RU2342768C2 - Устройство модуляции амплитуды и фазы радиочастотных сигналов - Google Patents

Устройство модуляции амплитуды и фазы радиочастотных сигналов Download PDF

Info

Publication number
RU2342768C2
RU2342768C2 RU2007103460/09A RU2007103460A RU2342768C2 RU 2342768 C2 RU2342768 C2 RU 2342768C2 RU 2007103460/09 A RU2007103460/09 A RU 2007103460/09A RU 2007103460 A RU2007103460 A RU 2007103460A RU 2342768 C2 RU2342768 C2 RU 2342768C2
Authority
RU
Russia
Prior art keywords
terminal
resistive
phase
amplitude
states
Prior art date
Application number
RU2007103460/09A
Other languages
English (en)
Other versions
RU2007103460A (ru
Inventor
Александр Афанасьевич Головков (RU)
Александр Афанасьевич Головков
Александр Михайлович Мальцев (RU)
Александр Михайлович Мальцев
Василий Игоревич Гайдуков (RU)
Василий Игоревич Гайдуков
Original Assignee
Государственное образовательное учреждение высшего профессионального образования Воронежское высшее военное авиационное инженерное училище (военный институт)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное образовательное учреждение высшего профессионального образования Воронежское высшее военное авиационное инженерное училище (военный институт) filed Critical Государственное образовательное учреждение высшего профессионального образования Воронежское высшее военное авиационное инженерное училище (военный институт)
Priority to RU2007103460/09A priority Critical patent/RU2342768C2/ru
Publication of RU2007103460A publication Critical patent/RU2007103460A/ru
Application granted granted Critical
Publication of RU2342768C2 publication Critical patent/RU2342768C2/ru

Links

Images

Landscapes

  • Transmitters (AREA)

Abstract

Изобретение относится к радиосвязи и может быть использовано для формирования требуемых амплитудно-частотных характеристик и фазочастотных характеристик фазоманипулированных, амплитудно-манипулированных, а также амплитудно-фазоманипулированных сигналов в заданной полосе частот и преобразования частоты. Достигаемый технический результат - обеспечение манипуляции амплитуды и фазы проходного сигнала в двух состояниях управляемого элемента в широкой полосе частот. Устройство модуляции амплитуды и фазы радиочастотных сигналов содержит источник радиочастотных сигналов, трехполюсный управляемый элемент, четырехполюсник, выполненный из резистивных двухполюсников, источник низкочастотного управляющего сигнала, нагрузку для проходных модулированных по амплитуде и фазе радиочастотных сигналов, при этом значения параметров резистивных элементов, формирующих резистивный четырехполюсник, выбраны из условия обеспечения требуемых значений коэффициентов усиления, отношений модулей и разностей фаз коэффициента передачи модулятора в двух состояниях трехполюсного управляемого элемента, определяемых двумя крайними уровнями низкочастотного управляющего сигнала, которые определены математическими выражениями. 9 з.п. ф-лы, 9 ил.

Description

Изобретение относится к радиосвязи и может быть использовано для формирования требуемых АЧХ и ФЧХ фазоманипулированных, амплитудно-манипулированных, а также амплитудно-фазоманипулированных сигналов в заданной полосе частот и для преобразования частоты (переноса спектра входного сигнала вдоль оси частот).
Известен способ манипуляции (модуляции) параметров отраженного сигнала, состоящий в том, что входное сопротивление устройства манипуляции изменяют таким образом, что коэффициент отражения этого устройства изменяет фазу на π, π/2, π/4, причем для разделения входного и отраженного сигнала используют циркулятор [Радиопередающие устройства. / Под редакцией О.А.Челнокова. - М.: Радио и связь, 1982, стр.152-156]. Известно устройство реализации этого способа [там же], состоящее из циркулятора, первый вход которого подключен к источнику сигнала, третий вход подключен к нагрузке, а второй подключен к отрезку разомкнутой линии передачи длиной λ/4, в начале которой включен p-i-n диод.
Если диод закрыт, то от сечения, в котором он включен, происходит отражение, отраженная волна попадает в нагрузку с сопротивлением 50 Ом. Если диод открыт, то отражение происходит от конца линии. Фаза отраженного сигнала в одном состоянии диода отличается от фазы отраженного сигнала в другом состоянии диода на π. При необходимости изменения разности фаз длина отрезка линии передачи изменяется соответствующим образом.
Недостатком этого способа и устройства его реализации является то, что в двух состояниях диода изменяется только фаза отраженного сигнала, причем заданные значения разности фаз отраженного сигнала в двух состояниях диода обеспечиваются только на одной фиксированной частоте. Другим недостатком является постоянство амплитуды отраженного сигнала в двух состояниях диода, то есть отсутствие манипуляции амплитуды, что сужает функциональные возможности. Например, это не позволяет обеспечить два канала радиосвязи на одной несущей частоте (один канал можно образовать с помощью манипуляции амплитуды, а другой с помощью манипуляции фазы или не позволяет обеспечить кодировку передаваемой информации). Третьим недостатком следует считать большие массы и габариты, связанные с необходимостью использования отрезков линии передачи. Четвертым недостатком является то, что устройство манипуляции, состоящее из управляемой и неуправляемой частей, включается между источником сигнала и нагрузкой, которые имеют определенные значения сопротивлений. Источник сигнала имеет чисто действительное сопротивление (второй вход). Нагрузка для отраженного сигнала (третий вход) имеет также действительное сопротивление. Манипулятор подключен к разомкнутой (бесконечное сопротивление) или к замкнутой (нулевое сопротивление) линии передачи. Следующим важным недостатком является то, что данный способ и данное устройство не обеспечивают манипуляцию амплитуды и фазы проходного сигнала. Основным недостатком является отсутствие возможности усиления сигнала с заданными коэффициентами усиления в двух состояниях.
Известен способ манипуляции фазы отраженного сигнала, основанный на использовании двухимпедансных устройств СВЧ [В.Г.Соколинский, В.Г.Шейнкман. Частотные и фазовые модуляторы и манипуляторы. - М.: Радио и связь, 1983, стр.146-158].
Известно устройство реализации этого способа [там же], состоящее из определенного количества реактивных элементов типа L, С, параметры которых выбраны из условия обеспечения требуемой произвольной разности фаз коэффициента отражения.
По сравнению с предыдущими способом и устройством данный способ и устройство его реализации не требуют использования полупроводниковых диодов только в открытом и только закрытом состояниях. При любых состояниях диодов, определяемых двумя уровнями низкочастотного управляющего воздействия, при определенных значениях параметров типа L, С может быть обеспечено заданное значение разности фаз отраженного сигнала на фиксированной частоте. Если амплитуда управляющего низкочастотного сигнала между указанными двумя уровнями изменяется непрерывно, то обеспечивается модуляция.
Недостатком является то, что, как и первый способ и устройство, манипулятор может быть включен только между определенными сопротивлениями. Следующим важным недостатком является то, что данный способ и данное устройство не обеспечивают манипуляцию амплитуды и фазы и не усиливают амплитуду проходного сигнала с заданными коэффициентами усиления в двух состояниях.
Наиболее близким по технической сущности и достигаемому результату (прототипом) является способ [Головков А.А. Устройство для модуляции отраженного сигнала. Авт. св-во №1800579 от 09.10.92], состоящий в том, что неуправляемую часть (согласующе-фильтрующее устройство) формируют из определенным образом соединенных между собой двухполюсников, сопротивление каждого двухполюсника выбирают из условия обеспечения одинакового заданного двухуровневого закона изменения амплитуды и фазы отраженного сигнала при изменении управляемого элемента из одного состояния в другое под действием управляющего низкочастотного напряжения или тока.
Известно устройство (прототип) реализации способа [там же], содержащее циркулятор, первое и третье плечи которого являются СВЧ входом и выходом, а во второе плечо включены реактивный четырехполюсник и полупроводниковый диод, подключенный к источнику низкочастотного управляющего воздействия, при этом четерехполюсник выполнен в виде Т-образного соединения двухполюсников со значениями реактивных сопротивлений, которые выбраны из условия обеспечения требуемых законов двухуровневого изменения амплитуды и фазы отраженного сигнала на двух заданных частотах. Так же как и в предыдущих способе и устройстве реализации возможна модуляция фазы и амплитуды, если управляющий сигнал изменяется непрерывно.
Недостатком является то, что, как и в первых двух способах и устройствах, манипулятор может быть включен только между определенными сопротивлениями. Следующим важным недостатком является то, что данный способ и данное устройство не обеспечивают манипуляцию амплитуды и фазы и усиление амплитуды проходного сигнала с заданными коэффициентами усиления в двух состояниях. Третьим важным недостатком всех перечисленных способов и устройств является то, что все элементы согласующе-фильтрующих устройств (четырехполюсников) выполнены реактивными, что связано со стремлением разработчиков не вносить дополнительных потерь путем использования резистивных элементов. Однако резистивные элементы, обладая независимостью своих параметров от частоты в довольно широкой полосе частот (от самых низких частот (единицы кГц) до частот порядка 500...800 МГц), могут обеспечить достаточно широкую полосу частот амплитудно-фазовых манипуляторов при незначительном увеличении потерь, которые могут быть учтены при соответствующем параметрическом синтезе четырехполюсников. Согласование и фильтрация с помощью резистивных четырехполюсников возможно при условии, если сопротивления источника сигнала и нагрузки являются комплексными [Головков А.А. Синтез амплитудных и фазовых манипуляторов отраженного сигнала на резистивных элементах с сосредоточенными параметрами. Радиотехника и электроника, 1992 г., №9, с.1616-1622].
Техническим результатом изобретения является обеспечение манипуляции амплитуды и фазы и усиление амплитуды проходного сигнала в двух состояниях управляемого элемента в широкой полосе частот при незначительном увеличении потерь путем использования резистивных элементов в согласующих четырехполюсниках при включении манипулятора между источником и нагрузкой с комплексными сопротивлениями. При этом введенные потери компенсируются усилением.
1. Указанный результат достигается тем, что в устройстве модуляции амплитуды и фазы радиочастотных сигналов, состоящем из источника радиочастотных сигналов, управляемого элемента, четырехполюсника, выполненного из двухполюсников, состоящих из количества элементов, не меньшего двух, значения параметров которых выбраны из условия обеспечения требуемых амплитудно-частотных и фазочастотных характеристик в двух состояниях управляемого элемента, подключенного к источнику низкочастотного управляющего сигнала, дополнительно четырехполюсник выполнен из резистивных двухполюсников, управляемый элемент выбран в виде трехполюсного управляемого элемента, управляемый электрод которого подключен к источнику низкочастотного управляющего сигнала, трехполюсный управляемый элемент включен между выходом резистивного четырехполюсника и нагрузкой для проходных модулированных по амплитуде и фазе радиочастотных сигналов, при этом параметры резистивных двухполюсников, формирующих резистивный четырехполюсник, выбраны из условий обеспечения требуемых значений отношений модулей (m) и разностей фаз (φ) коэффициента передачи модулятора в двух состояниях управляемого элемента, определяемых двумя крайними уровнями низкочастотного управляющего сигнала, которые в математической форме выражаются в следующем виде:
Figure 00000002
Figure 00000003
где
Figure 00000004
Figure 00000005
Figure 00000006
a, b, c, d - элементы классической матрицы передачи четырехполюсника;
Figure 00000007
Figure 00000008
Figure 00000009
Figure 00000010
Figure 00000011
g11I,II, g12I,II, g21I,II, g22I,II и b11I,II, b12I,II, b21I,II, b22I,II - заданные действительные и мнимые составляющие элементов матрицы проводимостей управляемого трехполюсного элемента в двух состояниях (I и II), определяемых двумя крайними уровнями низкочастотного управляющего сигнала; zн=rн+jxн и zo=ro+jxo - заданные комплексные сопротивления нагрузки и источника сигнала; φ и m - заданные значения разностей фаз и отношений модулей коэффициентов передачи устройства для модуляции амплитуды и фазы радиочастотных сигналов в двух состояниях управляемого трехполюсного элемента, причем разность фаз φ выбирается из условий обеспечения физической реализуемости и наибольшей полосы частот:
φ=φгр+Δφ,
где
Figure 00000012
Figure 00000013
g11I,II, g12I,II, g21I,II, g22I,II и b11I,II, b12I,II, b21I,II, b22I,II - заданные действительные и мнимые составляющие элементов матрицы проводимостей управляемого трехполюсного элемента в двух состояниях (I и II), определяемых двумя крайними уровнями низкочастотного управляющего сигнала; Δφ - заданная величина разностей фаз коэффициентов передачи, обеспечивающая физическую реализуемость и наибольшую полосу частот.
2. Указанный результат достигается тем, что в устройстве модуляции амплитуды и фазы радиочастотных сигналов по п.1 резистивный четырехполюсник выполнен в виде Г-образного соединения двух резистивных двухполюсников, резистивные сопротивления r1k, r2k двухполюсников, составляющих Г-образное соединение, выбраны из условия обеспечения требуемых, в общем случае различных, коэффициентов усиления, отношений модулей и разностей фаз коэффициентов передачи в заданной полосе частот в двух состояниях управляемого элемента с помощью следующих математических выражений:
Figure 00000014
Figure 00000015
где
Figure 00000016
Do, Eo, rн, xн и остальные обозначения имеют тот же смысл, что и в п.1.
3. Указанный результат достигается тем, что в устройстве модуляции амплитуды и фазы радиочастотных сигналов по п.1 резистивный четырехполюсник выполнен в виде симметричного перекрытого Т-образного соединения четырех резистивных двухполюсников, резистивные сопротивления r1, r2, r3=r1, r4=r2 двухполюсников, составляющих перекрытое Т-образное соединение, выбраны из условия обеспечения требуемых, в общем случае различных, коэффициентов усиления, отношений модулей и разностей фаз коэффициентов передачи в заданной полосе частот в двух состояниях управляемого элемента с помощью следующих математических выражений:
Figure 00000017
Figure 00000018
где
Figure 00000019
Do, Eo, Fo, r0, x0 и остальные обозначения имеют такой же смысл, как и в п.1.
4. Указанный результат достигается тем, что в устройстве модуляции амплитуды и фазы радиочастотных сигналов по п.1 резистивный четырехполюсник выполнен в виде
Figure 00000020
-образного соединения двух резистивных двухполюсников, резистивные сопротивления r1, r2 двухполюсников, составляющих
Figure 00000020
-образное соединение, выбраны из условия обеспечения требуемых, в общем случае различных, коэффициентов усиления, отношений модулей и разностей фаз коэффициентов передачи в заданной полосе частот в двух состояниях управляемого элемента с помощью следующих математических выражений:
Figure 00000021
Figure 00000022
где
Figure 00000023
Do, Eо, Fo, r0, х0 и остальные обозначения имеют такой же смысл, как и в п.1.
5. Указанный результат достигается тем, что в устройстве модуляции амплитуды и фазы радиочастотных сигналов по п.1 резистивный четырехполюсник выполнен в виде симметричного Т-образного соединения трех резистивных двухполюсников, резистивные сопротивления r1, r2, r3=r1 двухполюсников, составляющих симметричное Т-образное соединение, выбраны из условия обеспечения требуемых, в общем случае различных, коэффициентов усиления, отношений модулей и разностей фаз коэффициентов передачи в заданной полосе частот в двух состояниях управляемого элемента с помощью следующих математических выражений:
Figure 00000024
Figure 00000025
где
Figure 00000026
Do, Eо, Fo, r0, х0 и остальные обозначения имеют такой же смысл, как и в п.1.
6. Указанный результат достигается тем, что в устройстве модуляции амплитуды и фазы радиочастотных сигналов по п.1 резистивный четырехполюсник выполнен в виде несимметричного Т-образного соединения трех резистивных двухполюсников, резистивные сопротивления r1, r2, r3 двухполюсников, составляющих несимметричное Т-образное соединение, выбраны из условия обеспечения требуемых, в общем случае различных, коэффициентов усиления, отношений модулей и разностей фаз коэффициентов передачи в заданной полосе частот в двух состояниях управляемого элемента с помощью следующих математических выражений:
Figure 00000027
Figure 00000028
где
Figure 00000029
Do, Eo, Fo, r0, x0 и остальные обозначения имеют такой же смысл, как и в п.1; значение сопротивления r3 выбирается из условия обеспечения физической реализуемости сопротивления r1, r2.
7. Указанный результат достигается тем, что в устройстве модуляции амплитуды и фазы радиочастотных сигналов по п.1 резистивный четырехполюсник выполнен в виде несимметричного Т-образного соединения трех резистивных двухполюсников, резистивные сопротивления r1, r2, r3 двухполюсников, составляющих несимметричное Т-образное соединение, выбраны из условия обеспечения требуемых, в общем случае различных, коэффициентов усиления, отношений модулей и разностей фаз коэффициентов передачи в заданной полосе частот в двух состояниях управляемого элемента с помощью следующих математических выражений:
Figure 00000030
Figure 00000031
где
Figure 00000032
Do, Eo, r0, x0 и остальные обозначения имеют такой же смысл, как и в п.1; значение сопротивления r2 выбирается из условия обеспечения физической реализуемости сопротивления r1, r3.
8. Указанный результат достигается тем, что в устройстве модуляции амплитуды и фазы радиочастотных сигналов по п.1 резистивный четырехполюсник выполнен в виде несимметричного Т-образного соединения трех резистивных двухполюсников, резистивные сопротивления r1, r2, r3 двухполюсников, составляющих несимметричное Т-образное соединение, выбраны из условия обеспечения требуемых, в общем случае различных, коэффициентов усиления, отношений модулей и разностей фаз коэффициентов передачи в заданной полосе частот в двух состояниях управляемого элемента с помощью следующих математических выражений:
Figure 00000033
Figure 00000034
где
Figure 00000035
Do, Eo, r0, х0 и остальные обозначения имеют такой же смысл, как и в п.1; значение сопротивления r1 выбирается из условия обеспечения физической реализуемости сопротивления r2, r3.
9. Указанный результат достигается тем, что в устройстве модуляции амплитуды и фазы радиочастотных сигналов по п.1 резистивный четырехполюсник выполнен в виде мостовой схемы соединения четырех резистивных двухполюсников, резистивные сопротивления r1, r2, r3=r1, r4=r2 двухполюсников, составляющих мостовое соединение, выбраны из условия обеспечения требуемых, в общем случае различных, коэффициентов усиления, отношений модулей и разностей фаз коэффициентов передачи в заданной полосе частот в двух состояниях управляемого элемента с помощью следующих математических выражений:
Figure 00000036
Figure 00000037
где
Figure 00000038
Do, Eo, Fo, r0, x0 и остальные обозначения имеют такой же смысл, как и в п.1.
10. Указанный результат достигается тем, что в устройстве модуляции амплитуды и фазы радиочастотных сигналов по п.1 резистивный четырехполюсник выполнен в виде симметричного П-образного соединения трех резистивных двухполюсников, резистивные сопротивления r1, r2, r3=r1 двухполюсников, составляющих симметричное П-образное соединение, выбраны из условия обеспечения требуемых, в общем случае различных, коэффициентов усиления, отношений модулей и разностей фаз коэффициентов передачи в заданной полосе частот в двух состояниях управляемого элемента с помощью следующих математических выражений:
Figure 00000039
Figure 00000040
где
Figure 00000041
Do, Eo, Fo, r0, х0 и остальные обозначения имеют такой же смысл, как и в п.1.
На фиг.1 показана схема устройства модуляции амплитуды и фазы радиочастотных сигналов (прототип).
На фиг.2 показана структурная схема предлагаемого устройства по п.1.
На фиг.3 приведена схема четырехполюсника предлагаемого устройства по п.2.
На фиг.4 приведена схема четырехполюсника предлагаемого устройства по п.3.
На фиг.5 приведена схема четырехполюсника предлагаемого устройства по п.4.
На фиг.6 приведена схема четырехполюсника предлагаемого устройства по п.5.
На фиг.7 приведена схема четырехполюсников предлагаемых устройств по пп.6-8.
На фиг.8 приведена схема четырехполюсника предлагаемого устройства по п.9.
На фиг.9 приведена схема четырехполюсника предлагаемого устройства по п.10.
Устройство-прототип (фиг.1) содержит циркулятор 1 с входным 2, нагрузочным 3 и выходным 4 плечами, три двухполюсника с реактивными сопротивлениями х1k-5, x2k-6, x3k-7, соединенных между собой по Т-схеме, а также полупроводниковый диод 8, подключенный параллельно к источнику сигнала модуляции 9. Двухполюсник 7 подключен к диоду 8, двухполюсник 5 - к нагрузочному плечу 3 циркулятора 1.
Принцип действия устройства манипуляции параметров сигнала (прототип) состоит в следующем.
Высокочастотный сигнал от источника (на фиг.1 не показан) через входное плечо 2 циркулятора 1 поступает в нагрузочное плечо 3. В результате взаимодействия пришедшего сигнала с реактивными элементами и диодом и благодаря специальному выбору значений реактивных элементов двухполюсников значения фаз и амплитуд отраженных сигналов на двух частотах оказываются такими, что в результате их интерференции на выходное плечо 4 циркулятора 1 поступают сигналы, амплитуда и фаза которых в одном состоянии диода 8, определяемом одним крайним значением сигнала модуляции источника 9, отличаются от амплитуды и фазы этих сигналов в другом состоянии диода 8 на заданные величины на соответствующих двух частотах. Максимальная девиация фазы может составлять 360°, минимальная - ноль, максимальное отношение амплитуд равно ∞. Отношения модулей и разности фаз коэффициента отражения реализуются на обеих частотах одинаковыми.
Высокочастотная часть структурной схемы предлагаемого устройства по п.1 (фиг.2) состоит из каскадно-соединенных источника сигнала 10, резистивного четырехполюсника 11, трехполюсного управляемого элемента 8 и нагрузки 12.
Предлагаемое устройство модуляции параметров радиочастотных сигналов по п.2 (фиг.2) содержит источник радиочастотных сигналов 10, резистивный четырехполюсник 11 (фиг.3), выполненный из двух двухполюсников 5, 6 с резистивными сопротивлениями r1, r2, соединенных между собой по Г-образной схеме, а также управляемый трехполюсный элемент 8, подключенный управляемым элементом к источнику низкочастотного управляющего сигнала (сигнала модуляции) 9. Двухполюсник 5 подключен к источнику радиочастотных сигналов 10. Двухполюсник 6 подключен к одному из электродов управляемого трехполюсного элемента 8. Второй из электродов элемента 8 подключен к нагрузке 12. Третий электрод элемента 8 является общим, то есть подключен к заземленной шине. Возможны три варианта включения управляемого трехполюсного элемента (транзистора) - с общей базой, с общим эмиттером, с общим коллектором. При этом разность фаз коэффициентов передачи выбрана оптимальной по критерию обеспечения физической реализуемости и наибольшей полосы частот.
Это устройство функционирует следующим образом. Благодаря специальному выбору количества резистивных элементов двухполюсников 5, 6 (фиг.3), схемы их соединений и значений их параметров при переключении управляющего (модулирующего) сигнала на управляемом трехполюсном элементе будет происходить манипуляция параметров проходного сигнала в заданной полосе частот в общем случае различными законами двухуровневого изменения амплитуды и фазы на различных частотах этой полосы частот. Это означает, что на этих частотах реализуются заданные значения, в общем случае различные, отношений модулей, разностей фаз коэффициентов передачи и коэффициентов усиления. При непрерывном изменении амплитуды управляющего сигнала будет реализована модуляция проходного сигнала по амплитуде и фазе в общем случае по произвольным законам. Сопротивления r1k, r2k определяются аналитически по найденным математическим выражениям однозначно. В силу специального выбора разности фаз коэффициентов передачи в двух состояниях управляемого элемента обеспечивается физическая реализуемость и наибольшая полоса частот.
Значения сопротивлений r1, r2 двухполюсников 5, 6 зависят от оптимальных значений элементов матрицы передачи четырехполюсника и заданных комплексных сопротивлений источника сигнала и нагрузки.
При выборе положения двух крайних значений амплитуды управляющего сигнала на краях квадратичного участка вольт-амперной характеристики управляемого элемента и частоты управляющего сигнала, соизмеримой с частотой источника сигнала, данное устройство функционирует как преобразователь частоты.
Предлагаемое устройство модуляции параметров радиочастотных сигналов по п.3 содержит источник радиочастотных сигналов 10, резистивный четырехполюсник 11 (фиг.4), а также управляемый трехполюсный элемент 8, подключенный к источнику низкочастотного управляющего сигнала (сигнала модуляции) 9. Резистивный четырехполюсник выполнен в виде симметричной перекрытой Т-образной схемы соединения четырех двухполюсников. Принцип действия этого устройства аналогичен принципу действия устройства по п.2.
Предлагаемое устройство модуляции параметров радиочастотных сигналов по п.4 содержит источник радиочастотных сигналов 10, резистивный четырехполюсник 11 (фиг.5), а также управляемый трехполюсный элемент 8, подключенный к источнику низкочастотного управляющего сигнала (сигнала модуляции) 9. Резистивный четырехполюсник выполнен в виде
Figure 00000020
-образной схемы соединения двух двухполюсников. Принцип действия этого устройства аналогичен принципу действия устройства по п.2.
Предлагаемое устройство модуляции параметров радиочастотных сигналов по п.5 содержит источник радиочастотных сигналов 10, резистивный четырехполюсник 11 (фиг.6), а также управляемый трехполюсный элемент 8, подключенный к источнику низкочастотного управляющего сигнала (сигнала модуляции) 9. Резистивный четырехполюсник выполнен в виде симметричного Т-образного соединения трех двухполюсников. Принцип действия этого устройства аналогичен принципу действия устройства по п.2.
Предлагаемое устройство модуляции параметров радиочастотных сигналов по п.6 содержит источник радиочастотных сигналов 10, резистивный четырехполюсник 11 (фиг.7), а также управляемый трехполюсный элемент 8, подключенный к источнику низкочастотного управляющего сигнала (сигнала модуляции) 9. Резистивный четырехполюсник выполнен в виде несимметричного Т-образного соединения трех двухполюсников. При этом в явном виде определяются с помощью математических выражений оптимальные значения сопротивлений r1, r2. Значение сопротивления r3 выбирается из условия обеспечения физической реализуемости сопротивлений r1, r2 (из условия обеспечения их неотрицательными). Принцип действия этого устройства аналогичен принципу действия устройства по п.2.
Предлагаемое устройство модуляции параметров радиочастотных сигналов по п.7 содержит источник радиочастотных сигналов 10, резистивный четырехполюсник 11 (фиг.7), а также управляемый трехполюсный элемент 8, подключенный к источнику низкочастотного управляющего сигнала (сигнала модуляции) 9. Резистивный четырехполюсник выполнен в виде несимметричного Т-образного соединения трех двухполюсников. При этом в явном виде определяются с помощью математических выражений оптимальные значения сопротивлений r1, r3. Значение сопротивления r2 выбирается из условия обеспечения физической реализуемости сопротивлений r1, r3 (из условия обеспечения их неотрицательными). Принцип действия этого устройства аналогичен принципу действия устройства по п.2.
Предлагаемое устройство модуляции параметров радиочастотных сигналов по п.8 содержит источник радиочастотных сигналов 10, резистивный четырехполюсник 11 (фиг.7), а также управляемый трехполюсный элемент 8, подключенный к источнику низкочастотного управляющего сигнала (сигнала модуляции) 9. Резистивный четырехполюсник выполнен в виде несимметричного Т-образного соединения трех двухполюсников. При этом в явном виде определяются с помощью математических выражений оптимальные значения сопротивлений r2, r3. Значение сопротивления r1 выбирается из условия обеспечения физической реализуемости сопротивлений r2, r3 (из условия обеспечения их неотрицательными). Принцип действия этого устройства аналогичен принципу действия устройства по п.2.
Предлагаемое устройство модуляции параметров радиочастотных сигналов по п.9 содержит источник радиочастотных сигналов 10, резистивный четырехполюсник 11 (фиг.8), а также управляемый трехполюсный элемент 8, подключенный к источнику низкочастотного управляющего сигнала (сигнала модуляции) 9. Резистивный четырехполюсник выполнен в виде мостовой схемы соединения четырех двухполюсников. При этом в явном виде определяются с помощью математических выражений оптимальные значения сопротивлений r3=r1, r4=r2. Принцип действия этого устройства аналогичен принципу действия устройства по п.2.
Предлагаемое устройство модуляции параметров радиочастотных сигналов по п.10 содержит источник радиочастотных сигналов 10, резистивный четырехполюсник 11 (фиг.9), а также управляемый трехполюсный элемент 8, подключенный к источнику низкочастотного управляющего сигнала (сигнала модуляции) 9. Резистивный четырехполюсник выполнен в виде симметричной схемы П-образного соединения трех двухполюсников. При этом в явном виде определяются с помощью математических выражений оптимальные значения сопротивлений r1, r2, r3=r1. Принцип действия этого устройства аналогичен принципу действия устройства по п.2.
Анализ условий физической реализуемости указанных девяти вариантов выполнения резистивного четырехполюсника (фиг.3 - 9) предлагаемого устройства (фиг.2) показывает, что из этого количества вариантов при произвольных заданных сопротивлений источника сигнала и нагрузки всегда найдется такой вариант, что значения резистивных сопротивлений этого четырехполюсника, рассчитанные по вышеприведенным формулам, будут положительными, то есть физически реализуемыми. Наоборот, для каждого отдельно взятого варианта всегда найдутся такие значения сопротивлений источников сигнала и нагрузки, что значения резистивных сопротивлений четырехполюсников, рассчитанные по вышеприведенным формулам, окажутся физически реализуемыми.
Докажем возможность реализации указанных свойств.
Пусть комплексные сопротивления нагрузки zн=rн+jxн источника сигнала zo=ro+jxo, а также матрицы проводимостей YTI,II транзистора в двух состояниях известны, причем:
Figure 00000042
где
Figure 00000043
Figure 00000044
Figure 00000045
Figure 00000046
Матрице проводимостей (1) соответствует классическая матрица передачи [Фельдштейн А.Л., Явич Л.Р. Синтез четырехполюсников и восьмиполюсников на СВЧ. - М.: Связь, 1965. - 40 с.]:
Figure 00000047
где
Figure 00000048
Резистивный четырехполюсник описывается матрицей передачи:
Figure 00000049
где
Figure 00000050
Figure 00000051
Figure 00000052
а, b, с, d - элементы классической матрицей передачи [Фельдштейн А.Л., Явич Л.Р. Синтез четырехполюсников и восьмиполюсников на СВЧ. - М.: Связь, 1965. - 40 с.].
Эквивалентная схема манипулятора представляется в виде четырех каскадно-соединенных четырехполюсников (фиг.2).
Общая нормированная классическая матрица передачи манипулятора имеет вид:
Figure 00000053
Используя известную связь элементов матрицы рассеяния [Фельдштейн А.Л., Явич Л.Р. Синтез четырехполюсников и восьмиполюсников на СВЧ. - М.: Связь, 1965., 40 с.], получим выражение для коэффициента передачи манипулятора S21I,II в двух состояниях транзистора:
Figure 00000054
где
Figure 00000055
Figure 00000056
Figure 00000057
Figure 00000058
Figure 00000059
Figure 00000060
Пусть требуется определить схему резистивного четырехполюсника и значения параметров резистивных элементов двухполюсников, входящих в него, при которых возможно обеспечить заданные отношения модулей m21=|S21I|/|S21II| и разность фаз φ21=arg S21I-arg S21II в двух состояниях транзистора:
Figure 00000061
Подставим (5) в (6) и после несложных, но громоздких преобразований и разделения комплексного уравнения на действительную и мнимую части получим систему двух алгебраических уравнений:
Figure 00000062
Figure 00000063
где
Figure 00000064
Figure 00000065
Figure 00000066
Figure 00000067
Решение системы (7) имеет вид двух взаимосвязей между элементами искомой матрицы проводимостей, оптимальных по критерию обеспечения заданного закона изменения (6) на фиксированной частоте:
Figure 00000068
Figure 00000069
где
Figure 00000007
Figure 00000008
Figure 00000070
Поскольку Do2-E0Fo=-xo2, то границей области физической реализуемости является область изменения φ, которая удовлетворяет условию:
Figure 00000071
которое приводится к виду:
Figure 00000072
Figure 00000073
где
Figure 00000074
Figure 00000075
Figure 00000076
Figure 00000077
Figure 00000078
Figure 00000079
Figure 00000080
Figure 00000081
Figure 00000082
Figure 00000083
Figure 00000084
Figure 00000085
Уравнение (10) после перемножения упрощается и приводится к виду:
Figure 00000086
где
Figure 00000087
Figure 00000088
Figure 00000089
Figure 00000090
Решение уравнения (11) дает выражение для граничного значения разности фаз коэффициентов передачи в двух состояниях управляемого элемента:
Figure 00000091
Областью физической реализуемости является область изменения разности фаз φ>φгр при условии xо>0 или φ<φгр при условии xо<0. Для обеспечения этой области физической реализуемости необходимо, чтобы подкоренное выражение в (12) было неотрицательно. Из этого условия находим ограничение на квадрат отношения модулей коэффициентов передачи в двух состояниях управляемого элемента:
Figure 00000092
где
Figure 00000093
Figure 00000094
- качество управляемого трехполюсного элемента, включенного в состав манипулятора вместе с резистивным четырехполюсником, источником сигнала и нагрузкой с комплексными сопротивлениями. Понятие "качество управляемого трехполюсного элемента" введено здесь впервые по аналогии с качеством управляемого двухполюсного элемента [Kawakami S. Figure of Merit Associated with a Variable Parameter One-Port for RF Switching and Modulation // IEEE Trans: 1965. CT-12. №3. С.320-328; Головков А.А., Минаков В.Г. Взаимосвязи между элементами матрицы сопротивлений и их использование для синтеза согласующе-фильтрующих устройств амплитудно-фазовых манипуляторов. Телекоммуникации, №8, 2004, с.29-32]. Качество трехполюсного управляемого элемента (так же как и качество двухполюсного управляемого элемента) характеризует меру различия элементов его матрицы проводимости (проводимости) в двух состояниях, определяемых двумя уровнями управляющего сигнала, с учетом проводимости или сопротивления источника сигнала.
Подкоренное выражение в (13) всегда положительно. Необходимо отметить, что расчеты показывают, что при выборе разностей фаз коэффициентов передачи, близкой к φгр (12), или при выборе отношения модулей, близкого к mкр, обеспечивается не только физическая реализуемость, но и наибольшая полоса частот.
Полученная система двух взаимосвязей (8) между элементами матрицы передачи резистивного четырехполюсника означает, что двухуровневые манипуляторы амплитуды и (или) фазы проходного сигнала должны содержать не менее чем два независимых резистивных элемента, значения параметров которых должны удовлетворять системе двух уравнений, сформированных на основе этих взаимосвязей. Для отыскания оптимальных значений параметров резистивного четырехполюсника необходимо выбрать какую-либо схему из М≥2 элементов, найти ее матрицу передачи, элементы которой выражены через параметры схемы резистивного четырехполюсника, и подставить их в (8). Сформированная таким образом система уравнений должна быть решена относительно выбранных двух параметров. Значения остальных М-2 параметров могут быть отнесены к сопротивлению zo или заданы произвольно. После использования описанного алгоритма будет реализована двухуровневая манипуляция амплитуды и фазы проходного сигнала с заданными отношениями модулей и разностями фаз коэффициентов передачи транзисторного манипулятора. Однако абсолютные значения коэффициентов усиления при этом оказываются неконтролируемыми, т.е. могут быть какими угодно. Для того чтобы обеспечить заданный коэффициент усиления в одном из состояний транзистора, необходимо соответствующим образом выбрать рабочую точку в одном из состояний. В другом состоянии коэффициент усиления определяется заданным отношением модулей m коэффициентов передачи.
На основе использования описанного алгоритма для схемы четырехполюсника в виде Г- образного соединения двух резистивных двухполюсников (фиг.3) для усиливающего манипулятора получены математические выражения для определения значений сопротивлений r1, r2 двухполюсников. Здесь же приведена матрица передачи и выражения для определения параметров и матриц передачи других заявленных четырехполюсников.
Для Г-образного соединения:
Figure 00000095
Figure 00000096
Figure 00000097
Figure 00000098
Для симметричного перекрытого Т-образного соединения (фиг.4):
Figure 00000099
Figure 00000100
Figure 00000101
Figure 00000102
.
Для
Figure 00000103
-образной схемы соединения (фиг.5):
Figure 00000104
Figure 00000105
Figure 00000106
Figure 00000107
Для симметричной Т-образной схемы соединения (фиг.6):
Figure 00000108
Figure 00000109
Figure 00000110
Figure 00000111
.
Для трех вариантов несимметричной Т-образной схемы соединения (фиг.7):
Figure 00000112
1)
Figure 00000027
Figure 00000113
Figure 00000114
2)
Figure 00000030
Figure 00000115
Figure 00000116
3)
Figure 00000033
Figure 00000117
Figure 00000118
.
Для мостовой схемы соединения (фиг.8):
Figure 00000119
Figure 00000120
Figure 00000121
Figure 00000122
.
Для симметричной П-образной схемы соединения (фиг.9):
Figure 00000123
Figure 00000124
Figure 00000125
Figure 00000102
.
Предлагаемые технические решения являются новыми, поскольку из общедоступных сведений неизвестно устройство одновременной модуляции амплитуды и фазы и усиления, обеспечивающее заданные, в общем случае различные, коэффициенты усиления и фазы в двух состояниях трехполюсного управляемого элемента в заданной полосе частот, состоящее из управляемого трехполюсного элемента, включенного между выходом резистивного четырехполюсника и нагрузкой, причем четырехполюсник выполнен в виде Г-образного соединения двух резистивных двухполюсников (симметричной перекрытой Т-схемы,
Figure 00000103
-образной схемы, симметричной Т-схемы, в виде трех вариантов несимметричной Т-схемы, мостовой схемы и симметричной П-схемы), параметры которых определены по соответствующим математическим выражениям. При этом разность фаз коэффициентов передачи выбрана оптимальной по критерию обеспечения физической реализуемости и наибольшей полосы частот.
Предлагаемые технические решения имеют изобретательский уровень, поскольку из опубликованных научных данных и известных технических решений явным образом не следует, что заявленная последовательность операций (выполнение четырехполюсника резистивным в виде девяти указанных выше схем с выбором значений их параметров из условия усиления и обеспечения двухуровневого изменения амплитуды и фазы проходного сигнала на заданной полосе частот при изменении состояния управляемого трехполюсного элемента, включенного между выходом резистивного четырехполюсника и нагрузкой, причем трехполюсный элемент может быть включен по любой из трех схем (с общей базой, с общим эммитером, с общим коллектором) при произвольных значениях сопротивлений источника сигнала и нагрузок обеспечивают одновременно манипуляцию амплитуды и фазы и усиление амплитуды проходного сигнала при наибольшей полосе частот.
Предлагаемые технические решения практически применимы, так как для их реализации могут быть использованы серийно выпускаемые промышленностью транзисторы, резисторы.
Технико-экономическая эффективность предложенного устройства заключается в одновременном обеспечении манипуляции амплитуды и фазы и усиления амплитуды проходного сигнала в общем случае по разным законам с наибольшей рабочей полосой частот.

Claims (10)

1. Устройство модуляции амплитуды и фазы радиочастотных сигналов, состоящее из источника радиочастотных сигналов, управляемого элемента, четырехполюсника, выполненного из двухполюсников, состоящих из количества элементов, не меньшего двух, значения параметров которых выбраны из условия обеспечения требуемых амплитудно-частотных и фазочастотных характеристик в двух состояниях управляемого элемента, подключенного к источнику низкочастотного управляющего сигнала, отличающееся тем, что четырехполюсник выполнен из резистивных двухполюсников, управляемый элемент выбран в виде трехполюсного управляемого элемента, управляемый электрод которого подключен к источнику низкочастотного управляющего сигнала, трехполюсный управляемый элемент включен между выходом резистивного четырехполюсника и нагрузкой для проходных модулированных по амплитуде и фазе радиочастотных сигналов, при этом параметры резистивных двухполюсников, формирующих резистивный четырехполюсник, выбраны из условий обеспечения требуемых значений коэффициентов усиления, отношений модулей (m) и разностей фаз (φ) коэффициента передачи модулятора в двух состояниях управляемого элемента, определяемых двумя крайними уровнями низкочастотного управляющего сигнала, которые в математической форме выражаются в следующем виде:
Figure 00000126
заданные действительные и мнимые составляющие элементов матрицы проводимостей управляемого трехполюсного элемента в двух состояниях (I и II), определяемых двумя крайними уровнями низкочастотного управляющего сигнала;
zн=rн+jxн и zo=ro+jxo - заданные комплексные сопротивления нагрузки и источника сигнала; φ и m - заданные значения разностей фаз и отношений модулей коэффициентов передачи устройства для модуляции амплитуды и фазы радиочастотных сигналов в двух состояниях управляемого трехполюсного элемента, причем разность фаз φ выбирается из условий обеспечения физической реализуемости и наибольшей полосы частот
Figure 00000127
заданные действительные и мнимые составляющие элементов матрицы проводимостей управляемого трехполюсного элемента в двух состояниях (I и II), определяемых двумя крайними уровнями низкочастотного управляющего сигнала;
Δφ - заданная величина разностей фаз коэффициентов передачи, обеспечивающая физическую реализуемость и наибольшую полосу частот.
2. Устройство модуляции амплитуды и фазы радиочастотных сигналов по п.1, отличающееся тем, что резистивный четырехполюсник выполнен в виде Г-образного соединения двух резистивных двухполюсников, резистивные сопротивления r1, r2 двухполюсников, составляющих Г-образное соединение, выбраны из условия обеспечения требуемых, в общем случае различных, коэффициентов усиления, отношений модулей и разностей фаз коэффициентов передачи в заданной полосе частот в двух состояниях управляемого элемента с помощью следующих математических выражений:
Figure 00000128
3. Устройство модуляции амплитуды и фазы радиочастотных сигналов по п.1, отличающееся тем, что резистивный четырехполюсник выполнен в виде симметричного перекрытого Т-образного соединения четырех резистивных двухполюсников, резистивные сопротивления r1, r2, r3=r1, r4=r2 двухполюсников, составляющих Г-образное соединение, выбраны из условия обеспечения требуемых, в общем случае различных, коэффициентов усиления, отношений модулей и разностей фаз коэффициентов передачи в заданной полосе частот в двух состояниях управляемого элемента с помощью следующих математических выражений:
Figure 00000129
4. Устройство модуляции амплитуды и фазы радиочастотных сигналов по п.1, отличающееся тем, что резистивный четырехполюсник выполнен в виде
Figure 00000130
-образного соединения двух резистивных двухполюсников, резистивные сопротивления r1, r2 двухполюсников, составляющих
Figure 00000130
-образное соединение, выбраны из условия обеспечения требуемых, в общем случае различных, коэффициентов усиления, отношений модулей и разностей фаз коэффициентов передачи в заданной полосе частот в двух состояниях управляемого элемента с помощью следующих математических выражений:
Figure 00000131
5. Устройство модуляции амплитуды и фазы радиочастотных сигналов по п.1, отличающееся тем, что резистивный четырехполюсник выполнен в виде симметричного Т-образного соединения трех резистивных двухполюсников, резистивные сопротивления r1, r2, r3=r1 двухполюсников, составляющих симметричное Т-образное соединение, выбраны из условия обеспечения требуемых, в общем случае различных, коэффициентов усиления, отношений модулей и разностей фаз коэффициентов передачи в заданной полосе частот в двух состояниях управляемого элемента с помощью следующих математических выражений:
Figure 00000132
6. Устройство модуляции амплитуды и фазы радиочастотных сигналов по п.1, отличающееся тем, что резистивный четырехполюсник выполнен в виде несимметричного Т-образного соединения трех резистивных двухполюсников, резистивные сопротивления r1, r2, r3 двухполюсников, составляющих несимметричное Т-образное соединение, выбраны из условия обеспечения требуемых, в общем случае различных, коэффициентов усиления, отношений модулей и разностей фаз коэффициентов передачи в заданной полосе частот в двух состояниях управляемого элемента с помощью следующих математических выражений:
Figure 00000133
7. Устройство модуляции амплитуды и фазы радиочастотных сигналов по п.1, отличающееся тем, что резистивный четырехполюсник выполнен в виде несимметричного Т-образного соединения трех резистивных двухполюсников, резистивные сопротивления r1, r2, r3 двухполюсников, составляющих несимметричное Т-образное соединение, выбраны из условия обеспечения требуемых, в общем случае различных, коэффициентов усиления, отношений модулей и разностей фаз коэффициентов передачи в заданной полосе частот в двух состояниях управляемого элемента с помощью следующих математических выражений:
Figure 00000134
8. Устройство модуляции амплитуды и фазы радиочастотных сигналов по п.1, отличающееся тем, что резистивный четырехполюсник выполнен в виде несимметричного Т-образного соединения трех резистивных двухполюсников, резистивные сопротивления r1, r2, r3 двухполюсников, составляющих несимметричное Т-образное соединение, выбраны из условия обеспечения требуемых, в общем случае различных, коэффициентов усиления, отношений модулей и разностей фаз коэффициентов передачи в заданной полосе частот в двух состояниях управляемого элемента с помощью следующих математических выражений:
Figure 00000135
9. Устройство модуляции амплитуды и фазы радиочастотных сигналов по п.1, отличающееся тем, что резистивный четырехполюсник выполнен в виде мостовой схемы соединения четырех резистивных двухполюсников, резистивные сопротивления r1, r2, r3=r1, r4=r2 двухполюсников, составляющих мостовое соединение, выбраны из условия обеспечения требуемых, в общем случае различных, коэффициентов усиления, отношений модулей и разностей фаз коэффициентов передачи в заданной полосе частот в двух состояниях управляемого элемента с помощью следующих математических выражений:
Figure 00000136
10. Устройство модуляции амплитуды и фазы радиочастотных сигналов по п.1, отличающееся тем, что резистивный четырехполюсник выполнен в виде симметричного П-образного соединения трех резистивных двухполюсников, резистивные сопротивления r1, r2, r3=r1 двухполюсников, составляющих П-образное соединение, выбраны из условия обеспечения требуемых, в общем случае различных, коэффициентов усиления, отношений модулей и разностей фаз коэффициентов передачи в заданной полосе частот в двух состояниях управляемого элемента с помощью следующих математических выражений:
Figure 00000137
RU2007103460/09A 2007-01-29 2007-01-29 Устройство модуляции амплитуды и фазы радиочастотных сигналов RU2342768C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2007103460/09A RU2342768C2 (ru) 2007-01-29 2007-01-29 Устройство модуляции амплитуды и фазы радиочастотных сигналов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2007103460/09A RU2342768C2 (ru) 2007-01-29 2007-01-29 Устройство модуляции амплитуды и фазы радиочастотных сигналов

Publications (2)

Publication Number Publication Date
RU2007103460A RU2007103460A (ru) 2008-08-10
RU2342768C2 true RU2342768C2 (ru) 2008-12-27

Family

ID=39745834

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007103460/09A RU2342768C2 (ru) 2007-01-29 2007-01-29 Устройство модуляции амплитуды и фазы радиочастотных сигналов

Country Status (1)

Country Link
RU (1) RU2342768C2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2663558C1 (ru) * 2017-06-27 2018-08-07 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации Способ модуляции амплитуды и фазы высокочастотных сигналов и устройство его реализации
RU2665903C1 (ru) * 2017-06-27 2018-09-04 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации Способ модуляции амплитуды и фазы высокочастотных сигналов и устройство его реализации

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
БАЛАКИРЕВ М.В. и др. Радиопередающие устройства./ Под ред. О.А.Челнокова. - М.: Радио и связь, 1982, с.133, 143-148, 153-155. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2663558C1 (ru) * 2017-06-27 2018-08-07 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации Способ модуляции амплитуды и фазы высокочастотных сигналов и устройство его реализации
RU2665903C1 (ru) * 2017-06-27 2018-09-04 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации Способ модуляции амплитуды и фазы высокочастотных сигналов и устройство его реализации

Also Published As

Publication number Publication date
RU2007103460A (ru) 2008-08-10

Similar Documents

Publication Publication Date Title
RU2342769C2 (ru) Устройство модуляции амплитуды и фазы радиочастотных сигналов
RU2354039C1 (ru) Способ модуляции амплитуды и фазы радиочастотных сигналов и устройство его реализации
RU2341866C2 (ru) Устройство модуляции амплитуды и фазы радиочастотных сигналов
RU2341006C2 (ru) Способ модуляции амплитуды и фазы радиочастотных сигналов и устройства его реализации
RU2341867C2 (ru) Способ модуляции амплитуды и фазы многочастотных сигналов и устройство его реализации
RU2342768C2 (ru) Устройство модуляции амплитуды и фазы радиочастотных сигналов
RU2486639C1 (ru) Способ генерации и частотной модуляции высокочастотных сигналов и устройство его реализации
RU2353049C1 (ru) Способ модуляции амплитуды и фазы радиочастотных сигналов и устройство его реализации
RU2354040C1 (ru) Способ модуляции амплитуды и фазы радиочастотных сигналов и устройство его реализации
RU2341011C2 (ru) Устройство модуляции амплитуды и фазы радиочастотных сигналов
RU2341009C2 (ru) Способ модуляции амплитуды и фазы радиочастотных сигналов и устройства его реализации
RU2341865C2 (ru) Устройство модуляции амплитуды и фазы многочастотных сигналов
RU2341008C2 (ru) Устройство модуляции амплитуды и фазы радиочастотных сигналов
RU2341007C2 (ru) Устройство модуляции амплитуды и фазы радиочастотных сигналов
RU2341012C2 (ru) Способ модуляции амплитуды и фазы радиочастотных сигналов и устройство его реализации
RU2589304C1 (ru) Способ амплитудно-фазовой модуляции высокочастотного сигнала и устройство его реализации
RU2342770C2 (ru) Способ модуляции амплитуды и фазы радиочастотных сигналов и устройство его реализации
RU2341010C2 (ru) Устройство модуляции амплитуды и фазы радиочастотных сигналов
RU2496224C2 (ru) Способ амплитудно-фазовой модуляции высокочастотного сигнала и устройство его реализации
RU2341014C2 (ru) Устройство модуляции амплитуды и фазы многочастотных сигналов
RU2341868C2 (ru) Устройство модуляции амплитуды и фазы многочастотных сигналов
RU2665903C1 (ru) Способ модуляции амплитуды и фазы высокочастотных сигналов и устройство его реализации
RU2494529C2 (ru) Способ амплитудно-фазовой модуляции высокочастотного сигнала и устройство его реализации
RU2663554C1 (ru) Способ модуляции амплитуды и фазы высокочастотных сигналов и устройство его реализации
RU2589864C1 (ru) Способ амплитудно-фазовой модуляции высокочастотного сигнала и устройство его реализации

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20090130