RU2329308C2 - Способ производства изделия из стали - Google Patents

Способ производства изделия из стали Download PDF

Info

Publication number
RU2329308C2
RU2329308C2 RU2005122496A RU2005122496A RU2329308C2 RU 2329308 C2 RU2329308 C2 RU 2329308C2 RU 2005122496 A RU2005122496 A RU 2005122496A RU 2005122496 A RU2005122496 A RU 2005122496A RU 2329308 C2 RU2329308 C2 RU 2329308C2
Authority
RU
Russia
Prior art keywords
cold
deformation
hot
steel
less
Prior art date
Application number
RU2005122496A
Other languages
English (en)
Other versions
RU2005122496A (ru
Inventor
Бернхард ЭНГЛЬ (DE)
Бернхард ЭНГЛЬ
Томас ХЕЛЛЕР (DE)
Томас ХЕЛЛЕР
Харальд ХОФМАНН (DE)
Харальд ХОФМАНН
Манфред МЕННЕ (DE)
Манфред МЕННЕ
Original Assignee
Тиссенкрупп Шталь Аг
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=32519063&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2329308(C2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Тиссенкрупп Шталь Аг filed Critical Тиссенкрупп Шталь Аг
Publication of RU2005122496A publication Critical patent/RU2005122496A/ru
Application granted granted Critical
Publication of RU2329308C2 publication Critical patent/RU2329308C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4998Combined manufacture including applying or shaping of fluent material
    • Y10T29/49988Metal casting
    • Y10T29/49991Combined with rolling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)
  • General Factory Administration (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

Изобретение относится к области производства стального листа или стальной полосы. Для обеспечения высокого предела текучести, изотропной деформируемости и пластичности при низких температурах способ включает получение сляба из стали, содержащей, мас.%: С: <1,00, Mn: 7,00-30,00, Al: - 1,00-10,00, Si: >2,50-8,00, Al+Si: >3,50-12,00, В: <0,01, Ni: <8,00, Cu: <3,00, N: <0,60, Nb: <0,30, Ti: <0,30, V: <0,30, Р: <0,01 железо и неизбежные примеси - остальное, нагрев сляба, как минимум, до 1100°С и горячую прокатку, конечная температура которой составляет минимум 800°С, смотку горячекатаной полосы при температуре от 450 до 700°С, холодную прокатку горячекатаного листа со степенью деформации от 30 до 75% в холоднокатаный лист, рекристаллизационный отжиг при температуре от 600 до 1100°С и холодную деформацию со степенью деформации от 2,5 до 25%. 2 н. и 16 з.п. ф-лы, 1 табл.

Description

Изобретение касается способа производства изделия из стали, имеющего высокий предел текучести. Изделие согласно изобретению является, в частности, стальным листом или стальной полосой.
Для производства деталей кузовов автомобилей и применения в низкотемпературных условиях из документа DE 19727759 C2 известна легкая конструкционная сталь, содержащая наряду с железом от 10 до 30% марганца, от 1 до 8% алюминия и от 1 до 6% кремния, причем сумма содержаний алюминия и кремния не превосходит 12%. В этой известной стали углерод содержится на уровне примеси.
В известной из документа DE 19900199 A1 легкой конструкционной стали углерод предусмотрен как опциональный легирующий элемент. Известная легкая сталь содержит от 7 до 27% марганца, от 1 до 10% алюминия, от 0,7 до 4% кремния, менее 0,5% углерода, менее 10% хрома, менее 10% никеля и менее 0,3% меди. Кроме того, в стали могут содержаться азот, ванадий, ниобий, титан и фосфор, причем сумма этих элементов не превышает 2%.
Стали представленного выше вида обладают TWIP-свойствами ("TWIP" = "Twinning Induced Plasticity"). Это значит, что они обладают высокой пластичностью при, одновременно, хорошей прочности и незначительном весе. В соответствии с этим из легкой конструкционной TWIP-стали может изготавливаться изделие с крайне высокими пределами прочности и растяжения. У стального листа, произведенного из известной легкой конструкционной TWIP-стали, минимальный предел текучести лежит, как правило, в диапазоне от 260 до 330 МПа.
Еще более высокие характеристики текучести при одновременно хорошей деформируемости могут достигаться, например, у сталей с TRIP-эффектом ("TRIP" = "Transformation Induced Plasticity") или у сталей, которые обладают TWIP- и TRIP-свойствами. Однако все варианты известных листовых сталей, произведенных из легкой конструкционной стали указанного вида, имеют характерные недостатки при пределе текучести более 330 МПа. Так, например, могут встречаться разбросы температуры от вязкого разрушения к хрупкому, сильное изменение свойств в зависимости от температуры и анизотропный характер деформации.
Поэтому задача изобретения состояла в том, чтобы предложить способ, который обеспечивает надежное производство стальных изделий из легкой конструкционной стали, при котором достигается изотропный характер при наличии высокого предела текучести и обеспечивается пластичность при низких температурах.
Эта задача решается в способе производства стального изделия, в частности листа или полосы из стали,
- при котором полосу или лист производят из стали, содержащей, мас.%:
углерод менее 1,00
марганец 7,00-30,00,
алюминий 1,00-10,00,
кремний более 2,50-8,00,
алюминий + кремний более 3,50-12,00,
бор менее 0,01,
никель менее 8,00,
медь менее 3,00,
азот менее 0,60,
ниобий менее 0,30,
титан менее 0,30,
ванадий менее 0,30,
фосфор менее 0,01
и в качестве остатка - железо и неизбежные примеси,
и затем для производства готового стального изделия предусмотрена деформация в холодном состоянии со степенью деформации от 2 до 25%.
Согласно изобретению высокие пределы текучести готовых стальных изделий устанавливаются в процессе деформации в холодном состоянии, которому подвергается стальная полоса, после того, как она проходит обыкновенные этапы производства стальной полосы. При использовании легкой конструкционной стали заявленного согласно изобретению состава в способе можно производить изделия, которые обладают высоким пределом текучести при одновременно хорошей деформируемости как из горячекатаной полосы, так и из холоднокатаной полосы. Существенно при этом, что деформация в холодном состоянии проводится с достаточными степенями деформации по окончании производства горячей или холодной полосы.
Согласно изобретению деформация в холодном состоянии может проводиться, к примеру, последующей прокаткой или правкой с растяжением и гибкой листовой стали или стальной полосы. В этих случаях произведенным согласно изобретению изделием является лист или полоса, предел текучести которой лежит выше 330 МПа.
Этого минимального значения, а также уверенно получаемых пределов текучести можно достигать также посредством того, что проведенная согласно изобретению деформация в холодном состоянии является частью технологии производства готовой конструктивной формы детали. Таким образом, можно проводить на последнем этапе соответствующего изобретению способа конечную деформацию в холодном состоянии, к примеру, также глубокой вытяжкой, обтяжкой или гидроформингом. Существенным является при этом лишь то, что достигается достаточная степень деформации, которая лежит выше получаемой при обычном традиционном формовании степени деформации.
Неожиданно выяснилось, что исходя из использованного согласно изобретению сплава стали посредством деформации в холодном состоянии, проведенной к окончанию способа производства без следующего повторного прокаливания, происходит отчетливое повышение предела текучести без ухудшения изотропии или пластичности материала. Таким образом, произведенные согласно изобретению изделия, в частности лист или полоса, отличаются оптимальной комбинацией из предельного относительного удлинения при разрыве и предела текучести. Дополнительно они обладают TWIP-свойствами. Они отчетливо превосходят подобные, традиционно производимые изделия из легкой конструкционной стали. С помощью способа согласно изобретению возможно простым способом производить изделия из легкой стали с наибольшими пределами текучести, которые отличаются хорошей деформируемостью при незначительном весе.
Надежность, с которой достигается согласно изобретению возможный производственный результат, можно повысить посредством того, что степень деформации в холодном состоянии составляет не более 15%, в частности не более 10%.
Как исходный продукт для производства стальных продуктов согласно изобретению можно использовать горяче- или холоднокатаные полосы. При этом производство горячекатаной полосы может включать обыкновенные технологические этапы. Таким образом, сталь с составом согласно изобретению может отливаться в слябы, тонкие слябы или литые полосы. Эти полупродукты затем прокатывают в горячекатаную полосу, которую сматывают в рулоны.
После смотки полученная горячекатаная лента может быть деформирована в холодном состоянии соответствующим изобретению способом непосредственно в изделие. Альтернативно горячекатаная лента может быть сначала прокатана в холодном состоянии в холоднокатаную полосу, которая затем подвергается рекристаллизационному отжигу, прежде чем она на последнем этапе способа согласно изобретению снова подвергается деформации в холодном состоянии со степенью холодной деформации, составляющей от 2 до 25%.
Если, в частности, при применении слябов перед горячей прокаткой требуется повторный нагрев, то температура повторного нагрева не должна лежать ниже 1100°C. В противоположных случаях, в которых исходный продукт в непрерывном технологическом процессе после разливки подводится к горячей прокатке, она может происходить также без промежуточного повторного нагрева, горячим садом. Когда горячая лента согласно изобретению при температурах горячей прокатки, составляющих минимум 800°C, подвергается горячей прокатке и сматывается при низких температурах, то положительное действие углерода, поскольку он присутствует, и, в частности бора, используется в полном объеме. Таким образом, бор и углерод в листовых сталях при горячей прокатке в этой области обеспечивают достижение более высоких значений предела прочности и предела текучести при по-прежнему приемлемых значениях относительного удлинения при разрыве. С возрастающей температурой горячей прокатки предел прочности и предел текучести снижаются, в то время как значение удлинения увеличивается. Вариацией температур прокатки в заявленных изобретением рамках можно, таким образом, целенаправленно и простым способом обеспечивать желаемые качества полученных листов.
Ограничением температуры смотки до значения не более 700°C уверенно предотвращают возникновение хрупкости материала. Было зафиксировано, что при более высоких температурах смотки могут образовываться хрупкие фазы, которые вызывают, к примеру, расслаивания материала и затрудняют или даже делают невозможной дальнейшую обработку.
Если стальной продукт производится из холоднокатаной полосы, то степень деформации в холодном состоянии при предшествующей рекристаллизационному отжигу холодной прокатке лежит, предпочтительно, в диапазоне от 30 до 75%, чтобы надежно достигать оптимальных характеристик деформации и механических свойств готового стального изделия.
Температура нагрева при рекристаллизационном отжиге лежит, предпочтительно, между 600 и 1100°C. При этом отжиг может проводиться в кожухе в области температур от 600 до 750°C или в методической печи для отжига при температурах от 750 до 1100°C.
Вследствие содержания кремния 2,50 мас.%, предпочтительно выше 2,70 мас.%, листовая сталь согласно изобретению хорошо поддается холодной прокатке, в отличие от легких листовых сталей или жести, которые обладают более незначительными содержаниями кремния. Высокая добавка кремния обеспечивает более равномерные значения пределов текучести и прочности, а также более высокое относительное удлинение при разрыве и степень равномерности растяжения. Кремний в стали согласно изобретению ведет исходя из этого к более высоким значениям r и n, а также к изотропному распределению механических качеств. Предел суммарного содержания алюминия и кремния лежит при 12%, так как превышающая эту границу сумма содержаний алюминия и кремния привела бы к опасности возникновения хрупкости.
Неожиданно выявилось, что целенаправленное добавление бора в сталь согласно изобретению может вести к улучшению и воспроизводимости свойств. Поэтому предусмотрено согласно предпочтительному варианту осуществления изобретения, чтобы сталь содержала бор. Поскольку бор добавляется для улучшения согласования пределов текучести и деформируемости, содержание бора может лежать для этого в диапазоне от 0,002 до 0,01 мас.%, в частности от 0,003 до 0,008 мас.%.
Благоприятные влияния сплава на механико-технологические качества соответствующей изобретению листовой стали могут достигаться при минимальном содержании углерода 0,10 мас.% в стали согласно изобретению.
За счет особенного спектра свойств изделий, произведенных способом согласно изобретению, в частности холоднокатаной полосы, их используют для изготовления несущих, а также устойчивых к повреждениям деталей кузова для транспортных средств. Они могут использоваться при незначительном весе, к примеру, для особенно эффективной защиты пассажиров транспортного средства. Произведенные, согласно изобретению продукты отличаются в этой связи особенно высокой энергопоглощающей способностью при внезапно появляющихся нагрузках.
Незначительный вес при, одновременно, хорошей деформируемости и прочности делает возможным производить колеса для транспортных средств, в частности грузовых автомобилей, из произведенных согласно изобретению изделий.
Также можно производить из произведенных согласно изобретению изделий детали, которые используются в области техники низких температур. Благоприятный спектр свойств произведенной согласно изобретению холоднокатаной ленты сохраняется также при низких, в области криотехники, и обычных температурах.
Достигнутые в способе производства согласно изобретению хорошие энергопоглощающие способности, исходя из этого, делают способ согласно изобретению, особенно подходящим для производства изделий, которые используются в качестве защитных элементов, предназначенных для защиты от возникающих импульсных нагрузок.
Далее изобретение поясняется при помощи примеров изготовления.
Легкая сталь (указания в мас.%) с 0,0070% углерода, 25,9% марганца, 0,013% фосфора, 0,0006% серы, 2,83% кремния, 2,72% алюминия, 0,0045% азота и, остаток, железо, а также неизбежные примеси, к которым относятся, к примеру, незначительные содержания меди, хрома, никеля, мышьяка, олова, титана, ванадия, ниобия, брома и магния, отливалась в слябы.
Стальные слябы после повторного нагрева до 1150°C подвергались горячей прокатке при 850°C в горячекатаную полосу, которая затем сматывалась при температуре смотки 500°C. Затем горячекатаная полоса прокатывалась в холодном состоянии в холоднокатаную полосу толщиной 1 мм при степени деформации до 65%. После прокатки в холодном состоянии холоднокатаная полоса при температуре 950°C подвергалась рекристаллизационному отжигу.
В этом состоянии холоднокатаная полоса была изотропной. Ее установленные, соответственно, в продольном направлении механические качества занесены в таблицу (степень деформации в холодном состоянии = 0%).
Степень деформации Rp0,2 Rm Ag A80 n
коэффициент упрочнения
r
перпендикулярная анизотропия
[%] [МПа] [МПа] [%] [%]
0 326 657 52,8 58,8 0,373 0,93
2,5 400 675 47,5 53,4 0,307 0,90
5 464 699 41,8 48,2 0,257 0,85
10 568 748 30,9 40,5 0,199 0,80
30 870 1039 3,0 12,1 - -
50 1051 1225 2,9 5,4 - -
Для доказательства результата изобретения после рекристаллизационного отжига образцы холоднокатаной ленты были прокатаны в холодном состоянии со степенью деформации в 2,5%, 5%, 10%, 30% и, соответственно, 50%. Установленные механические свойства для каждого из образцов, соответственно, в продольном направлении также занесены в таблицу.
Выяснилось, что у полученного - после последующей прокатки в холодном состоянии - холоднокатаного изделия оптимальная комбинация из пределов растяжения и текучести достигаются тогда, когда при последующей прокатке в холодном состоянии устанавливалась степень деформации в холодном состоянии в 10%. Так, предел текучести Rp0,2 поднялся при степени деформации в холодном состоянии в 10% более чем на 70%, а предел прочности Rm улучшился более чем на 10%. При этом среднее значение удлинения Ag и значение удлинения A80, значения r и n оставались на уровне, который лежит далеко поверх того, чего достигают при обычной стали со сравнимым пределом текучести. Только при степени деформации в холодном состоянии от 30% наблюдалось падение свойств удлинения.
В другом эксперименте была произведена следующая холоднокатаная полоса того же состава и с совпадающим до окончания рекристаллизационного отжига режимом обработки. Из отрезка этой холоднокатаной полосы затем было произведено - без деформации в холодном состоянии - профилированное полое испытательное тело. Другой образец подвергнутой рекристаллизационному отжигу холоднокатаной полосы был, напротив, подвергнут последующей прокатке в холодном состоянии в соответствии со способом согласно изобретению со степенью деформации в холодном состоянии 7%. Из таким образом произведенного согласно изобретению холоднокатаного продукта затем также было произведено профилированное полое испытательное тело.
Оба испытательных тела весом примерно 150 кг затем в эксперименте с падением, при котором они попадали на препятствие со скоростью падения в 50 км/ч, были исследованы относительно их способности поглощать энергию. Выяснилось, что произведенное из подвергнутой согласно изобретению последующей прокатке в холодном состоянии холоднокатаной ленты испытательное тело, вопреки тому, что толщина его стенок при дополнительной деформации в холодном состоянии была уменьшена против той же у другого испытательного тела, обладало лучшей энергопоглощающей способностью.
В третьем эксперименте производилась, наконец, подвергнутая рекристаллизационному отжигу холоднокатаная лента вышеуказанного состава и при применении уже описанных этапов способа. Произведенная таким образом холоднокатаная лента затем была деформирована в холодном состоянии посредством обтяжки соответствующим изобретению способом. При этом достигнутая степень деформации в холодном состоянии составляла снова 10%. Предел текучести на уровне 320 МПа после рекристаллизационного отжига за счет деформации увеличился до 520 МПа этой деформацией в холодном состоянии на 520 МПа после следующей за рекристаллизационным отжигом деформации в холодном состоянии. Предел прочности также возрос с 640 до 710 МПа. Значение r практически не изменилось. Значение удлинения, правда, уменьшалось при возрастании степени деформации от 60% на примерно 50% и значения n - от 0,39 до 0,27. Тем не менее, эти значения также лежали намного выше удлинения и n-значений, которые могут фиксироваться у обычно производимой стали с таким же классом твердости и сопоставимым пределом текучести. Изделие, полученное при деформации в холодном состоянии холодной ленты посредством обтяжки имело, таким образом, оптимальную комбинацию значений пределов текучести и удлинения.

Claims (18)

1. Способ производства листа с высоким пределом текучести, включающий получение горячекатаного листа из сляба, изготовленного из стали, содержащей, мас.%:
углерод менее 1,00 марганец 7,00-30,00 алюминий 1,00-10,00 кремний 2,50-8,00 сумма алюминий и кремний более 3,50-12,00 бор менее 0,01 никель менее 8,00 медь менее 3,00 азот менее 0,60 ниобий менее 0,30 титан менее 0,30 ванадий менее 0,30 фосфор менее 0,01 железо и неизбежные примеси - остальное,
холодную прокатку горячекатаного листа в холоднокатаный лист, отличающийся тем, что лист подвергают холодной деформации со степенью
деформации от 2,5 до 25%.
2. Способ по п.1, отличающийся тем, что холодную деформацию проводят со степенью деформации не более 15%.
3. Способ по п.1, отличающийся тем, что холодную деформацию проводят со степенью деформации не более 10%.
4. Способ по п.1, отличающийся тем, что горячекатаный лист получают путем горячей прокатки сляба в горячекатаный лист, проводят смотку горячекатаного листа, холодную прокатку горячекатаного листа в холоднокатаный лист.
5. Способ по п.4, отличающийся тем, что сляб нагревают перед горячей прокаткой, как минимум, до 1100°С.
6. Способ по п.4, отличающийся тем, что горячей прокатке подвергают сляб с температурой, составляющей минимум 1100°С.
7. Способ по п.4, отличающийся тем, что конечная температура горячей прокатки составляет минимум 800°С.
8. Способ по п.4, отличающийся тем, что температура смотки составляет от 450 до 700°С.
9. Способ по п.4, отличающийся тем, что холоднокатаный лист после холодной прокатки подвергают рекристаллизационному отжигу, а затем проводят холодную деформацию.
10. Способ по п.9, отличающийся тем, что рекристаллизационный отжиг проводят при температуре от 600 до 1100°С.
11. Способ по п.10, отличающийся тем, что отжиг проводят под кожухом при температуре от 600 до 750°С.
12. Способ по п.10, отличающийся тем, что отжиг проводят при непрерывном движении листа при температуре от 750 до 1100°С.
13. Способ по п.9, отличающийся тем, что холодную прокатку проводят со степенью деформации от 30 до 75%.
14. Способ по п.1, отличающийся тем, что сталь содержит более 2,70 кремния, мас.%.
15. Способ по п.1, отличающийся тем, что сталь содержит от 0,002 до 0,01 бора, мас.%.
16. Способ по п.15, отличающийся тем, что сталь содержит от 0,003 до 0,008 бора, мас.%.
17.Способ по п.1, отличающийся тем, что сталь содержит от 0,1 до 1,0 мас.% углерода.
18. Лист, изготовленный из стали, отличающийся тем, что он получен способом по любому из пп.1-17.
RU2005122496A 2002-12-17 2003-09-18 Способ производства изделия из стали RU2329308C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10259230.6 2002-12-17
DE2002159230 DE10259230B4 (de) 2002-12-17 2002-12-17 Verfahren zum Herstellen eines Stahlprodukts

Publications (2)

Publication Number Publication Date
RU2005122496A RU2005122496A (ru) 2006-02-10
RU2329308C2 true RU2329308C2 (ru) 2008-07-20

Family

ID=32519063

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2005122496A RU2329308C2 (ru) 2002-12-17 2003-09-18 Способ производства изделия из стали

Country Status (13)

Country Link
US (1) US7588651B2 (ru)
EP (1) EP1573075B8 (ru)
JP (1) JP4500688B2 (ru)
KR (2) KR20110091009A (ru)
CN (1) CN100510116C (ru)
AT (1) ATE448331T1 (ru)
AU (1) AU2003273899A1 (ru)
CA (1) CA2510754C (ru)
DE (2) DE10259230B4 (ru)
ES (1) ES2336095T3 (ru)
MX (1) MXPA05006411A (ru)
RU (1) RU2329308C2 (ru)
WO (1) WO2004055223A1 (ru)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2479641C1 (ru) * 2012-02-22 2013-04-20 Открытое акционерное общество "Магнитогорский металлургический комбинат" Способ производства холоднокатаной ленты из низкоуглеродистых марок стали
RU2563066C2 (ru) * 2010-11-26 2015-09-20 Зальцгиттер Флахшталь Гмбх Емкость из облегченной конструкционной стали для содержания источника энергии
RU2614491C2 (ru) * 2012-05-31 2017-03-28 Арселормитталь Инвестигасьон И Десарролло, С.Л. Горячекатаная или холоднокатаная сталь низкой плотности, способ её получения и применение
RU2615738C1 (ru) * 2016-02-08 2017-04-10 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Высокопрочная сталь системы Fe-Mn-Al-C, обладающая эффектом TWIP и TRIP
RU2631069C1 (ru) * 2016-10-27 2017-09-18 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Способ получения листов из высокомарганцевой стали
RU2650952C1 (ru) * 2017-12-05 2018-04-18 Юлия Алексеевна Щепочкина Сталь
RU2691436C1 (ru) * 2015-07-22 2019-06-13 Зальцгиттер Флахшталь Гмбх Формуемая легковесная сталь с улучшенными механическими свойствами и способ производства полуфабрикатов из указанной стали
RU2732713C2 (ru) * 2016-05-24 2020-09-22 Арселормиттал Холоднокатаный и отожжённый стальной лист, способ его изготовления и использование в производстве автомобильных деталей

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005061152A1 (de) * 2003-12-23 2005-07-07 Salzgitter Flachstahl Gmbh Verfahren zum erzeugen von warmbändern aus leichtbaustahl
DE102005008410B3 (de) * 2005-02-24 2006-02-16 Thyssenkrupp Stahl Ag Verfahren zum Beschichten von Stahlbändern und beschichtetes Stahlband
DE102006039307B3 (de) 2006-08-22 2008-02-21 Thyssenkrupp Steel Ag Verfahren zum Beschichten eines 6-30 Gew.% Mn enthaltenden warm- oder kaltgewalzten Stahlbands mit einer metallischen Schutzschicht
DE102008005806A1 (de) * 2008-01-17 2009-09-10 Technische Universität Bergakademie Freiberg Bauteile aus hochmanganhaltigem, festem und zähem Stahlformguss, Verfahren zu deren Herstellung sowie deren Verwendung
DE102008005605A1 (de) 2008-01-22 2009-07-23 Thyssenkrupp Steel Ag Verfahren zum Beschichten eines 6 - 30 Gew. % Mn enthaltenden warm- oder kaltgewalzten Stahlflachprodukts mit einer metallischen Schutzschicht
EP2090668A1 (en) * 2008-01-30 2009-08-19 Corus Staal BV Method of producing a high strength steel and high strength steel produced thereby
KR101020546B1 (ko) 2008-07-18 2011-03-09 현대자동차주식회사 초고강도 twip 강판 및 그 제조방법
WO2010052751A1 (en) 2008-11-05 2010-05-14 Honda Motor Co., Ltd. High-strength steel sheet and the method for production therefor
DE102008056844A1 (de) * 2008-11-12 2010-06-02 Voestalpine Stahl Gmbh Manganstahlband und Verfahren zur Herstellung desselben
DE102009018577B3 (de) 2009-04-23 2010-07-29 Thyssenkrupp Steel Europe Ag Verfahren zum Schmelztauchbeschichten eines 2-35 Gew.-% Mn enthaltenden Stahlflachprodukts und Stahlflachprodukt
DE102009051673B3 (de) * 2009-11-03 2011-04-14 Voestalpine Stahl Gmbh Herstellung von Galvannealed-Blechen durch Wärmebehandlung elektrolytisch veredelter Bleche
DE102009053260B4 (de) 2009-11-05 2011-09-01 Salzgitter Flachstahl Gmbh Verfahren zum Beschichten von Stahlbändern und beschichtetes Stahlband
BRPI1002010A2 (pt) * 2010-06-30 2012-03-06 Universidade Federal De Minas Gerais Chapa de aço laminada a frio e recozida com efeito twip e processo de obtenção
IT1403129B1 (it) * 2010-12-07 2013-10-04 Ct Sviluppo Materiali Spa Procedimento per la produzione di acciaio ad alto manganese con resistenza meccanica e formabilità elevate, ed acciaio così ottenibile.
DE102011000089A1 (de) * 2011-01-11 2012-07-12 Thyssenkrupp Steel Europe Ag Verfahren zum Herstellen eines warmgewalzten Stahlflachprodukts
US10001228B2 (en) 2011-06-17 2018-06-19 National Oilwell Varco Denmark I/S Unbonded flexible pipe
DE102011121705A1 (de) 2011-12-12 2013-06-13 Salzgitter Flachstahl Gmbh Schweißzusatz zum Lichtbogen- und Laserstrahlschweißen von Mischverbindungen aus austenitischem und ferritischem Stahl
WO2013124283A1 (de) * 2012-02-25 2013-08-29 Technische Universität Bergakademie Freiberg Verfahren zur herstellung hochfester formteile aus hochkohlenstoff- und hochmanganhaltigem austenitischem stahlguss mit trip/twip-eigenschaften
CN102690938B (zh) * 2012-06-20 2014-04-02 中北大学 一种低碳Fe-Mn-Al-Si系TWIP钢中试生产方法
KR101449119B1 (ko) 2012-09-04 2014-10-08 주식회사 포스코 우수한 강성 및 연성을 갖는 페라이트계 경량 고강도 강판 및 그 제조방법
DE102013000636A1 (de) * 2013-01-16 2014-07-17 Sitech Sitztechnik Gmbh Hochtragfähige Verstelleinrichtung, insbesondere Sitzversteller auf FeMn-Basis
DE102013101276A1 (de) * 2013-02-08 2014-08-14 Benteler Automobiltechnik Gmbh Verfahren zur Herstellung eines Kraftfahrzeugstabilisators
JP6377745B2 (ja) * 2013-08-14 2018-08-22 ポスコPosco 超高強度鋼板及びその製造方法
KR101889110B1 (ko) * 2013-10-23 2018-08-16 주식회사 포스코 극저탄소 고강도 저비중 냉연강판 및 이의 제조방법
KR101560940B1 (ko) 2013-12-24 2015-10-15 주식회사 포스코 강도와 연성이 우수한 경량강판 및 그 제조방법
KR101568552B1 (ko) 2013-12-26 2015-11-11 주식회사 포스코 고강도 저비중 강판 및 그 제조방법
EP3095889A1 (en) * 2015-05-22 2016-11-23 Outokumpu Oyj Method for manufacturing a component made of austenitic steel
TR201808389T4 (tr) 2015-07-16 2018-07-23 Outokumpu Oy Ostenitli twip veya trip/twip çeliği bileşeni üretimi için metod.
CN105543627A (zh) * 2015-12-24 2016-05-04 芜湖恒耀汽车零部件有限公司 一种新材料排气管及其制备方法
WO2017203315A1 (en) 2016-05-24 2017-11-30 Arcelormittal Cold rolled and annealed steel sheet, method of production thereof and use of such steel to produce vehicle parts
WO2017203314A1 (en) * 2016-05-24 2017-11-30 Arcelormittal Twip steel sheet having an austenitic matrix
WO2017203309A1 (en) * 2016-05-24 2017-11-30 Arcelormittal Twip steel sheet having an austenitic matrix
WO2017203310A1 (en) 2016-05-24 2017-11-30 Arcelormittal Method for producing a twip steel sheet having an austenitic microstructure
CN109154050B (zh) 2016-05-24 2021-04-06 安赛乐米塔尔公司 用于制造具有奥氏体基体的twip钢板的方法
DE102016211411A1 (de) * 2016-06-24 2017-12-28 Thyssenkrupp Ag Fahrzeugrad und Verwendung
DE102016117508B4 (de) 2016-09-16 2019-10-10 Salzgitter Flachstahl Gmbh Verfahren zur Herstellung eines Stahlflachprodukts aus einem mittelmanganhaltigen Stahl und ein derartiges Stahlflachprodukt
DE102016117494A1 (de) 2016-09-16 2018-03-22 Salzgitter Flachstahl Gmbh Verfahren zur Herstellung eines umgeformten Bauteils aus einem mittelmanganhaltigen Stahlflachprodukt und ein derartiges Bauteil
EP3301197B1 (en) * 2016-09-29 2021-10-27 Outokumpu Oyj Method for cold deformation of an austenitic steel
KR20190138835A (ko) * 2017-04-11 2019-12-16 티센크루프 스틸 유럽 악티엔게젤샤프트 벨형 노에서 어닐링 처리된 냉간 압연한 평강 제품 및 그 제조 방법

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB841366A (en) * 1957-07-02 1960-07-13 Langley Alloys Ltd Improvements in iron aluminium alloys
US3024103A (en) 1959-06-23 1962-03-06 Ford Motor Co Austentic alloys
JPS58144418A (ja) * 1982-02-22 1983-08-27 Nippon Steel Corp 高Mn鋼の製造方法
USH326H (en) * 1984-05-22 1987-09-01 The United States Of America As Represented By The United States Department Of Energy Mn-Fe base and Mn-Cr-Fe base austenitic alloys
DE3672864D1 (de) * 1985-03-06 1990-08-30 Kawasaki Steel Co Verfahren zur herstellung von gewalzten verformbaren duennen stahlblechen.
JPH03500305A (ja) * 1988-07-08 1991-01-24 ファムシー スティール コーポレイション 2相高減衰能を有するFe‐Mn‐Al‐C基合金
JPH04362128A (ja) * 1991-06-10 1992-12-15 Kawasaki Steel Corp 磁気特性の優れたセミプロセス無方向性電磁鋼板の製造法
RU2074900C1 (ru) * 1991-12-30 1997-03-10 Поханг Айрон энд Стил Ко., Лтд. Способ обработки стали (варианты)
DE19727759C2 (de) * 1997-07-01 2000-05-18 Max Planck Inst Eisenforschung Verwendung eines Leichtbaustahls
DE19900199A1 (de) * 1999-01-06 2000-07-13 Ralf Uebachs Leichtbaustahllegierung
US6761780B2 (en) * 1999-01-27 2004-07-13 Jfe Steel Corporation Method of manufacturing a high Mn non-magnetic steel sheet for cryogenic temperature use
FR2796083B1 (fr) 1999-07-07 2001-08-31 Usinor Procede de fabrication de bandes en alliage fer-carbone-manganese, et bandes ainsi produites
DE19933113C1 (de) * 1999-07-15 2000-09-07 Thyssenkrupp Stahl Ag Verfahren zum Herstellen eines Bandes aus Stahl durch flexibles Walzen
EP1291447B1 (en) * 2000-05-31 2005-05-04 JFE Steel Corporation Cold-rolled steel sheet having excellent strain aging hardening properties and method for producing the same
DE10060948C2 (de) * 2000-12-06 2003-07-31 Thyssenkrupp Stahl Ag Verfahren zum Erzeugen eines Warmbandes aus einem einen hohen Mangan-Gehalt aufweisenden Stahl
DE10128544C2 (de) * 2001-06-13 2003-06-05 Thyssenkrupp Stahl Ag Höherfestes, kaltumformbares Stahlblech, Verfahren zu seiner Herstellung und Verwendung eines solchen Blechs

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Metals Handbook, Materials Park, *
s.205. *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2563066C2 (ru) * 2010-11-26 2015-09-20 Зальцгиттер Флахшталь Гмбх Емкость из облегченной конструкционной стали для содержания источника энергии
RU2479641C1 (ru) * 2012-02-22 2013-04-20 Открытое акционерное общество "Магнитогорский металлургический комбинат" Способ производства холоднокатаной ленты из низкоуглеродистых марок стали
RU2614491C2 (ru) * 2012-05-31 2017-03-28 Арселормитталь Инвестигасьон И Десарролло, С.Л. Горячекатаная или холоднокатаная сталь низкой плотности, способ её получения и применение
US10900105B2 (en) 2012-05-31 2021-01-26 Arcelormittal Low-density hot-or cold-rolled steel, method for implementing same and use thereof
RU2691436C1 (ru) * 2015-07-22 2019-06-13 Зальцгиттер Флахшталь Гмбх Формуемая легковесная сталь с улучшенными механическими свойствами и способ производства полуфабрикатов из указанной стали
RU2615738C1 (ru) * 2016-02-08 2017-04-10 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Высокопрочная сталь системы Fe-Mn-Al-C, обладающая эффектом TWIP и TRIP
RU2732713C2 (ru) * 2016-05-24 2020-09-22 Арселормиттал Холоднокатаный и отожжённый стальной лист, способ его изготовления и использование в производстве автомобильных деталей
RU2631069C1 (ru) * 2016-10-27 2017-09-18 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Способ получения листов из высокомарганцевой стали
RU2650952C1 (ru) * 2017-12-05 2018-04-18 Юлия Алексеевна Щепочкина Сталь

Also Published As

Publication number Publication date
KR101127632B1 (ko) 2012-03-23
DE10259230B4 (de) 2005-04-14
ATE448331T1 (de) 2009-11-15
JP4500688B2 (ja) 2010-07-14
RU2005122496A (ru) 2006-02-10
MXPA05006411A (es) 2005-08-19
EP1573075A1 (de) 2005-09-14
ES2336095T3 (es) 2010-04-08
KR20050084429A (ko) 2005-08-26
EP1573075B8 (de) 2009-12-23
KR20110091009A (ko) 2011-08-10
CA2510754C (en) 2011-02-08
CN1732275A (zh) 2006-02-08
US20060179638A1 (en) 2006-08-17
DE10259230A1 (de) 2004-07-15
DE50312121D1 (de) 2009-12-24
JP2006509912A (ja) 2006-03-23
CA2510754A1 (en) 2004-07-01
WO2004055223A1 (de) 2004-07-01
EP1573075B1 (de) 2009-11-11
CN100510116C (zh) 2009-07-08
AU2003273899A1 (en) 2004-07-09
US7588651B2 (en) 2009-09-15

Similar Documents

Publication Publication Date Title
RU2329308C2 (ru) Способ производства изделия из стали
US7794552B2 (en) Method of producing austenitic iron/carbon/manganese steel sheets having very high strength and elongation characteristics and excellent homogeneity
CA2869700C (en) Hot rolled steel sheet for square column for building structural members and method for manufacturing the same
EP2415893B1 (en) Steel sheet excellent in workability and method for producing the same
KR101674751B1 (ko) 구멍확장성이 우수한 석출강화형 강판 및 그 제조방법
US8449698B2 (en) Dual phase steel sheet and method of manufacturing the same
US3988173A (en) Cold rolled steel sheet having excellent workability and method thereof
KR950007472B1 (ko) 상온 비시효 소성경화성 인발 가공용 고장력 냉연강판 및 그 제조방법
KR20180033202A (ko) 향상된 기계적 물성을 갖는 성형 가능한 경량 강 및 상기 강으로부터 반제품을 제조하기 위한 방법
ZA200505161B (en) Ultrahigh strength hot-rolled steel and method of producing bands
JP7117381B2 (ja) 冷間圧延された被覆鋼板及びその製造方法
CN110832100B (zh) 用于拼焊板的钢材料及使用该钢材制造热冲压部件的方法
JP3864663B2 (ja) 高強度薄鋼板の製造方法
US20220325369A1 (en) Cold rolled and coated steel sheet and a method of manufacturing thereof
KR101518588B1 (ko) 항복강도 및 항복비가 우수한 석출강화형 강판 및 그 제조방법
US20040040633A1 (en) Method for the production of hot strip or sheet from a micro-alloyed steel
JP3551878B2 (ja) 高延性高穴拡げ性高張力鋼板およびその製造方法
JP2621744B2 (ja) 超高張力冷延鋼板およびその製造方法
KR20230016218A (ko) 열처리 냉연 강판 및 그 제조 방법
KR20030068593A (ko) 고강도 등방성 강, 강판 제조 방법 및 이에 의한 강판
KR101143139B1 (ko) 프레스 가공성이 우수한 소부경화형 냉연강판, 용융아연도금강판 및 그 제조방법
JP3299287B2 (ja) 成形加工用高強度鋼板とその製造方法
JPS6249323B2 (ru)
KR20140041294A (ko) 냉연강판 및 그 제조 방법
KR101185199B1 (ko) 내 시효성 및 가공성이 우수한 극저 탄소강 및 그 제조 방법

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20100919