RU2360958C1 - Реактор для проведения биотехнологических процессов в условиях невесомости - Google Patents

Реактор для проведения биотехнологических процессов в условиях невесомости Download PDF

Info

Publication number
RU2360958C1
RU2360958C1 RU2008116006/13A RU2008116006A RU2360958C1 RU 2360958 C1 RU2360958 C1 RU 2360958C1 RU 2008116006/13 A RU2008116006/13 A RU 2008116006/13A RU 2008116006 A RU2008116006 A RU 2008116006A RU 2360958 C1 RU2360958 C1 RU 2360958C1
Authority
RU
Russia
Prior art keywords
reactor
unit
piston
aeration
housing
Prior art date
Application number
RU2008116006/13A
Other languages
English (en)
Inventor
Александр Иванович Бородулин (RU)
Александр Иванович Бородулин
Юрий Васильевич Марченко (RU)
Юрий Васильевич Марченко
Григорий Григорьевич Ананько (RU)
Григорий Григорьевич Ананько
Original Assignee
Федеральное государственное учреждение науки "Государственный научный центр вирусологии и биотехнологии "Вектор" Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (ФГУН ГНЦ ВБ "Вектор" Роспотребнадзора)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное учреждение науки "Государственный научный центр вирусологии и биотехнологии "Вектор" Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (ФГУН ГНЦ ВБ "Вектор" Роспотребнадзора) filed Critical Федеральное государственное учреждение науки "Государственный научный центр вирусологии и биотехнологии "Вектор" Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (ФГУН ГНЦ ВБ "Вектор" Роспотребнадзора)
Priority to RU2008116006/13A priority Critical patent/RU2360958C1/ru
Application granted granted Critical
Publication of RU2360958C1 publication Critical patent/RU2360958C1/ru

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

Изобретение относится к устройствам для культивирования клеток тканей и микроорганизмов в условиях отсутствия силы земной гравитации и может быть использовано в космической биотехнологии. Реактор для проведения биотехнологических процессов в условиях невесомости включает корпус и подсоединенные к нему узел для подвода и удаления газа, узел для подачи и удаления суспензии микроорганизмов и устройство для осуществления аэрации клеток микроорганизмов. Корпус реактора выполнен в виде полого цилиндра. Устройство для осуществления аэрации клеток микроорганизмов в реакторе выполнено в виде поршня со штоком, в теле которого равномерно выполнены сквозные отверстия. Поршень со штоком установлен в цилиндрическом корпусе с возможностью возвратно-поступательного перемещения от одного торца корпуса к другому. Привод перемещения поршня установлен снаружи корпуса и соединен с его штоком, выведенным через одну из торцевых стенок корпуса. Узел подачи и удаления суспензии микроорганизмов и узел для подвода и удаления газа установлены снаружи корпуса и подсоединены к нему со стороны его торцевых стенок. Причем вся или часть боковой стенки корпуса выполнена прозрачной. Изобретение обеспечивает упрощение конструкции аппарата, уменьшение количества подвижных частей с наружной стороны устройства и повышение его массообменных характеристик в процессе культивирования микроорганизмов. 1 з.п.ф-лы, 2 ил.

Description

Изобретение относится к устройствам для культивирования клеток тканей и микроорганизмов в условиях отсутствия силы земной гравитации и может быть использовано в космической биотехнологии.
Известен биореактор для культивирования культур клеток на микроносителях в условиях микрогравитации (патент США №5002890, МПК С12М 3/06, опубл. 26.03.1991). Биореактор содержит вертикальную осесимметричную камеру, в которой соосно установлено с возможностью вращения фильтрующее устройство, вокруг которого расположены с возможностью вращения гибкие мембраны. Жидкая питательная среда поступает в камеру с клетками, иммобилизованными на микроносителях, через фильтрующее устройство из замкнутой системы подготовки питательной среды и ее аэрации. Аэрация питательной среды газообразными компонентами производится перфузионно через полупроницаемую мембрану. Выпуск использованной среды производится в ту же замкнутую систему. В замкнутой системе входные и выходные параметры считываются датчиками, посредством которых добавляется питательные вещества и регулируется рН, а также подается кислород, удаляется двуокись углерода и устраняются пузырьки газа. Указанная система находится под управлением и контролем микропроцессора. Данная конструкция биореактора предназначена для работы в условиях невесомости.
Однако такое устройство сложно как конструктивно, так и в процессе эксплуатации и имеет низкие массообменные характеристики вследствие перфузионного способа аэрации суспензии клеток.
Известен биореактор, предназначенный для эксплуатации в условиях микрогравитации (патент США №5846817, МПК С12М 1/06, опубл. 08.12.1998), включающий, по крайней мере, одну камеру для культивирования клеток, систему подачи кислорода и устройство для перемешивания культуры клеток. Перемешивающее устройство установлено в камере и выполнено в виде двух соосно расположенных спиральных перегородок с зазором относительно друг друга и стенок камеры. Одна из перегородок снабжена приводом вращения.
Однако, несмотря на работоспособность такой конструкции в условиях микрогравитации, она имеет низкую эффективность перемешивания и газообмена.
Известен биореактор с дистанционным управлением для культивирования клеток как на земле, так и при слабой гравитации (заявка на патент США №2002/0146816, МПК С12М 1/00, опубл. 10.10.2002), который содержит цилиндрическую емкость, с приводом ее вращения на оси, и систему, обеспечивающую поступление свежей или рециркулирующей жидкости и удаление по выбору использованной среды, подлежащей рециркуляции или фильтрации, или нефильтрованной среды для сбора образцов. Емкость биореактора включает две крышки, наливные отверстия и полимерный фильтр. Система газообмена между культуральной средой и внешними газами включает газопроницаемый трубопровод необходимой длины, перистальтический насос и полимерную емкость для хранения свежей среды. Полимерная емкость и перистальтический насос используются для дозированной подачи, перфузии или забора образцов. Корпус биореактора и трубопровод имеют дополнительный уровень биохимической защиты. Все прижимные клапаны для периодического сбора образцов взвешенных клеток или бесклеточной полимерной пористой матрицы и вентилятора. Компьютерная программа с графическим пользовательским интерфейсом для автоматического и/или роботизированного контроля всех функций, включающих, главным образом, вращение емкости реактора, подачу свежей среды, рассчитанный по времени сбор образцов жидкости из реактора, выбор между сбором клеток или бесклеточной жидкости. В целом такая конструкция также работоспособна в условиях невесомости.
Однако такое устройство имеет низкую производительность, т.к. предназначено для культивирования клеток в небольшом объеме питательной среды и имеет низкие массообменные характеристики вследствие перфузионного способа аэрации суспензии клеток.
Наиболее близким аналогом (прототипом) является аппарат для выращивания микроводорослей в условиях невесомости, включающий установленный на полом приводном валу корпус из светопроницаемого материала, разделенный на секции радиальными прозрачными перфорированными перегородками, устройства для подвода газа и суспензии жидкой питательной среды с клетками микроводорослей, и соединенные с валом барботажные трубки. Корпус выполнен в виде кольцевого желоба, открытого к центру, а барботажные трубки объединены в кольцевой коллектор, размещенный в основании желоба (авторское свидетельство №822791, МПК A01G 33/00, опубл. 23.04.1981 г.). Процесс аэрации осуществляется путем подачи (вдувания) газа в суспензию клеток микроводорослей.
Недостатком аппарата является сложность его конструкции. Корпус аппарата в процессе работы должен вращаться, что в условиях космического корабля требует дополнительного пространства и соблюдения техники безопасности. Кроме того, при подаче (вдувании) газа в суспензию клеток микроводорослей возникает недостаточная равномерность подачи газа к каждой клетке, вследствие чего аппарат имеет низкие массообменные характеристики.
Техническим результатом заявляемого изобретения является упрощение конструкции аппарата, уменьшение количества подвижных частей с наружной стороны устройства и повышение его массообменных характеристик в процессе культивирования микроорганизмов.
Указанный технический результат достигается тем, что в реакторе для проведения биотехнологических процессов в условиях невесомости, включающем корпус и подсоединенные к нему узел для подвода и удаления газа, узел для подачи и удаления суспензии микроорганизмов и устройство для осуществления аэрации клеток микроорганизмов, согласно изобретению, корпус реактора выполнен в виде полого цилиндра, а устройство для осуществления аэрации клеток микроорганизмов в реакторе выполнено в виде поршня со штоком, в теле которого равномерно выполнены сквозные отверстия и который установлен в цилиндрическом корпусе с возможностью возвратно-поступательного перемещения от одного торца корпуса к другому, и привода перемещения поршня, установленного снаружи корпуса и соединенного с его штоком, выведенным через одну из торцевых стенок корпуса.
Узел подачи и удаления суспензии микроорганизмов и узел для подвода и удаления газа установлены снаружи корпуса и подсоединены к нему со стороны его торцевых стенок. Причем вся или часть боковой стенки корпуса выполнена прозрачной.
По сравнению с известными аналогами заявляемое устройство имеет более простую конструкцию, меньше подвижных частей снаружи корпуса и более высокие массообменные характеристики вследствие того, что в процессе аэрации жидкая фаза распадается на мелкие частички и контактирует с газовой фазой, т.е. чем меньше размер частиц жидкости, тем больше поверхность их соприкосновения с газовой фазой.
На фиг.1 приведена схема реактора для проведения биотехнологических процессов в условиях невесомости. На фиг.2 изображен процесс формирования капель жидкости при истечении из отверстия в зависимости от скорости истечения жидкости. Цифрами отмечены значения скорости истечения жидкости W в м/с.
Реактор для проведения биотехнологических процессов в условиях невесомости включает корпус 1, выполненный в виде полого цилиндра, и подсоединенные к нему узел 2 для подвода и удаления газа, узел 3 для подачи и удаления суспензии микроорганизмов и устройство для осуществления аэрации клеток микроорганизмов. Устройство для осуществления аэрации клеток микроорганизмов в реакторе выполнено в виде поршня 4 со штоком 5, в теле которого равномерно выполнены сквозные отверстия 6. Поршень 4 установлен в цилиндрическом корпусе 1 с возможностью возвратно-поступательного перемещения от одного торца корпуса 1 к другому. Привод 7 перемещения поршня 4 установлен снаружи корпуса 1 и соединен с его штоком 5, выведенным через одну из торцевых стенок корпуса 1.
Узел 3 подачи и удаления суспензии микроорганизмов и узел 2 для подвода и удаления газа установлены снаружи корпуса 1 и подсоединены к нему со стороны его торцевых стенок. Причем вся или часть боковой стенки 8 корпуса может быть выполнена прозрачной. В зависимости от технологических задач корпус 1 может быть термостатирован и снабжен устройством 9 для поддержания температуры внутри корпуса 1 реактора на заданном уровне.
В общем случае для проведения культивирования микроорганизмов требуется выполнение двух принципиально важных требований:
1. обеспечение процесса эффективного газообмена между культуральной жидкостью и атмосферой биореактора;
2. обеспечение непрерывного перемешивания культуральной жидкости.
В земных условиях выполнение этих условий достигается разного рода перемешивающими устройствами. При космическом полете в условиях невесомости реализовать этот механизм перемешивания не представляется возможным.
Термостатируемый полый цилиндрический корпус 1 имеет внутренний диаметр D0; внутри него находится поршень 4 с n отверстиями 6 диаметром d; культуральная жидкость имеет объем V0, в начале цикла находится под поршнем, высота столба жидкости равна
Figure 00000001
.
Принцип работы капельного биореактора основан на чередовании циклов жидкость - струи жидкости - ансамбль капель - жидкость. В начале цикла жидкость находится под неподвижным поршнем 4. Затем включают привод 7 возвратно-поступательного перемещения поршня 4, который достаточно быстро перемещается вниз до торца корпуса. Происходит выдавливание жидкости через отверстия 6 поршня 4. В начальный момент жидкость образует струи, распадающиеся затем под действием капиллярных сил на ансамбль капель. Через некоторое время поршень 4 начинает двигаться к противоположному торцу корпуса 1, собирая «по дороге» ансамбль капель в одну большую. В конце движения поршня 4 жидкость занимает положение, аналогичное началу данного цикла, но с противоположной стороны корпуса. Таким образом, периодическое разбиение культуральной жидкости на ансамбль капель обеспечивает необходимые для культивирования интенсивный газообмен и перемешивание.
Сделаны количественные оценки параметров реактора. Согласно данным исследований [Пажи Д.Г., Галустов B.C. Основы техники распыливания жидкостей. 1984. М.: «Химия». 256 с.] распад цилиндрической струи жидкости обусловлен возникновением и нарастающим развитием упругих поперечных колебаний поверхности жидкости - неустойчивостью Релея. В работе [Вивденко М.И., Шабалин К.Н. Исследование условий получения равномерных капель размером 1-0,5 мм. Известия ВУЗов. Химия и химическая технология. 1965. Т.8. №4. С.685-690.] производилось изучение механизмов распада струи при различных скоростях истекания жидкости из отверстия. На фиг.2 приведен вид получающегося ансамбля капель в зависимости от скорости истечения жидкости W. Цифрами отмечены значения скорости истечения жидкости W в м/с.
Поскольку ансамбль капель, имеющий наименьшие размеры, имеет наибольшую площадь поверхности, наиболее подходящим режимом распыла является режим при W≈3 м/с. Следующие соотношения связывают диаметр корпуса капельного биореактора, число и диаметр отверстий в поршне 4, двигающийся со скоростью Wp, и временем движения поршня от начального состояния до торца корпуса 1 капельного биореактора Δt:
Figure 00000002
Figure 00000003
.
При V0=150 мл и D=8 см получаем h≈3 см. При n=20 и d0=0,25 см будем иметь Δt≈0,5 с и Wp=6 см/с.
Один из биообъектов, который может культивироваться в космосе в условиях невесомости с целью удаления продуктов метаболизма из воздуха жилого комплекса космического корабля и обогащения его кислородом, является микроводоросль хлорелла.
Хлорелла может расти в темноте и продуцировать кислород, если в состав ее питательной среды, кроме воды и солей, добавляют сахар или глюкозу. При этом хлорелла растет и продуцирует не за счет фотосинтеза, а только усваивая сахар или глюкозу из питательной среды (Чапмен В. Морские водоросли и их использование. Перевод с англ. М., 1953. - с.17-19). В этой связи для культивирования может применяться заявляемый реактор без прозрачных стенок (первый вариант конструкции).
При облучении светом объема суспензии клеток с питательной средой через участок прозрачной стенки 8 корпуса 1 реактора (второй вариант конструкции) и активной аэрации (распылении) ее в объеме корпуса 1 посредством возвратно-поступательного перемещения поршня 4 клетки хлореллы активно размножаются, поглощая (абсорбируя) из газовой фазы углекислый газ, азот и аммиак и обогащая газовую фазу кислородом. Газовая фаза из реактора периодически обменивается с воздушной средой жилого комплекса космического корабля посредством узла 3 подвода и удаления газа из корпуса 1, вследствие чего воздушная среда жилого комплекса космического корабля будет обогащаться кислородом, а из нее будут удаляться продукты метаболизма (дыхания) живых макроорганизмов.
В связи с более высокими массообменными характеристиками заявляемого реактора объем его и габариты могут быть уменьшены в 1,5-2 раза по сравнению с ближайшим аналогом с сохранением, например, возможности очистки воздуха космического корабля по углекислому газу до 0,005 мг/л и по аммиаку - до 0,002 мг/л.

Claims (2)

1. Реактор для проведения биотехнологических процессов в условиях невесомости, включающий корпус и подсоединенные к нему узел для подвода и удаления газа, узел для подачи и удаления суспензии микроорганизмов с питательной средой и устройство для осуществления аэрации клеток микроорганизмов, отличающийся тем, что корпус реактора выполнен в виде полого цилиндра, а устройство для осуществления аэрации клеток микроорганизмов в реакторе выполнено в виде поршня со штоком, в теле которого равномерно выполнены сквозные отверстия и который установлен в цилиндрическом корпусе с возможностью возвратно-поступательного перемещения от одного торца корпуса к другому, и привода перемещения поршня, установленного снаружи корпуса и соединенного с его штоком, выведенным через одну из торцевых стенок корпуса, а узел подачи и удаления суспензии микроорганизмов и узел для подвода и удаления газа установлены снаружи корпуса и подсоединены к нему со стороны его торцевых стенок.
2. Реактор по п.1, отличающийся тем, что вся или часть боковой стенки корпуса выполнена прозрачной.
RU2008116006/13A 2008-04-22 2008-04-22 Реактор для проведения биотехнологических процессов в условиях невесомости RU2360958C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2008116006/13A RU2360958C1 (ru) 2008-04-22 2008-04-22 Реактор для проведения биотехнологических процессов в условиях невесомости

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2008116006/13A RU2360958C1 (ru) 2008-04-22 2008-04-22 Реактор для проведения биотехнологических процессов в условиях невесомости

Publications (1)

Publication Number Publication Date
RU2360958C1 true RU2360958C1 (ru) 2009-07-10

Family

ID=41045735

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008116006/13A RU2360958C1 (ru) 2008-04-22 2008-04-22 Реактор для проведения биотехнологических процессов в условиях невесомости

Country Status (1)

Country Link
RU (1) RU2360958C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106605592A (zh) * 2016-12-28 2017-05-03 浙江海洋大学 一种防风浪鱼藻礁
CN106718818A (zh) * 2016-12-28 2017-05-31 浙江海洋大学 一种悬浮式人工藻礁装置
CN109832186A (zh) * 2019-03-13 2019-06-04 浙江省海洋水产研究所 一种防风浪幼藻培养装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106605592A (zh) * 2016-12-28 2017-05-03 浙江海洋大学 一种防风浪鱼藻礁
CN106718818A (zh) * 2016-12-28 2017-05-31 浙江海洋大学 一种悬浮式人工藻礁装置
CN106718818B (zh) * 2016-12-28 2019-10-22 浙江海洋大学 一种悬浮式人工藻礁装置
CN109832186A (zh) * 2019-03-13 2019-06-04 浙江省海洋水产研究所 一种防风浪幼藻培养装置
CN109832186B (zh) * 2019-03-13 2021-03-23 浙江省海洋水产研究所 一种防风浪幼藻培养装置

Similar Documents

Publication Publication Date Title
US10280391B2 (en) Recipient for cell cultivation
US6642019B1 (en) Vessel, preferably spherical or oblate spherical for growing or culturing cells, cellular aggregates, tissues and organoids and methods for using same
CN101985600B (zh) 一种微重力环境下翻转膜生物反应器
CN107107001B (zh) 用于一次性生物反应器的轴安装式流体传递组件
US20160319234A1 (en) Continuously controlled hollow fiber bioreactor
FI3430119T3 (fi) Bioreaktorijärjestelmä ja sen menetelmä
RU2678129C2 (ru) Фотобиореактор для биосеквестрации co2 с иммобилизованной биомассой водорослей или цианобактерий
CA2548464C (en) Pulse-medium perfusion bioreactor with improved mass transport for multiple 3-d cell constructs
KR20080031035A (ko) 회전할 수 있는 관류된 시변 전자기력 생물반응장치 및그것을 사용한 방법
CN102329729B (zh) 一种用于悬浮细胞微重力效应模拟的培养***
JPH04504499A (ja) バイオリアクターの細胞培養方法
KR20090056667A (ko) 세포배양장치 및 이를 구비한 대용량 자동화 세포배양기
Weiss et al. A multisurface tissue propagator for the mass‐scale growth of cell monolayers
US10344257B2 (en) Horizontally rocked bioreactor system
RU2360958C1 (ru) Реактор для проведения биотехнологических процессов в условиях невесомости
KR102167085B1 (ko) 가스 전환 미생물의 배양 시스템 및 이의 운전 방법
Pal Bais et al. Performance of hairy root cultures of Cichorium intybus L. in bioreactors of different configurations
RU2471863C2 (ru) Биореактор и способ культивирования фотосинтезирующих микроорганизмов с его использованием
RU2355751C1 (ru) Вихревой реактор для проведения биотехнологических процессов в условиях микрогравитации
CN2761164Y (zh) 一种生物反应器
RU2355752C1 (ru) Аппарат для культивирования клеток тканей или микроорганизмов в условиях невесомости
RU2763318C1 (ru) Лабораторный мультиплатформенный газовихревой биореактор
RU2363729C1 (ru) Аппарат для суспензионного культивирования клеток тканей или микроорганизмов
CN106635796B (zh) 用于细胞固着培养的装置及固着培养方法
CN201785395U (zh) 罐外循环的流化床式细胞反应器

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner
MM4A The patent is invalid due to non-payment of fees

Effective date: 20140423