RU2353845C1 - Трубопроводная арматура - Google Patents

Трубопроводная арматура Download PDF

Info

Publication number
RU2353845C1
RU2353845C1 RU2007135563/06A RU2007135563A RU2353845C1 RU 2353845 C1 RU2353845 C1 RU 2353845C1 RU 2007135563/06 A RU2007135563/06 A RU 2007135563/06A RU 2007135563 A RU2007135563 A RU 2007135563A RU 2353845 C1 RU2353845 C1 RU 2353845C1
Authority
RU
Russia
Prior art keywords
channel
section
area
orifice
concave
Prior art date
Application number
RU2007135563/06A
Other languages
English (en)
Inventor
Ромуальд Ромуальдович Ионайтис (RU)
Ромуальд Ромуальдович Ионайтис
Original Assignee
Федеральное Государственное Унитарное Предприятие "Научно-Исследовательский И Конструкторский Институт Энерготехники Имени Н.А. Доллежаля"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное Государственное Унитарное Предприятие "Научно-Исследовательский И Конструкторский Институт Энерготехники Имени Н.А. Доллежаля" filed Critical Федеральное Государственное Унитарное Предприятие "Научно-Исследовательский И Конструкторский Институт Энерготехники Имени Н.А. Доллежаля"
Priority to RU2007135563/06A priority Critical patent/RU2353845C1/ru
Application granted granted Critical
Publication of RU2353845C1 publication Critical patent/RU2353845C1/ru

Links

Images

Landscapes

  • Pipeline Systems (AREA)

Abstract

Изобретение относится к трубопроводной арматуре и предназначено для управления параметрами рабочих сред. Трубопроводная арматура содержит корпус, в котором выполнен осевой проточный канал с сужающимся входным участком и расширяющимся выходным участком. Между участками установлено, по крайней мере, одно седло с отверстием. Площадь проходного сечения отверстия равна минимальной площади проходного сечения канала. Поверхность, по меньшей мере, одного из участков канала выполнена в виде сопряженных между собой выпуклой и вогнутой по отношению к оси канала поверхностей. Образующие этих поверхностей представляют собой дуги окружностей. Дуга выпуклой поверхности проходит касательно к горизонтальной образующей отверстия трубопровода или отверстия участка канала с максимальной площадью проходного сечения. Дуга вогнутой поверхности проходит касательно к горизонтальной образующей отверстия седла или отверстия участка канала с минимальной площадью проходного сечения. В результате выполнения плавного рельефа проточной части трубопроводной арматуры уменьшается гидравлическое сопротивление в режиме открытого для рабочей среды проходного сечения канала. 3 з.п. ф-лы, 5 ил.

Description

Изобретение относится к машиностроению, а более конкретно к трубопроводной арматуре, которая может быть использована на трубопроводах различных объектов для управления параметрами рабочих сред, проходящих в проточных каналах трубопроводной арматуры.
Наиболее близкой по совокупности существенных признаков к изобретению является трубопроводная арматура, содержащая корпус, в котором выполнен осевой проточный канал с сужающимся входным и расширяющимся выходным участками, между которыми установлено, по крайней мере, одно седло с отверстием, площадь проходного сечения которого равна минимальной площади проходного сечения канала (Д.Ф.Гуревич, О.Н.Шпаков "Справочник конструктора трубопроводной арматуры" - Л.: Машиностроение, 1987 г., с.108).
Площадь проходного сечения отверстия трубопровода, соединенного с арматурой, равна максимальной площади проходного сечения канала, т.е. площади проходного сечения входного (выходного) отверстия канала. Входной и выходной участки канала имеют коническую форму с углом конусности, как правило, не более 10-12°, при этом сужение проходного канала (отношение минимальной площади проходного сечения канала к максимальной площади проходного сечения канала) составляет величину в пределах 0,8-0,99. В режиме нормальной эксплуатации проходное сечение канала открыто для протока рабочей среды, которая при контакте со стенками канала создает гидравлическое сопротивление, влияющее на энергетические потери на объекте, где установлена трубопроводная арматура. В режиме прекращения подачи среды через арматуру проходное сечение канала перекрывают запорным элементом, который вводят в седло. Между входным и выходным участками возникает перепад давлений, который создает значительную гидравлическую силу, воздействующую на седло и запорный элемент, особенно в аварийных ситуациях, связанных с разрывом трубопровода.
Недостатком известной трубопроводной арматуры является увеличение гидравлического сопротивления в режиме открытого проходного сечения канала, которое возрастает в случае изготовления арматуры с сужением канала менее 0,8. Это обстоятельство является причиной ограниченного ассортимента выпускаемой промышленностью трубопроводной арматуры. Увеличение гидравлического сопротивления объясняется тем, что поток жидкости, движущийся по трубопроводу с цилиндрическим проходным сечением и поступающий во входной участок канала, встречает препятствие в виде достаточно крутой конической стенки. Струи потока, перемещающиеся в трубопроводе параллельно до столкновения со стенкой канала, начинают сжиматься, создавая дополнительное сопротивление движению. Далее поток, двигаясь по входному участку канала, перестраивается в "коническое" течение и входит в цилиндрическое отверстие седла, где довольно резко изменяет течение на "цилиндрическое", образуя вихри в его объеме, которые еще больше увеличивают сопротивление. На выходном участке канала поток дважды испытывает резкое изменение движения, а именно: на входе из цилиндрического отверстия седла в конический канал и на выходе из конического канала в цилиндрический трубопровод.
Задачей настоящего изобретения является создание трубопроводной арматуры, которая позволит уменьшить энергетические потери в режиме нормальной эксплуатации и снизить гидравлические силовые нагрузки в режиме перекрытия проходного сечения арматуры, а также значительно уменьшить металлоемкость изделия и себестоимость его изготовления.
Техническим результатом настоящего изобретения является уменьшение гидравлического сопротивления в режиме открытого для рабочей среды проходного сечения канала путем выполнения плавного рельефа проточной части трубопроводной арматуры. Поэтому при переходе из трубопровода во входной участок канала, из входного участка в отверстие седла, из отверстия седла в выходной участок канала, из выходного участка в трубопровод поток рабочей среды не испытывает препятствий на пути движения и свободно проходит через все переходы, что исключает возможность образования вихрей и увеличения гидравлического сопротивления.
Кроме этого, дополнительным техническим результатом является снижение гидравлического давления рабочей среды (жидкости или газа) на седло в режиме полного перекрытия проходного канала путем обеспечения возможности уменьшения площади проходного сечения отверстия седла.
Указанный технический результат достигается тем, что в известной трубопроводной арматуре, содержащей корпус, в котором выполнен осевой проточный канал с сужающимся входным и расширяющимся выходным участками, между которыми установлено, по крайней мере, одно седло с отверстием, площадь проходного сечения которого равна минимальной площади проходного сечения канала, поверхность, по меньшей мере, одного из упомянутых участков канала выполнена в виде сопряженных между собой выпуклой и вогнутой по отношению к оси канала поверхностей, образующие которых представляют собой дуги окружностей, при этом дуга выпуклой поверхности проходит касательно к горизонтальной образующей отверстия трубопровода или отверстия участка канала с максимальной площадью проходного сечения, а дуга вогнутой поверхности проходит касательно к горизонтальной образующей отверстия седла или отверстия участка канала с минимальной площадью проходного сечения.
Кроме этого, выпуклая и вогнутая поверхности сопряжены между собой непосредственно.
Кроме этого, выпуклая и вогнутая поверхности сопряжены между собой через переходную коническую поверхность.
Кроме этого, отношение минимальной площади проходного сечения канала к максимальной площади проходного сечения канала составляет величину, выбранную в пределах от 0,79 до 0.5.
Сущность изобретения поясняется чертежами, где на фиг.1 изображена трубопроводная арматура с входным профилированным участком канала (продольный разрез), на фиг.2 представлена трубопроводная арматура с выходным профилированным участком канала (продольный разрез), на фиг.3 показана трубопроводная арматура с профилированными входным и выходным участками (продольный разрез), на фиг.4 представлен пример построения профиля выходного участка канала, на фиг.5 показан пример посроения профиля участка канала с сопряжением через переходную коническую поверхность.
Трубопроводная арматура содержит корпус 1, в котором выполнен проточный канал, включающий сужающийся входной участок 2 и расширяющийся выходной участок 3. Между входным участком 2 и выходным участком 3 проточного канала установлены два седла 4 для размещения запорного элемента 5 (может быть установлено одно седло - на чертеже такой вариант не показан). В седле 4 выполнено отверстие 6, площадь проходного сечения которого равна минимальной площади проходного сечения отверстия канала. Сужающийся по направлению движения потока участок 2 канала имеет входное отверстие, проходное сечение которого максимально и равно проходному сечению отверстия подсоединенного трубопровода 7, а выходное отверстие участка 2 имеет минимальное проходное сечение и соединено с отверстием 6 седла 4. Поверхность входного участка 2 канала выполнена в виде сопряженных между собой выпуклой и вогнутой по отношению к оси канала поверхностей, которые могут быть сопряжены непосредственно или в случае больших строительных длин (длина арматуры) и малых углах конусности через переходную коническую поверхность. Расширяющийся по направлению движения потока выходной участок 3 имеет входное отверстие, проходное сечение которого минимально и соединено с отверстием 6 седла 4, а выходное отверстие участка 3 выполнено с максимальным проходным сечением, которое равно проходному сечению отверстия подсоединенного трубопровода 7. Поверхность выходного участка 3 выполнена в виде сопряженных между собой вогнутой и выпуклой по отношению к оси канала поверхностей, которые могут быть сопряжены непосредственно или в случае больших строительных длин и малых углах конусности через переходную коническую поверхность. Образующие вогнутой и выпуклой поверхностей участков 2, 3 представляют собой дуги окружностей, которые сопрягаются в точке «ТС» или точке «ТС1», или в точке «ТС2». При равенстве радиусов дуг вогнутой и выпуклой поверхностей точка «ТС» расположена в центральной части участка 2, (участка 3). При сопряжении вогнутой и выпуклой поверхностей через переходную поверхность дуги сопряжены через прямую, которая при равенстве радиусов дуг расположена в центральной части участка 2 (участка 3). Дуга вогнутой поверхности (образующая вогнутой поверхности) проходит касательно к горизонтальной образующей отверстия седла 4 или отверстия канала с минимальной площадью проходного сечения, а дуга выпуклой поверхности (образующая вогнутой поверхности) проходит касательно к горизонтальной образующей отверстия канала с максимальной площадью проходного сечения или отверстия трубопровода 7. Отношение минимальной площади проходного сечения канала к максимальной площади проходного сечения канала составляет величину, выбранную в пределах от 0,79 до 0,5.
Конкретный пример построения профилированной поверхности выходного участка канала трубопроводной арматуры, у которой dтр - диаметр трубопровода; dc - диаметр отверстия седла; Lп - длина перехода от минимального диаметра проходного сечения канала к максимальному представлен на фиг 4. Точки "а" и "б" соединяют прямой "а-б" и через упомянутые точки проводят перпендикуляры к оси канала. Прямую "а-б" делят на четыре части (точки "в", "г"), как правило, равные, но не обязательно. Через точки "в" и "г" проводят перпендикуляры к прямой "а-б" до пересечения с перпендикулярами, проходящими через точки "а" и "б". Точки "о1" и "о2" пересечения перпендикуляров являются центрами окружностей дуг вогнутой и выпуклой поверхностей, а прямые "о1в" ("о1a") и "о2г"("о1б") являются соответственно их радиусами R1 и К2. Проводят дуги радиусами R1 и R2, одна из дуг проходит касательно в точке "а" к горизонтальной образующей отверстия седла 4, а другая дуга проходит в точке "б" касательно к горизонтальной образующей отверстия трубопровода 7. Точка "ТС" пересечения дуг является точкой их сопряжения. Пунктирными линиями на фиг.4 изображены профили двух других вариантов выполнения проходного сечения канала, у которых точки сопряжения "ТС1" и "ТС2" находятся также в центральной части участка канала, но в отличие от вышеизложенного варианта ближе к седлу или к трубопроводу соответственно. По полученному профилю создают программу обработки проточного канала арматуры на станке с числовым программным управлением. Аналогично выполняют построение сопряженного через конусную поверхность профиля проточного канала (фиг.5), при этом дуги сопрягаются через прямую "д-е", касательную к ним. При построении профилированной поверхности канала для получения максимального эффекта от использования трубопроводной арматуры необходимо выбирать рациональное сочетание размеров: а именно: радиусы дуг выпуклой и вогнутой поверхности должны быть пропорциональны максимальному и минимальному диаметру проходного сечения канала, а также строительной длине арматуры.
Трубопроводная арматура работает следующим образом.
В режиме нормальной эксплуатации рабочая среда, например, жидкий теплоноситель, из трубопровода 7 свободно входит во входной участок 2 канала, поскольку запорный элемент 5 поднят в крайнее верхнее положение относительно седел 4, и канал открыт для протока теплоносителя. Вследствие плавного изменения площади проходного сечения сужающегося входного участка 2 исключена возможность образования вихрей, поэтому скорость движения теплоносителя во входном участке 2 плавно увеличивается. В проходном сечении отверстия 6 седла 4 скорость остается постоянной, а в выходном участке 3 плавно уменьшается и теплоноситель уходит в трубопровод 7. Удельный коэффициент сопротивления при движении теплоносителя незначительный, а гидравлическое сопротивление возрастает только из-за увеличения скоростного напора, поэтому гидравлические потери остаются приемлемыми по своей величине. Для прекращения подачи теплоносителя во входной участок 2 запорный элемент 5 перемещают поступательно вниз до контакта с седлами 4. Запорный элемент 5 постепенно перекрывает проходное сечение отверстия 6 седел 4. В уменьшенном проходном сечении возрастают скорость теплоносителя и соответственно давление на седло 4 и запорный элемент 5. Давление достигает максимального значения при полном перекрытии проходного сечения отверстия 6, однако учитывая сужение, которое использовано в заявленной арматуре (от 0,79 до 0,5), это давление существенно меньше, чем у известной трубопроводной арматуры при одновременном сохранении допустимого коэффициента гидравлического сопротивления. Для открытия отверстия 6 седла 4 процесс повторяют в обратном порядке. Если принять сужение по ряду: 0,8; 0,63; 0,5, то усилия на седле и запорном элементе снижаются соответственно в 1,6; 2,5; 4 раза относительно полнопроходной арматуры (без сужения) или в 1,6; 2,5 раза относительно арматуры-прототипа с сужением 0,8.

Claims (4)

1. Трубопроводная арматура, содержащая корпус, в котором выполнен осевой проточный канал с сужающимся входным и расширяющимся выходным участками, между которыми установлено, по крайней мере, одно седло с отверстием, площадь проходного сечения которого равна минимальной площади проходного сечения канала, отличающаяся тем, что поверхность, по меньшей мере, одного из упомянутых участков канала выполнена в виде сопряженных между собой выпуклой и вогнутой по отношению к оси канала поверхностей, образующие которых представляют собой дуги окружностей, при этом дуга выпуклой поверхности проходит касательно к горизонтальной образующей отверстия трубопровода или отверстия участка канала с максимальной площадью проходного сечения, а дуга вогнутой поверхности проходит касательно к горизонтальной образующей отверстия седла или отверстия участка канала с минимальной площадью проходного сечения.
2. Арматура по п.1, отличающаяся тем, что выпуклая и вогнутая поверхности сопряжены между собой непосредственно.
3. Арматура по п.1, отличающаяся тем, что выпуклая и вогнутая поверхности сопряжены между собой через переходную коническую поверхность.
4. Арматура по любому из пп.1-3, отличающаяся тем, что отношение минимальной площади проходного сечения канала к максимальной площади проходного сечения канала составляет величину, выбранную в пределах от 0,79 до 0,5.
RU2007135563/06A 2007-09-25 2007-09-25 Трубопроводная арматура RU2353845C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2007135563/06A RU2353845C1 (ru) 2007-09-25 2007-09-25 Трубопроводная арматура

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2007135563/06A RU2353845C1 (ru) 2007-09-25 2007-09-25 Трубопроводная арматура

Publications (1)

Publication Number Publication Date
RU2353845C1 true RU2353845C1 (ru) 2009-04-27

Family

ID=41019067

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007135563/06A RU2353845C1 (ru) 2007-09-25 2007-09-25 Трубопроводная арматура

Country Status (1)

Country Link
RU (1) RU2353845C1 (ru)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ГУРЕВИЧ Д.Ф., ШПАКОВ О.Н. Справочник конструктора трубопроводной арматуры. - Л.: Машиностроение, 1987. *

Similar Documents

Publication Publication Date Title
US20240003465A1 (en) Fluid flow control devices and systems, and methods of flowing fluids therethrough
US9683667B2 (en) Control valve trim
EP3693645A1 (de) Drosselkörper mit mehreren raumspiralförmig verlaufenden kanälen
RU2567247C2 (ru) Головка для нагнетания в грунт консолидирующих жидких смесей под давлением
RU2353845C1 (ru) Трубопроводная арматура
GB1600480A (en) Fluid throttles pressure reducers or flow controllers
US5413145A (en) Low-pressure-drop critical flow venturi
US20230048962A1 (en) Fluid flow control devices and systems, and methods of flowing fluids
EP1164452A2 (en) Apparatus and method for shaping fluid flow
RU2367834C1 (ru) Регулирующее устройство
RU2406001C1 (ru) Дроссельная вставка
RU138816U1 (ru) Задвижка запорно-регулирующая
US3643914A (en) Valve flow transition
RU2165556C1 (ru) Обратный клапан
RU2193130C2 (ru) Способ изготовления шарового крана
Wakeland A study of venturi tubes
USRE4762E (en) Improvement in valve-cocks
WO2017129628A1 (en) Fluid flow limiter
DE102005018227A1 (de) Durchflussmessgerät nach dem Vortex-Prinzip mit Strömungsgitter
PL216055B1 (pl) Urządzenie do regulacji przepływu cieczy

Legal Events

Date Code Title Description
PC43 Official registration of the transfer of the exclusive right without contract for inventions

Effective date: 20100416