RU2337036C1 - Способ изготовления цилиндрической оболочки прочного корпуса подводного аппарата - Google Patents

Способ изготовления цилиндрической оболочки прочного корпуса подводного аппарата Download PDF

Info

Publication number
RU2337036C1
RU2337036C1 RU2007113592/11A RU2007113592A RU2337036C1 RU 2337036 C1 RU2337036 C1 RU 2337036C1 RU 2007113592/11 A RU2007113592/11 A RU 2007113592/11A RU 2007113592 A RU2007113592 A RU 2007113592A RU 2337036 C1 RU2337036 C1 RU 2337036C1
Authority
RU
Russia
Prior art keywords
glass layer
temperature
centrifuge
glass
metal
Prior art date
Application number
RU2007113592/11A
Other languages
English (en)
Inventor
Владимир Васильевич Пикуль (RU)
Владимир Васильевич Пикуль
Леонид Анатольевич Наумов (RU)
Леонид Анатольевич Наумов
Владимир Кириллович Гончарук (RU)
Владимир Кириллович Гончарук
Original Assignee
Институт проблем морских технологий Дальневосточного отделения Российской академии наук (ИПМТ ДВО РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Институт проблем морских технологий Дальневосточного отделения Российской академии наук (ИПМТ ДВО РАН) filed Critical Институт проблем морских технологий Дальневосточного отделения Российской академии наук (ИПМТ ДВО РАН)
Priority to RU2007113592/11A priority Critical patent/RU2337036C1/ru
Application granted granted Critical
Publication of RU2337036C1 publication Critical patent/RU2337036C1/ru

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

Изобретение относится к морской технике и касается технологии изготовления прочного корпуса подводного аппарата. Сущность изобретения заключается в том, что цилиндрическую оболочку прочного корпуса подводного аппарата формируют из стеклянного слоя, облицованного металлическим покрытием в виде внешнего, внутреннего и торцевых облицовок, имеющих коэффициент температурного расширения, превышающий его величину у стекла. Внешнюю и торцевые металлические облицовки устанавливают в разъемную форму и помещают ее в центрифугу, включают центрифугу и подают расплав стекломассы во внутреннюю полость внешней металлической облицовки. Посредством центрифуги формируют требуемой толщины стеклянный слой на внутренней поверхности внешней металлической облицовки. Температуру стеклянного слоя понижают до температуры, обеспечивающей его диффузионную сварку с внутренней металлической облицовкой, после чего на стеклянный слой подают расплав металла и посредством центрифуги формируют требуемой толщины внутреннюю металлическую облицовку цилиндрической оболочки. Понижают температуру цилиндрической оболочки до температуры стеклования стеклянного слоя и выключают центрифугу, отжигают цилиндрическую оболочку до полной релаксации напряжений и стабилизации стеклянного слоя, понижают температуру цилиндрической оболочки в разъемной форме до температуры внешней среды и извлекают ее из формы. Изобретение обеспечивает надежное соединение металлических облицовок со стеклянным слоем и упрощение технологии изготовления оболочки прочного корпуса подводного аппарата. 1 ил.

Description

Изобретение относится к морской технике и касается изготовления прочных корпусов подводных аппаратов, контейнеров и других подводных сооружений.
Известен способ изготовления цилиндрической оболочки прочного корпуса подводного аппарата путем сборки из отдельных стеклянных элементов, склеенных между собой (Прочные оболочки из селикатных материалов. Под ред. Писаренко Г.С.; АН УССР. Ин-т проблем прочности, - Киев: Наукова Думка, 1989.).
Недостатки известного способа заключаются в том, что получаемая оболочка обладает низкой контактной прочностью и малой ударостойкостью. Это существенным образом снижает эксплуатационную надежность прочного корпуса подводного аппарата и не позволяет в должной мере использовать высокую прочность стекла на сжатие.
Известен также способ изготовления оболочки прочного корпуса подводного аппарата, включающий формирование цилиндрической оболочки из стеклянного слоя, облицованного металлическим покрытием в виде внешнего, внутреннего и торцевых облицовок, имеющих коэффициент температурного расширения, превышающий его величину у стекла (Патент РФ №2067060 МПК6 В63В 3/13. опубл. 27.09.1996, бюл. №27. - прототип). В известном способе формирование оболочки производится путем заливки расплавленной стекломассы в пространство, ограниченное металлическими облицовками, нагретыми до температуры, обеспечивающей надежное соединение их со стекломатериалом. За счет разницы в коэффициентах температурного расширения стеклянный слой при остывании оболочки обжимается, что в сочетании с соответствующим температурным режимом позволяет исключить образование поверхностных микротрещин в стеклянном слое и реализовать в промышленном масштабе известные закономерности многократного повышения прочности и ударостойкости стекломатериала.
Недостатки известного способа заключаются в необходимости использования жаростойких конструкционных металлов, имеющих химическое сродство со стекломатериалом композита, и в практической сложности равномерно плотного заполнения глубоких щелей, образуемых металлическими облицовками. Тем самым накладываются существенные ограничения на применяемые металлы и создаются дополнительные технологические сложности для обеспечения надежного соединения металлических облицовок со стеклянным слоем и формированием равномерно плотного стеклянного слоя.
Задачей, на решение которой направлено изобретение, является обеспечение надежного соединения металлических облицовок со стеклянным слоем и упрощение технологии изготовления цилиндрической оболочки прочного корпуса подводного аппарата из стекломатериала, облицованного металлическими покрытиями.
Поставленная задача достигается тем, что в способе изготовления цилиндрической оболочки прочного корпуса подводного аппарата, включающем формирование цилиндрической оболочки из стеклянного слоя, облицованного металлическим покрытием в виде внешнего, внутреннего и торцевых облицовок, имеющих коэффициент температурного расширения, превышающий его величину у стекла, внешнюю и торцевые металлические облицовки устанавливают в разъемную форму и помещают ее в центрифугу, включают центрифугу и подают расплав стекломассы во внутреннюю полость внешней металлической облицовки, посредством центрифуги формируют требуемой толщины стеклянный слой стекла на внутренней поверхности внешней металлической облицовки, затем температуру стеклянного слоя понижают до температуры, обеспечивающей его диффузионную сварку с внутренней металлической облицовкой, после чего на стеклянный слой подают расплав металла и посредством центрифуги формируют требуемой толщины внутреннюю металлическую облицовку цилиндрической оболочки, понижают температуру цилиндрической оболочки до температуры стеклования стеклянного слоя и выключают центрифугу, отжигают цилиндрическую оболочку до полной релаксации напряжений и стабилизации стеклянного слоя, понижают температуру цилиндрической оболочки в разъемной форме до температуры внешней среды и извлекают ее из формы.
В заявляемом способе изготовления цилиндрической оболочки прочного корпуса подводного аппарата общими существенными признаками для него и для его прототипа являются:
- цилиндрическую оболочку прочного корпуса подводного аппарата формируют из стеклянного слоя, облицованного металлическим покрытием, в виде внешнего, внутреннего и торцевых облицовок;
- имеющих коэффициент температурного расширения, превышающий его величину у стекла.
Сопоставительный анализ существенных признаков заявляемого способа изготовления цилиндрической оболочки прочного корпуса подводного аппарата и прототипа показывает, что первый, в отличие от прототипа, имеет следующие существенные отличительные признаки:
- внешнюю и торцевые металлические облицовки устанавливают в разъемную форму и помещают ее в центрифугу;
- включают центрифугу и подают расплав стекломассы во внутреннюю полость внешней металлической облицовки;
- посредством центрифуги формируют требуемой толщины стеклянный слой на внутренней поверхности внешней металлической облицовки;
- температуру стеклянного слоя понижают до температуры, обеспечивающей его диффузионную сварку с внутренней металлической облицовкой, после чего на стеклянный слой подают расплав металла и посредством центрифуги формируют требуемой толщины внутреннюю металлическую облицовку цилиндрической оболочки;
- понижают температуру цилиндрической оболочки до температуры стеклования стеклянного слоя и выключают центрифугу;
- отжигают цилиндрическую оболочку до полной релаксации напряжений и стабилизации стеклянного слоя;
- понижают температуру цилиндрической оболочки в разъемной форме до температуры внешней среды и извлекают ее из формы.
Данная совокупность существенных отличительных признаков заявленного способа позволила:
- предотвратить коробление внешней и торцевых металлических облицовок;
- обеспечить формирование равномерного и плотного стеклянного слоя требуемой толщины и его диффузионную сварку с внешней и торцевыми металлическими облицовками цилиндрической оболочки;
- обеспечить формирование внутренней металлической облицовки цилиндрической оболочки, причем заданной толщины;
- обеспечить диффузионную сварку внутренней металлической облицовки со стеклянным слоем;
- обеспечить релаксацию напряжений в цилиндрической оболочке перед ее остыванием.
Таким образом, в заявленном способе изготовления цилиндрической оболочки прочного корпуса подводного аппарата надежное соединение металлической облицовки со стеклянным слоем обеспечивается формированием равномерно плотного стеклянного слоя и диффузионной сваркой его с металлическими облицовками, а упрощение технологии изготовления цилиндрической оболочки обеспечивается применением центрифуги для нанесения на внешнюю металлическую облицовку стеклянного слоя и внутренней металлической облицовки на стеклянный слой.
На основании изложенного можно заключить, что совокупность существенных признаков заявленного изобретения имеет причинно-следственную связь с достигнутым техническим результатом, т.е. благодаря данной совокупности существенных признаков изобретения стало возможным решить поставленную задачу. Следовательно, заявленное изобретение является новым, обладает изобретательским уровнем, т.е. оно явным образом не следует из уровня техники и пригодно для использования.
Предлагаемый способ изготовления цилиндрической оболочки прочного корпуса поясняется чертежом, на котором в схематическом виде приведена цилиндрическая оболочка прочного корпуса, сформированная на центрифуге. На чертеже обозначены: 1 - внешняя металлическая облицовка цилиндрической оболочки; 2 - торцевые металлические облицовки цилиндрической оболочки; 3 - внутренняя металлическая облицовка цилиндрической оболочки; 4 - стеклянный слой цилиндрической оболочки; 5 - разъемная форма; 6 - центрифуга.
Способ осуществляют следующим образом. Предварительно подготовленные для надежной диффузионной сварки со стеклянным слоем внешнюю металлическую облицовку 1 и торцевые металлические облицовки 2 устанавливают в разъемную форму 5 и помещают в центрифугу 6. Затем включают центрифугу 6 и подают расплав стекломассы во внутреннюю полость внешней металлической облицовки 1 и посредством центрифуги формируют требуемой толщины стеклянный слой 4 на внутренней поверхности внешней металлической облицовки 1. Частоту и время вращения центрифуги 6 определяют расчетно-экспериментальным методом в зависимости от размеров цилиндрической оболочки, исходя из равномерно плотного нанесения стекломассы на внешнюю металлическую облицовку 1 и сохранения равномерной толщины стеклянного слоя 4 при остывании до температуры стеклования. При этом стекломассу можно наносить послойно и использовать различные рецептуры стекла для каждого промежуточного слоя. После чего температуру стеклянного слоя 4 понижают до температуры, обеспечивающей его диффузионную сварку с внутренней металлической облицовкой, и на стеклянный слой 4 подают расплав металла. Посредством центрифуги 6 формируют требуемой толщины внутреннюю металлическую облицовку 3 цилиндрической оболочки. При работающей центрифуге 6 остужают цилиндрическую оболочку до температуры стеклования стекломассы внутреннего слоя 4. При достижении в стеклянном слое 4 температуры стеклования центрифугу 6 отключают и производят отжиг цилиндрической оболочки при температуре стеклования до полной релаксации напряжений и стабилизации стеклянного слоя 4. После этого цилиндрическую оболочку остужают в разъемной форме 5 до температуры внешней среды и затем извлекают из формы 5.
Высокие показатели прочности и ударостойкости цилиндрической оболочки из стекломелкокомпозита достигаются в основном за счет исключения в стеклянном слое поверхностных микротрещин. Существенное значение имеет также равномерно плотное формирование стеклянного слоя. Механизм исключения образования поверхностных микротрещин заключается в следующем. При остывании цилиндрической оболочки температура металлического покрытия всегда будет ниже температуры внутреннего стеклянного слоя. Поэтому металлические облицовки, имеющие более высокие коэффициенты температурного расширения, стремятся сократить свои размеры в большей мере, чем прилегающие к ним поверхности стеклянного слоя. Однако они встречают сопротивление со стороны приваренного стеклянного слоя. Вследствие этого они растягиваются и стягивают прилегающие к ним поверхности стеклянного слоя. Тем самым создаются механические препятствия к растрескиванию поверхностей стеклянного слоя. В результате формируется равномерно плотный внутренний слой стекла без поверхностных микротрещин.
Прочность и ударостойкость сформированного предлагаемым способом стеклянного слоя повышаются настолько, что отпадает необходимость в использовании прочностных свойств металлических облицовок. Поэтому металлические облицовки используются для обеспечения необходимых технологических приемов и для предохранения стеклянного слоя от местных повреждений.
Технический результат изобретения заключается в создании цилиндрической оболочки прочного корпуса, у которого устранены поверхностные микротрещины и произведено его равномерное уплотнение. Вследствие этого ударостойкость и прочность стекломатериала повышается в десятки раз. Заключение стекломатериала между металлическими облицовками создает дополнительный технический эффект, исключая непосредственный контакт с окружающей средой и создавая дополнительные барьеры, препятствующие разрушению композитной оболочки. Многократное повышение прочности и ударостойкости стекломатериала в составе композитной оболочки позволяет отказаться от использования прочностных свойств металлического покрытия, используя его лишь в технологических целях и для предохранения стеклянного слоя от местных повреждений. Тем самым появляется возможность в существенном уменьшении массы металла в стеклометаллокомпозите и использовании металлов с малой массой и низкой стоимостью. Это позволяет получить существенный экономический эффект, так как сырье, используемое для изготовления стекломатериала, очень дешевое, его запасы практически не ограничены, а энергозатраты на изготовление слоистого композита значительно ниже энергозатрат, которые требуются для изготовления листов большой толщины из конструкционных металлов.

Claims (1)

  1. Способ изготовления цилиндрической оболочки прочного корпуса подводного аппарата, включающий формирование цилиндрической оболочки из стеклянного слоя, облицованного металлическим покрытием в виде внешнего, внутреннего и торцевых облицовок, имеющих коэффициент температурного расширения, превышающий его величину у стекла, отличающийся тем, что внешнюю и торцевые металлические облицовки устанавливают в разъемную форму и помещают ее в центрифугу, включают центрифугу и подают расплав стекломассы во внутреннюю полость внешней металлической облицовки, посредством центрифуги формируют требуемой толщины стеклянный слой на внутренней поверхности внешней металлической облицовки, затем температуру стеклянного слоя понижают до температуры, обеспечивающей его диффузионную сварку с внутренней металлической облицовкой, после чего на стеклянный слой подают расплав металла и посредством центрифуги формируют требуемой толщины внутреннюю металлическую облицовку цилиндрической оболочки, понижают температуру цилиндрической оболочки до температуры стеклования стеклянного слоя и выключают центрифугу, отжигают цилиндрическую оболочку до полной релаксации напряжений и стабилизации стеклянного слоя, понижают температуру цилиндрической оболочки в разъемной форме до температуры внешней среды и извлекают ее из формы.
RU2007113592/11A 2007-04-11 2007-04-11 Способ изготовления цилиндрической оболочки прочного корпуса подводного аппарата RU2337036C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2007113592/11A RU2337036C1 (ru) 2007-04-11 2007-04-11 Способ изготовления цилиндрической оболочки прочного корпуса подводного аппарата

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2007113592/11A RU2337036C1 (ru) 2007-04-11 2007-04-11 Способ изготовления цилиндрической оболочки прочного корпуса подводного аппарата

Publications (1)

Publication Number Publication Date
RU2337036C1 true RU2337036C1 (ru) 2008-10-27

Family

ID=40041992

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007113592/11A RU2337036C1 (ru) 2007-04-11 2007-04-11 Способ изготовления цилиндрической оболочки прочного корпуса подводного аппарата

Country Status (1)

Country Link
RU (1) RU2337036C1 (ru)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2491202C1 (ru) * 2012-03-01 2013-08-27 Федеральное государственное бюджетное учреждение науки Институт проблем морских технологий Дальневосточного отделения Российской академии наук (ИПМТ ДВО РАН) Способ изготовления цилиндрической оболочки прочного корпуса подводного аппарата из стеклометаллокомпозита
RU2497709C1 (ru) * 2012-04-24 2013-11-10 Федеральное государственное бюджетное учреждение науки Институт проблем морских технологий Дальневосточного отделения Российской академии наук (ИПМТ ДВО РАН) Способ изготовления цилиндрической оболочки прочного корпуса подводного аппарата из стеклометаллокомпозита
RU2600262C1 (ru) * 2015-08-24 2016-10-20 Лев Петрович Петренко СПОСОБ ИЗГОТОВЛЕНИЯ ПОДВОДНОГО АППАРАТА ДЛЯ ТРАНСПОРТИРОВКИ УГЛЕВОДОРОДОВ "CnHm" ИЗ ДОННЫХ МЕСТОРОЖДЕНИЙ МОРЕЙ И ОКЕАНОВ (ВАРИАНТ РУССКОЙ ЛОГИКИ - ВЕРСИЯ 8)
RU2600261C1 (ru) * 2015-08-24 2016-10-20 Лев Петрович Петренко СПОСОБ ИЗГОТОВЛЕНИЯ ПОДВОДНОГО АППАРАТА ДЛЯ ТРАНСПОРТИРОВКИ УГЛЕВОДОРОДОВ "CnHm" ИЗ ДОННЫХ МЕСТОРОЖДЕНИЙ МОРЕЙ И ОКЕАНОВ (ВАРИАНТ РУССКОЙ ЛОГИКИ - ВЕРСИЯ 7)
RU2610153C1 (ru) * 2015-12-22 2017-02-08 Лев Петрович Петренко Способ изготовления подводного аппарата для транспортировки углеводородов "CnHm" из донных месторождений морей и океанов (Вариант Русской логики - Версия 9)
RU2696536C1 (ru) * 2018-09-28 2019-08-02 Федеральное государственное бюджетное учреждение науки Институт химии Дальневосточного отделения Российской академии наук (ИХ ДВО РАН) Способ изготовления цилиндрического корпуса подводного аппарата

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2491202C1 (ru) * 2012-03-01 2013-08-27 Федеральное государственное бюджетное учреждение науки Институт проблем морских технологий Дальневосточного отделения Российской академии наук (ИПМТ ДВО РАН) Способ изготовления цилиндрической оболочки прочного корпуса подводного аппарата из стеклометаллокомпозита
RU2497709C1 (ru) * 2012-04-24 2013-11-10 Федеральное государственное бюджетное учреждение науки Институт проблем морских технологий Дальневосточного отделения Российской академии наук (ИПМТ ДВО РАН) Способ изготовления цилиндрической оболочки прочного корпуса подводного аппарата из стеклометаллокомпозита
RU2600262C1 (ru) * 2015-08-24 2016-10-20 Лев Петрович Петренко СПОСОБ ИЗГОТОВЛЕНИЯ ПОДВОДНОГО АППАРАТА ДЛЯ ТРАНСПОРТИРОВКИ УГЛЕВОДОРОДОВ "CnHm" ИЗ ДОННЫХ МЕСТОРОЖДЕНИЙ МОРЕЙ И ОКЕАНОВ (ВАРИАНТ РУССКОЙ ЛОГИКИ - ВЕРСИЯ 8)
RU2600261C1 (ru) * 2015-08-24 2016-10-20 Лев Петрович Петренко СПОСОБ ИЗГОТОВЛЕНИЯ ПОДВОДНОГО АППАРАТА ДЛЯ ТРАНСПОРТИРОВКИ УГЛЕВОДОРОДОВ "CnHm" ИЗ ДОННЫХ МЕСТОРОЖДЕНИЙ МОРЕЙ И ОКЕАНОВ (ВАРИАНТ РУССКОЙ ЛОГИКИ - ВЕРСИЯ 7)
RU2610153C1 (ru) * 2015-12-22 2017-02-08 Лев Петрович Петренко Способ изготовления подводного аппарата для транспортировки углеводородов "CnHm" из донных месторождений морей и океанов (Вариант Русской логики - Версия 9)
RU2696536C1 (ru) * 2018-09-28 2019-08-02 Федеральное государственное бюджетное учреждение науки Институт химии Дальневосточного отделения Российской академии наук (ИХ ДВО РАН) Способ изготовления цилиндрического корпуса подводного аппарата

Similar Documents

Publication Publication Date Title
RU2337036C1 (ru) Способ изготовления цилиндрической оболочки прочного корпуса подводного аппарата
US10792891B2 (en) Polymer matrix-ceramic matrix hybrid composites for high thermal applications
US7980057B2 (en) Integral composite rocket motor dome/nozzle structure
JP2007275992A (ja) 金属製,プラスチック製またはセラミック製の、規則的に発泡した格子構造を有するオープンポーラスコンポーネントの製造方法及び製造装置,コアスタック、並びに、軽量オープンポーラスコンポーネント
JPS5982142A (ja) セラミツク鋳型およびその製造方法
KR20090056923A (ko) 열 응력을 관리할 수 있고 고 반응성 합금의 용융에 적합한내화성 도가니
US5979826A (en) Hybrid composite article and missile components and their fabrication
JP5851404B2 (ja) 大迫天井構造
US3718172A (en) Method of forming a thermally insulated composite article
RU2361770C1 (ru) Способ изготовления цилиндрической оболочки прочного корпуса подводного аппарата из стеклокомпозита
US20200141349A1 (en) Aluminum foam core piston with coaxial laser bonded aerogel/ceramic head
RU2491202C1 (ru) Способ изготовления цилиндрической оболочки прочного корпуса подводного аппарата из стеклометаллокомпозита
RU2361771C1 (ru) Способ изготовления цилиндрической оболочки прочного корпуса подводного аппарата из стеклокомпозита
JPS61500838A (ja) 合成ピストン製作方法並びに装置
RU2497709C1 (ru) Способ изготовления цилиндрической оболочки прочного корпуса подводного аппарата из стеклометаллокомпозита
RU2433969C1 (ru) Способ изготовления трубы из стеклометаллокомпозита
CN105599920A (zh) 用于使用附加层制造技术制造包括止裂器的飞行器部件或航天器部件的方法
RU2696536C1 (ru) Способ изготовления цилиндрического корпуса подводного аппарата
KR101865287B1 (ko) 고온성형을 위한 세라믹 금형 시스템
EP1236554A1 (fr) Procédé de fabrication de pièces en matériaux composites
KR101766079B1 (ko) 브레이크 디스크 제조방법
US10913105B2 (en) Method for producing a pattern for lost pattern casting
JPH0367466B2 (ru)
CA3194660A1 (en) Material, apparatus, and method for refractory castings
Baranova et al. Improving the Lining of Cars Used in Short Tunnel Furnaces

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20160412