрий Валерьевич Хачатуров Способ максимизации добычи флюида с использованием электрического погружного насоса
RU197336U1 (ru) * 2019-11-05 2020-04-21 Константин Васильевич Рымаренко Устройство управления расходом агента при эксплуатации скважины
RU2728741C1 (ru) * 2019-12-12 2020-07-30 Олег Сергеевич Николаев Способ эксплуатации многопластовой скважины и нефтедобывающая установка для его осуществления
US11162338B2 (en) 2020-01-15 2021-11-02 Halliburton Energy Services, Inc. Electric submersible pump (ESP) intake centralization
CN113250664B (zh) * 2021-07-08 2021-11-26 东营浩辰石油技术开发有限公司 一种具有多级耦合降粘功能的油田井口装置
WO2023164577A1 (en) * 2022-02-23 2023-08-31 Halliburton Energy Services, Inc. Measurement of multi-phase wellbore fluid
CN117606650B (zh) * 2024-01-24 2024-03-26 成都理工大学 一种高地温隧道地热资源动态评价方法及装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2011812C1 (ru) * 1990-07-02 1994-04-30 Ключников Андрей Иванович Способ контроля работы скважины, оборудованной глубинным насосом
US6012015A (en) * 1995-02-09 2000-01-04 Baker Hughes Incorporated Control model for production wells
US5706892A (en) * 1995-02-09 1998-01-13 Baker Hughes Incorporated Downhole tools for production well control
US5941305A (en) 1998-01-29 1999-08-24 Patton Enterprises, Inc. Real-time pump optimization system
US6616413B2 (en) * 1998-03-20 2003-09-09 James C. Humpheries Automatic optimizing pump and sensor system
US6873267B1 (en) * 1999-09-29 2005-03-29 Weatherford/Lamb, Inc. Methods and apparatus for monitoring and controlling oil and gas production wells from a remote location
CA2401705C (en) 2000-03-02 2013-09-24 Shell Canada Limited Wireless downhole measurement and control for optimizing gas lift well and field performance
EP1637695A1 (en) * 2000-09-22 2006-03-22 Weatherford/Lamb, Inc. Methods and apparatus for remote monitoring and control.
CA2398545C (en) * 2000-10-04 2009-02-10 Schlumberger Canada Limited Production optimization methodology for multilayer commingled reservoirs using commingled reservoir production performance data and production logging information
US6595287B2 (en) 2000-10-06 2003-07-22 Weatherford/Lamb, Inc. Auto adjusting well control system and method
US6585041B2 (en) * 2001-07-23 2003-07-01 Baker Hughes Incorporated Virtual sensors to provide expanded downhole instrumentation for electrical submersible pumps (ESPs)
US6695052B2 (en) 2002-01-08 2004-02-24 Schlumberger Technology Corporation Technique for sensing flow related parameters when using an electric submersible pumping system to produce a desired fluid
US7114557B2 (en) * 2004-02-03 2006-10-03 Schlumberger Technology Corporation System and method for optimizing production in an artificially lifted well

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2682381C2 (ru) * 2014-06-30 2019-03-19 Веллтек А/С Скважинная измерительная система
RU2700358C1 (ru) * 2015-10-22 2019-09-16 Статойл Петролеум Ас Способ и система для оптимизации добавления понижателя вязкости в нефтяную скважину, содержащую внутрискважинный насос
US11085274B2 (en) 2015-10-22 2021-08-10 Statoil Petroleum As Method and system for the optimisation of the addition of diluent to an oil well comprising a downhole pump
WO2020224681A1 (es) * 2019-05-06 2020-11-12 Ecopetrol S.A. Proceso de control de inyección de diluyente en fondo de pozo para dilución de crudo extrapesado

Also Published As

Publication number Publication date
RU2009129360A (ru) 2011-02-10
AU2004316883A1 (en) 2005-09-15
US7114557B2 (en) 2006-10-03
GB0614816D0 (en) 2006-09-06
CA2555170C (en) 2011-08-16
WO2005085590A1 (en) 2005-09-15
US20050173114A1 (en) 2005-08-11
GB2427224A (en) 2006-12-20
RU2496974C2 (ru) 2013-10-27
AU2004316883B2 (en) 2008-07-31
GB2427224B (en) 2008-05-14
RU2006131565A (ru) 2008-03-10
CA2555170A1 (en) 2005-09-15

Similar Documents

Publication Publication Date Title
RU2366804C2 (ru) Система и способ оптимизации добычи в скважине с искусственным подъемом
US20050199391A1 (en) System and method for optimizing production in an artificially lifted well
CN104093931B (zh) 用于智能油田的实时动态数据验证设备、***、程序代码、计算机可读介质、以及方法
US20110191029A1 (en) System and method for well test design, interpretation and test objectives verification
RU2348834C2 (ru) Способ определения снижения производительности насоса (варианты) и система для определения снижения производительности насоса
EP3152397B1 (en) Gas lift analysis and troubleshooting
US8412458B2 (en) Determining fluid rate and phase information for a hydrocarbon well using predictive models
US20100076740A1 (en) System and method for well test design and interpretation
MX2015001105A (es) Monitoreo, diagnostico y optimizacion de operaciones de bomba sumergible electrica.
US8229880B2 (en) Evaluation of acid fracturing treatments in an oilfield
EP2773845A2 (en) Statistical reservoir model based on detected flow events
WO2008002345A2 (en) Method for comparing and back allocating production
EP2486236A2 (en) Managing flow testing and the results thereof for hydrocarbon wells
WO2017126974A1 (en) Method and apparatus for automated pressure integrity testing (apit)
WO2017059153A1 (en) Detection of influx and loss of circulation
Podio et al. Integrated well performance and analysis
Denney et al. Benefit evaluation of keeping an integrated model during real-time ESP operations
US11041349B2 (en) Automatic shift detection for oil and gas production system
WO2019241980A1 (en) Method and apparatus for early detection of kicks
Podio et al. Well Visualization And Analysis

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20171222