RU2360237C1 - Твердотельный газовый сенсор (варианты) - Google Patents

Твердотельный газовый сенсор (варианты) Download PDF

Info

Publication number
RU2360237C1
RU2360237C1 RU2007139194/28A RU2007139194A RU2360237C1 RU 2360237 C1 RU2360237 C1 RU 2360237C1 RU 2007139194/28 A RU2007139194/28 A RU 2007139194/28A RU 2007139194 A RU2007139194 A RU 2007139194A RU 2360237 C1 RU2360237 C1 RU 2360237C1
Authority
RU
Russia
Prior art keywords
substrate
gas
gas sensor
metal
solid
Prior art date
Application number
RU2007139194/28A
Other languages
English (en)
Other versions
RU2007139194A (ru
Inventor
Александр Васильевич Ефименко (RU)
Александр Васильевич Ефименко
Татьяна Леонидовна Семенова (RU)
Татьяна Леонидовна Семенова
Анатолий Назарьевич Салюк (RU)
Анатолий Назарьевич Салюк
Original Assignee
Институт химии Дальневосточного отделения Российской академии наук (статус государственного учреждения) (Институт химии ДВО РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Институт химии Дальневосточного отделения Российской академии наук (статус государственного учреждения) (Институт химии ДВО РАН) filed Critical Институт химии Дальневосточного отделения Российской академии наук (статус государственного учреждения) (Институт химии ДВО РАН)
Priority to RU2007139194/28A priority Critical patent/RU2360237C1/ru
Publication of RU2007139194A publication Critical patent/RU2007139194A/ru
Application granted granted Critical
Publication of RU2360237C1 publication Critical patent/RU2360237C1/ru

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

Использование: для обнаружения и определения концентраций горючих и токсичных газов. Сущность изобретения: твердотельный газовый сенсор по первому варианту содержит выполненную из вентильных металлов подложку в виде тонкой проволоки, служащей электродом сравнения. Подложка покрыта металлоксидным газочувствительным слоем с нанесенным на него электропроводящим газопроницаемым контактом в качестве измерительного электрода и одновременно является микронагревателем, выводы питания которого прикреплены к противоположным торцевым концам тонкой проволоки. Выводы от измерительного электрода и подложки - тонкой проволоки подсоединены к регистрирующему прибору. Во втором варианте сенсора подложка представляет собой нанесенную на изолятор металлическую полоску. Металлоксидные газочувствительные слои на подложке выполнены методом анодного оксидирования. Подложка-микронагреватель в обоих вариантах выполнения твердотельного газового сенсора служит стабилизирующим термометром электросопротивления, подсоединенным к внешнему источнику питания. Твердотельный газовый сенсор согласно изобретению обладает более высокой надежностью и стабильностью параметров, а также упрощенной конструкцией и технологией. 2 н. и 4 з.п. ф-лы, 2 ил.

Description

Изобретение относится к устройствам для контроля параметров газовых сред, а именно к чувствительным элементам газоанализаторов, и может быть использовано для обнаружения и определения концентраций таких горючих и токсичных газов, как Н2, СО, СnН2n+2, Н2S, SO2, паров С2Н5ОН и других, в горнодобывающей, нефтеперерабатывающей, химической промышленностях, экологии и других отраслях деятельности.
Известны твердотельные газовые сенсоры, регистрируемым параметром которых являются изменения электродвижущей силы (ЭДС).
Так, известен сенсор, предназначенный для обнаружения и определения концентраций горючих и токсичных газов, содержащий подложку, покрытую металлоксидным газочувствительным слоем, пленочный микронагреватель и электроды. Подложка выполнена из металла, выбранного из группы, включающей вентильные металлы и их сплавы, и покрыта оксидными слоями соответствующего металла с обеих сторон. На одной из сторон оксидированной подложки выполнены электропроводящие газопроницаемый контакт в качестве измерительного электрода и газонепроницаемый контакт в качестве электрода сравнения, а на другой стороне подложки размещен пленочный микронагреватель. При этом сенсор снабжен выводами от измерительного электрода и электрода сравнения для подсоединения к регистрирующему прибору и выводами питания микронагревателя (пат. РФ №2102735, опубл. 20.01.1998).
Наиболее близким по технической сущности к предлагаемому газовому сенсору является твердотельный газовый сенсор, регистрируемым параметром которого также является изменение ЭДС, предназначенный для обнаружения Н2, СО, С2Н5ОН, CnH2n+2, H2S, SO2, паров С2Н5OH и других (пат. РФ №2100801, опубл. 27.12.1997). Сенсор содержит подложку, выполненную в виде фольги, пластины или проволоки из вентильного металла или его сплава, покрытую газочувствительными оксидными слоями соответствующего металла. На одной из сторон оксидированной подложки выполнен электропроводящий газопроницаемый контакт в качестве измерительного электрода, а на другой размещен пленочный микронагреватель, при этом сенсор снабжен выводами от измерительного электрода и от подложки (электрода сравнения) для подсоединения непосредственно к регистрирующему прибору (вольтметру) и выводами питания нагревателя. Металлоксидные газочувствительные слои нанесены на подложку методом анодного оксидирования (анодирования). С источника питания на микронагреватель подают электрический ток, в результате чего газочувствительный оксидный слой нагревается до рабочей температуры, значения которой устанавливаются в зависимости от качественного состава регистрирующего газа.
Общим недостатком известных твердотельных газовых сенсоров является необходимость отдельного изготовления микронагревателя, что требует обеспечения прочного надежного контакта по всей поверхности микронагревателя при его соединении с оксидированной подложкой. Это усложняет технологию изготовления известных газовых сенсоров и может приводить к снижению их надежности и стабильности параметров его работы.
Задачей изобретения является разработка твердотельного газового сенсора, характеризующегося более высокой надежностью и стабильностью параметров его работы, а также упрощение конструкции сенсора и технологии его изготовления.
Поставленная задача решается предлагаемым газовым сенсором, выполненным в двух вариантах.
Твердотельный газовый сенсор по первому варианту содержит выполненную из вентильных металлов подложку в виде тонкой проволоки, служащей электродом сравнения и покрытой металлоксидным газочувствительным слоем с нанесенным на него электропроводящим газопроницаемым контактом в качестве измерительного электрода, микронагреватель с выводами питания, выводы от измерительного электрода и подложки - тонкой проволоки для подсоединения к регистрирующему прибору, в котором в отличие от известного твердотельного газового сенсора подложка одновременно является микронагревателем, выводы питания которого прикреплены к противоположным торцевым концам подложки - тонкой проволоки, и служит стабилизирующим термометром электросопротивления, подсоединенным к внешнему источнику питания.
Твердотельный газовый сенсор по второму варианту содержит выполненную из вентильных металлов подложку, служащую электродом сравнения и покрытую металлоксидным газочувствительным слоем с нанесенным на него электропроводящим газопроницаемым контактом в качестве измерительного электрода, микронагреватель с выводами питания, выводы от измерительного электрода и подложки для подсоединения к регистрирующему прибору, в котором в отличие от известного твердотельного газового сенсора подложка представляет собой нанесенную на изолятор металлическую полоску, одновременно является микронагревателем, выводы питания которого прикреплены к противоположным торцевым концам подложки - металлической полоски, и служит стабилизирующим термометром электросопротивления, подсоединенным к внешнему источнику питания.
В твердотельных газовых сенсорах по первому и второму вариантам подложка выполнена из металла, выбранного из группы вентильных, и покрыта газочувствительным оксидным слоем соответствующего металла. Оксиды указанных металлов относятся к нестехиометрическим, имеющим дефицит по кислороду, и в них наиболее эффективно проявляются механизмы, обеспечивающие принцип работы заявляемых сенсоров. Металлоксидный газочувствительный слой наносят методом анодного оксидирования, формирующим на подложке оксидную (анодную) пленку высокого качества, по своим параметрам отвечающую требованиям, предъявляемым к газочувствительным слоям твердотельных сенсоров.
Это дает следующие преимущества: обеспечивается высокая степень однородности и воспроизводимости металлоксидных газочувствительных слоев и соответственно идентичность характеристик сенсоров; достигается высокая универсализация технологии изготовления сенсоров, обеспечивается прочное сцепление оксидного слоя с металлической подложкой.
При этом в отличие от известного твердотельного газового сенсора использование сплавов вентильных металлов неэффективно, так как малые значения их температурных коэффициентов электросопротивления не позволяют (с помощью мостиковой электрической схемы питания нагревателя) с достаточной точностью стабилизировать температуру.
Сущность изобретения поясняется чертежами, где на фиг.1 схематично изображен первый вариант предлагаемого твердотельного газового сенсора, на фиг.2 - второй вариант сенсора.
Твердотельный газовый сенсор в каждом из вариантов выполнения содержит подложку 1, выполненную в первом варианте в виде проволоки, а во втором варианте в виде металлической полоски, например, из циркония, ниобия, покрытую металлоксидными газочувствительными слоями 2 соответствующего металла. На подложку 1, покрытую металлоксидным газочувствительным слоем 2, нанесен (термическим, вакуумным осаждением или химическим способом) электропроводящий газопроницаемый контакт 3, например, из платины, палладия, серебра, золота, являющийся измерительным электродом. Сенсор снабжен выводами питания микронагревателя (подложки) от внешнего источника питания 4, а также выводами от измерительного электрода 3 и от подложки 1 для регистрации ЭДС прибором 5 (фиг.1, 2).
Изображенный на фиг.2 твердотельный газовый сенсор по второму варианту дополнительно включает изолятор 6, на который нанесена металлическая полоска - подложка 1.
Предлагаемый сенсор работает следующим образом. С источника питания 4 на подложку 1, являющуюся микронагревателем, подают электрический ток, в результате металлоксидный газочувствительный слой 2 нагревается до необходимой рабочей температуры в диапазоне 450-650 К, задаваемой величиной тока. Значения рабочих температур задаются с помощью мостиковой схемы установкой необходимой величины тока, используя зависимость электросопротивления вентильного металла от температуры. Чистые металлы имеют коэффициент электросопротивления α=4·10-3Ом·град-l. Значения рабочих температур устанавливаются в зависимости от состава регистрируемого газа. При этом на поверхности металлоксидного газочувствительного слоя 2 хемосорбируется ионизированный кислород (О-). Основной структурный элемент сенсора - металлическую подложку 1 (одновременно являющуюся и микронагревателем), покрытую металлоксидным газочувствительным слоем 2 с нанесенным на него в средней части измерительным электродом 3, можно рассматривать как электрохимическую ячейку, в которой при температуре 450-650 К между подложкой 1 (электрод сравнения) и измерительным электродом 3 возникает ЭДС.
Принцип работы сенсора основан на изменении ЭДС упомянутой ячейки при появлении в атмосфере регистрируемого газа вследствие протекания на поверхности металлоксидного газочувствительного слоя 2 каталитической реакции окисления определяемого горючего газа с хемосорбированным ионизированным атомом кислорода. Реакция сопровождается инжекцией в пленку электронов, например: CO+O-→CO2+e-. Данное изменение ЭДС регистрируется прибором 5 (вольтметр).
В предлагаемых твердотельных газовых сенсорах, регистрируемым параметром которых, как и в известном, является изменение ЭДС сенсора, сама подложка (служащая электродом сравнения) является не только микронагревателем, но и стабилизирующим термометром электросопротивления. Это обеспечивает стабильность параметров его работы во времени, воспроизводимость и тождественность параметров в серии.
Исключение необходимости отдельного изготовления микронагревателя и операции его присоединения приводит к повышению надежности заявляемых твердотельных газовых сенсоров за счет увеличения термостойкости и ударопрочности сенсоров, создает еще большие возможности для его миниатюризации, в том числе и за счет уменьшения размеров подложки, а также упрощает конструкцию твердотельных газовых сенсоров и технологию их изготовления. Кроме того, совмещение функций подложки и микронагревателя в одном элементе конструкции обеспечивает идеальную теплопередачу и соответственно высокое быстродействие сенсора.
Таким образом, техническим результатом предлагаемого изобретения является повышение надежности твердотельного газового сенсора и стабильности параметров его работы, а также упрощение конструкции сенсора и технологии его изготовления.

Claims (6)

1. Твердотельный газовый сенсор, содержащий выполненную из вентильных металлов подложку в виде тонкой проволоки, служащей электродом сравнения, покрытой металлоксидным газочувствительным слоем с нанесенным на него электропроводящим газопроницаемым контактом в качестве измерительного электрода, микронагреватель с выводами питания, выводы от измерительного электрода и подложки - тонкой проволоки для подсоединения к регистрирующему прибору, отличающийся тем, что подложка одновременно является микронагревателем, выводы питания которого прикреплены к противоположным торцевым концам подложки - тонкой проволоки, и служит стабилизирующим термометром электросопротивления, подсоединенным к внешнему источнику питания.
2. Твердотельный газовый сенсор по п.1, отличающийся тем, что металлоксидные газочувствительные слои на подложке выполнены методом анодного оксидирования.
3. Твердотельный газовый сенсор по п.1, отличающийся тем, что подложка выполнена из циркония.
4. Твердотельный газовый сенсор, содержащий выполненную из вентильных металлов подложку, служащую электродом сравнения, покрытую металлоксидным газочувствительным слоем с нанесенным на него электропроводящим газопроницаемым контактом в качестве измерительного электрода, микронагреватель с выводами питания, выводы от измерительного электрода и подложки для подсоединения к регистрирующему прибору, отличающийся тем, что подложка представляет собой нанесенную на изолятор металлическую полоску, одновременно является микронагревателем, выводы питания которого прикреплены к противоположным торцевым концам подложки - металлической полоски, и служит стабилизирующим термометром электросопротивления, подсоединенным к внешнему источнику питания.
5. Твердотельный газовый сенсор по п.4, отличающийся тем, что металлоксидные газочувствительные слои на подложке выполнены методом анодного оксидирования.
6. Твердотельный газовый сенсор по п.4, отличающийся тем, что подложка выполнена из циркония.
RU2007139194/28A 2007-10-22 2007-10-22 Твердотельный газовый сенсор (варианты) RU2360237C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2007139194/28A RU2360237C1 (ru) 2007-10-22 2007-10-22 Твердотельный газовый сенсор (варианты)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2007139194/28A RU2360237C1 (ru) 2007-10-22 2007-10-22 Твердотельный газовый сенсор (варианты)

Publications (2)

Publication Number Publication Date
RU2007139194A RU2007139194A (ru) 2009-04-27
RU2360237C1 true RU2360237C1 (ru) 2009-06-27

Family

ID=41018566

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007139194/28A RU2360237C1 (ru) 2007-10-22 2007-10-22 Твердотельный газовый сенсор (варианты)

Country Status (1)

Country Link
RU (1) RU2360237C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107315033A (zh) * 2016-04-26 2017-11-03 松下知识产权经营株式会社 气体检测装置以及氢检测方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107315033A (zh) * 2016-04-26 2017-11-03 松下知识产权经营株式会社 气体检测装置以及氢检测方法

Also Published As

Publication number Publication date
RU2007139194A (ru) 2009-04-27

Similar Documents

Publication Publication Date Title
JP3544437B2 (ja) ガスセンサ
JP3871497B2 (ja) ガスセンサ
JP3128114B2 (ja) 窒素酸化物検出装置
JP2020024130A (ja) Mems型半導体式ガス検知素子
JPS6118854A (ja) 酸素濃度検出素子
KR101488438B1 (ko) 전기화학식 가스 센서
JP6425309B2 (ja) Coセンサおよびcoセンサの製造方法
JP4743375B2 (ja) 可燃性ガス濃度測定方法
RU2360237C1 (ru) Твердотельный газовый сенсор (варианты)
US20190317036A1 (en) Gas sensor
JP3831320B2 (ja) 限界電流式酸素センサ
JPS6133132B2 (ru)
CN114324494A (zh) 一种半导体薄膜气体传感器
JP2016183883A (ja) ガスセンサ
JP2009276188A (ja) 水素ガスセンサー
RU2100801C1 (ru) Твердотельный газовый сенсор
JPH06288952A (ja) ガスセンサ
JP2000338081A (ja) ガスセンサ
JP3696494B2 (ja) 窒素酸化物センサ
JP4750574B2 (ja) ガス検知素子
JP2008083007A (ja) 窒素酸化物検知素子
JP5339754B2 (ja) 酸素ガス濃度測定方法
JP2004132791A (ja) ガス検出装置
JPS61264250A (ja) 窒素酸化物検出器
UA17424U (en) Gas detector

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20091023