RU2323578C1 - Способ посола мяса при производстве мясопродуктов - Google Patents

Способ посола мяса при производстве мясопродуктов Download PDF

Info

Publication number
RU2323578C1
RU2323578C1 RU2007116675/13A RU2007116675A RU2323578C1 RU 2323578 C1 RU2323578 C1 RU 2323578C1 RU 2007116675/13 A RU2007116675/13 A RU 2007116675/13A RU 2007116675 A RU2007116675 A RU 2007116675A RU 2323578 C1 RU2323578 C1 RU 2323578C1
Authority
RU
Russia
Prior art keywords
meat
water
cavitation
brine
salting
Prior art date
Application number
RU2007116675/13A
Other languages
English (en)
Inventor
Сергей Дмитриевич Шестаков (RU)
Сергей Дмитриевич Шестаков
Original Assignee
Никольский Константин Николаевич
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Никольский Константин Николаевич filed Critical Никольский Константин Николаевич
Priority to RU2007116675/13A priority Critical patent/RU2323578C1/ru
Application granted granted Critical
Publication of RU2323578C1 publication Critical patent/RU2323578C1/ru

Links

Landscapes

  • Meat, Egg Or Seafood Products (AREA)

Abstract

Изобретение относится к мясной промышленности и может быть использовано при производстве мясопродуктов. Способ предусматривает подготовку рассола, его смешивание с мясом и выдерживание в посоле. Рассол обрабатывают путем возбуждения в нем кавитации. В качестве растворителя в рассоле используют фракцию слабоминерализованной воды, полученную в катодном пространстве диафрагменного электролизера. Изобретение обеспечивает увеличение количества связываемой мясом воды из рассола. 2 табл.

Description

Изобретение относится к мясной промышленности, в частности к способам посола мяса преимущественно в виде фарша при производстве мясных полуфабрикатов и мясопродуктов, таких как колбасные изделия. Изобретение может быть использовано для посола рыбы, морепродуктов и пищевого сырья растительного происхождения, преимущественно предварительно измельченного.
Известно, например, из [RU 2102890, 1998] применение для посола мяса сухой посолочной смеси, включающей поваренную соль. Недостатком сухого посола, особенно проявляющемся при посоле измельченного мяса в производстве колбас, является его продолжительность, необходимая для растворения поваренной соли и других посолочных веществ, а также для выхода в образующуюся среду эмульсии фарша водо- и солерастворимых белков, от концентрации которых в ней зависят технологические свойства фарша и потребительские качества конечного продукта [1]. Поэтому такой посол применяют преимущественно после грубого измельчения мяса и дают посоленному мясу определенное время вылежаться. Способ позволяет связывать в мясе только естественную влагу, содержащуюся в мышечных тканях, целостность которых нарушается в процессе измельчения, и влага может отделиться. Искусственно вносимая влага смешивается с приготавливаемым колбасным фаршем, как правило, на этапе его тонкого измельчения в специальных аппаратах - куттерах и вносится в виде чешуйчатого льда, обеспечивающего лучшее измельчение мяса и бактериостатические условия. Если солить мясо таким способом на этапе тонкого измельчения, то посолочные вещества, особенно соль крупного помола, не успевают раствориться и образовать эмульсию из белков, жиров и воды с однородной концентрацией соли за короткое, строго лимитированное время процесса измельчения и перемешивания фарша в куттере.
Известен способ получения и применения при производстве мясопродуктов жидкого коптильного препарата, в котором в качестве среды используют водный раствор, обработанный в диафрагменном электролизере [RU 2130267, 1999]. Из него и из монографии [2] известны полезные эффекты от использования фракций водных растворов электролитов, получаемых в диафрагменных электролизерах. Известны также способы электрохимической обработки водно-солевых растворов таких электролитов, как хлориды щелочных металлов [RU 2270803, 2003], к которым относится NaCl, в том числе до получения заданного значения окислительно-восстановительного потенциала фракции в катодном пространстве электролизера - католита [RU 2221753, 2002]. Известен способ посола цельномышечного мяса с использованием католита в качестве среды раствора посолочных веществ - рассола [3]. Из него известен технический эффект увеличения водосвязывающей способности мяса при смещении его окислительно-восстановительных свойств в щелочную область в результате смешивания с рассолом, который приготовлен на основе католита из подвергнутого электролизу слабого раствора электролитов, в том числе натрия хлорида. Этот эффект состоит в том, что щелочная среда, обладая поверхностно-активными свойствами [4], повышает гидрофильные свойства мяса. Это дает возможность увеличить в мясе содержание капиллярно-связанной влаги. Энергия капиллярной формы связи воды является второй по величине после энергии химической (водородной) связи, возникающей вследствие реакции гидратации [5]. Кроме того, поскольку число гидратации катиона натрия даже в обычной, структурированной воде в семь раз превышает число гидратации аниона хлора [6], то сам католит, в котором катионы натрия находятся в избытке, имеет большое количество иммобилизированной воды.
Недостаток описанных способов, объединенных общим признаком, заключающимся в использовании для приготовления рассолов католита, который препятствует достижению сформулированного ниже технического результата, состоит в следующем.
Для пространственного разделения окислительно-восстановительных реакций, которые происходят в растворе при электролизе, необходимо затратить определенное количество энергии. Она равна суммарной работе при диссоциации молекулярной фазы электролита и массопереносе ионов, которая совершается против сил вязкости и вызывающих эффект электрострикции [6] сил взаимодействия полярных молекул воды и сольватных оболочек ионов, а также работе, производимой в ходе электродных реакций. Количественно затраты энергии кроме конструкции и размеров электролизера зависят от концентрации электролита в растворе, химического состава растворителя и состояния электродов. Если в процессе электролиза образуются газообразные или нерастворимые вещества и существует известный эффект отравления электродов, то энергозатраты являются сложной нелинейной функцией времени и оцениваются их средним значением за отрезок времени. Например, диафрагменные электролизеры непрерывного действия на базе стандартизованного электролитического элемента ПЭМ [2] имеют среднее удельное энергопотребление при производстве католита из слабых (вблизи децинормальной концентрации) растворов натрия хлорида 20...30 Вт·ч/л. Известно также, что при максимальной плотности воды, соответствующей температуре +4°С, удельная энергия водородных связей в ней составляет 25 кДж/моль или 385 Вт·ч/л. Установлено, что минимальное значение иммобилизационного коэффициента, которое может быть достигнуто при надтепловом механизме разрушения внутренней структуры воды, составляет 2 [7]. Таким образом, удельная энергия, необходимая для разрушения водородных связей в воде, составляет не менее 0,2 кВт·ч/л. То есть на порядок меньшая энергия, затрачиваемая на получение католита, не может вызвать заметного разрушения молекулярной структуры воды и тем самым подготовить воду к вступлению в реакцию гидратации с биополимерами мяса [7, 8]. Тем более при электролизе для этого доступен единственный механизм, заключающийся в электрострикционной деформации структуры воды.
Известен способ посола мяса, при котором осуществляют приготовление посолочного рассола, включающего поваренную соль, обработку рассола в кавитационном реакторе и смешивание рассола с мясным сырьем [RU 2245624, 2004, WO 2005/070218 A1]. Известен также способ гидратации биополимеров, в том числе биополимеров мяса, при котором также производят обработку воды или водного раствора в кавитационном режиме, обеспечивающем разрушение водородных связей в воде [RU 2279918, 2004].
Достоинством этих способов посола является повышенная гидратация и гидратационная структуризация [8] белков мяса водой, что особенно важно при производстве эмульсионных продуктов, таких как колбасные изделия. При их осуществлении никаких изменений, за исключением образования в очень малых количествах перекиси водорода, которая совместно с имеющимися в питьевой воде ионами железа и под действием ферментов мяса становится мощным бактерицидным средством, в химическом составе обрабатываемого раствора не происходит. Эффект лучшего связывания влаги является здесь следствием подготовки рассола путем надтеплового разрушения в его среде водородных связей к вступлению в реакцию гидратации. Он достигается только за счет наличия у составляющих белки мяса аминокислот активных центров, способных в ходе этой реакции присоединять молекулы воды.
К недостаткам, не позволяющим получить сформулированный ниже технический результат, относится то, что эти способы не дают возможности влиять на влагоудерживающую способность мяса, обусловленную формами с меньшей, чем при гидратации энергией связи, например, на капиллярную форму связи влаги путем изменения окислительно-восстановительных свойств мяса. Известно, что в результате кавитации рН воды и водных растворов меняется слабо, несмотря на известное свойство кавитации усиливать степень диссоциации электролитов [6, 7]. Этому есть две причины. Во-первых, при кавитации отсутствует какой-либо механизм пространственного разделения ионов кроме образования вокруг них сольватных оболочек, сопровождающегося снижением поверхностной плотности заряда и приводящего лишь к образованию устойчивых ионных комплексов. Во-вторых, кавитация - процесс адиабатический, а необходимая для увеличения рН за счет ионов самой воды реакция термической диссоциации воды, теплота которой на порядок превышает теплоту парообразования, может протекать только внутри кавитационных пузырьков [9]. Объем пузырьков в фазе их сжатия до соответствующих температур внутри ничтожно мал по сравнению с объемом жидкости, в которой возбуждается кавитация, а продолжительность фазы сжатия при ультразвуковом способе возбуждения составляет всего лишь микросекунды при очень большой скважности.
Известно, что при одних и тех же значениях амплитуды звукового давления в растворах электролитов достигаемые значения кавитационной мощности выше, чем в химически чистой воде [10]. В способе, известном из [RU 2279918, 2004], пороговое значение звукового давления выше, чем в [RU 2245624, 2004]. Он позволяет обрабатывать растворы в более широком диапазоне концентраций растворенных веществ и поэтому является наиболее близким техническим решением к заявленному, то есть его прототипом.
Сущность изобретения состоит в следующем.
Известно, что при низких значениях рН анионные группы составляющих биомакромолекулы белка аминокислот дегидратируются сильнее, чем катионные при высоких [11]. Поэтому общее число гидратации белков мяса с увеличением значения водородного показателя тоже должно увеличиться. Таким образом эффект связывания воды белком в ходе реакции гидратации, получаемый за счет кавитационной обработки рассола, можно усилить, воздействуя на окислительно-восстановительные свойства последнего. Кроме того, кавитация повышает растворяемость и степень диссоциации электролитов в водных растворах и уплотняет сольватные оболочки присутствующих в растворе и появляющихся в результате диссоциации ионов. Это способствует образованию не способных к ассоциации комплексов, ионных пар и отдельных сольватированных ионов [6] независимо от их первоначальной концентрации, увеличивая экстрагирующую способность рассола в отношении растворимых белков. Поэтому совместное применение для приготовления рассола католита с кавитационной обработкой рассола обеспечит количественное увеличение полезных эффектов и скомпенсирует недостатки, присущие каждому из способов в отдельности.
Техническим результатом изобретения является увеличение количества связываемой мясом воды из рассола.
Указанный технический результат достигается тем, что в способе посола мяса, в котором рассол обрабатывают путем возбуждения в нем кавитации, отличие состоит в том, что в качестве растворителя при его приготовлении используют фракцию слабоминерализованной воды, полученную в катодном пространстве диафрагменного электролизера.
Сравнение электрохимических свойств слабых растворов поваренной соли, полученных различными способами, проиллюстрировано следующим примером.
В качестве контрольного образца использовался сантинормальный раствор поваренной соли пищевой по ГОСТ-Р 51574-2000 в питьевой воде по СанПиН 2.1.4.1116-02. Опытный образец 1 был получен путем электролиза в диафрагменном электролизере контрольного образца и выделен в виде фракции из катодного пространства. Опытный образец 2 получен путем обработки в лабораторном кавитационном реакторе [7] с указанной в прототипе амплитудой звукового давления контрольного образца, а опытный образец 3 - опытного образца 1. У образцов получены следующие значения средних по пяти анализам сравниваемых параметров:
Параметр ОБРАЗЕЦ
Контрольный образец Опытный образец 1 Опытный образец 2 Опытный образец 3
Водородный показатель, ед. pH 7,6±0,1 9,2±0,2 7,7±0,1 10,1±0,2
Удельная электропроводность, мСм/м 68,2±0,4 68,7±0,4 69,8±0,4 71,7±0,4
Из таблицы видно, что водородный показатель опытного образца 3, фактически полученного заявленным способом, самый высокий, что придает раствору наиболее выраженные щелочные свойства. Удельная электрическая проводимость у образцов после кавитационной обработки выше независимо от того, подвергались ли они электрохимической обработке. При этом самый высокий показатель также принадлежит образцу, полученному заявленным способом.
Очевидно, что влагоудерживающая способность мяса, смешанного с рассолом, приготовленным на основе католита, увеличится за счет непропорционального увеличения химически связанной катионными группами белка воды. Увеличение степени диссоциации растворенных электролитов приведет к усилению экстрагирования водорастворимых белков в образующуюся при посоле эмульсионную среду, то есть увеличит эмульгирующую способность рассола и капиллярную смачиваемость мяса. В свою очередь это увеличит содержание в мясе капиллярно-связанной влаги.
Таким образом, сравнение заявленного способа с прототипом, являющимся наиболее близким аналогом из технических решений, характеризующих известный заявителю уровень техники в области предмета изобретения, показывает, что отличительный признак заявленного способа является существенным по отношению к указанному техническому результату. При исследовании этого признака описываемого способа заявителем не выявлено каких-либо известных решений, касающихся объединения электрохимической обработки среды для приготовления рассола с его кавитационной обработкой с целью увеличения влагоудерживающей способности мяса.
Известны изобретательские решения, в которых кавитационная обработка каким-то образом в различных вариантах чередования во времени объединена с электролизом, например [12, 13, RU 2113278, 1998, заявка РФ 2002119764, 2002], в целях использования ее известного свойства ускорять химические реакции. Однако заявителю не известны способы, в которых кавитационной обработке подвергалась бы именно фракция, получаемая в катодном пространстве электролизера, - католит.
Предлагаемый способ может быть проиллюстрирован следующим примером промышленной реализации.
В качестве аппарата для электрохимической обработки среды рассола использовали установку типа СТЭЛ-10К-120-01 (мод. 20-03) [14], а для кавитационной обработки самого рассола - аппарат для кавитационной дезинтеграции жидких пищевых сред типа СИРИНКС 4000 (СИТБ.443146.002 ТУ) [15]. Рассол готовили в соответствии с «Технологической инструкцией по кавитационной дезинтеграции воды и рассолов на аппаратах СИРИНКС и их использованию в производстве вареных колбасных изделий» [16] и смешивали с мясом, измельченным до частиц среднего размера приблизительно 15 мм, процессе его перемешивания в лопастной мешалке. Перед составлением фарша мясо выдерживали в посоле в течение 4 часов.
Из посоленного таким способом мяса изготавливали колбасу высшего сорта по ГОСТ 23670-79 следующего состава, кг:
Смесь говядины, свинины и насыщенного раствора
поваренной соли (в соотношении по массе 23:66:8) 97
Яичный порошок 0,75
Молоко сухое 2,0
Сахар 0,15
Специи и добавки 0,1
Лед 25
Тонкое измельчение мяса и составление фарша производили в куттере К324 (Seydelmann), а термообработку колбас - в термокамере Fessmann. Сравнение заявленного способа с прототипом по пяти пробным партиям колбасы дало следующие средние результаты:
Параметр Способ посола
Прототип Заявленный
Потери массы при термообработке, % 12,1±0,3 10,9±0,4
Содержание влаги в изделии, % 69,5±0,5 70,2±0,5
Из рассмотренного примера видно, что предложенный способ реализуется в промышленном масштабе. При этом колбасные изделия, в процессе изготовления которых применен заявленный способ, хотя и имеют чуть более высокую влажность (что вообще говорит об увеличении доли капиллярно-связанной влаги), но зато лучше удерживают ее в продукте при термообработке.
Таким образом, вышеизложенные сведения свидетельствуют о возможности осуществления заявленного изобретения с помощью описанных в заявке или известных ранее средств и методов, в том числе в промышленных условиях, а также о возможности достижения указанного технического результата при воплощении совокупности его признаков.
ЛИТЕРАТУРА
1. Лисицын А.Б., Любченко В.И., Горошко Г.П., Мотовилина А.А.
Проблемы посола мяса в исследованиях и разработках ВНИИМПа / в кн. Сборник научных трудов ВНИИМП п/р. акад. А.Б.Лисицына. - М: ВНИИМП, 2000.
2. Бахир В.М. Электрохимическая активация. - М: ВНИИМТ, 1997.
3. Борисенко А.А. Термогравиметрический анализ форм связи влаги в соленой говядине // Мясная индустрия, 2001, № 7, - с.45-46.
4. Ребиндер П.А. Избранные труды. - М: Наука, 1978.
5. Пиментел Дж., Мак-Клеллан О. Водородная связь. - М: Издательство иностранной литературы, 1964.
6. Стюэр Дж., Егер Э. Распространение ультразвуковых волн в растворах электролитов / в кн. Физическая акустика п/р. У.Мэзона, т.II, ч. А. - М: Мир, 1968.
7. Рогов И.А., Шестаков С.Д. Надтепловое изменение термодинамического равновесия воды и водных растворов // Хранение и переработка сельхозсырья, № 7, 2004, с.24-28, № 10, 2004, с.9-13.
8. Шестаков С.Д. Энергетическое состояние воды и ее связываемость биополимерами пищевого сырья // Хранение и переработка сельхозсырья, 4, 2003, с.35-37.
9. Флинн Г. Физика акустической кавитации в жидкостях / в кн.: Методы и приборы ультразвуковых исследований // под ред. У.Мэзона, т.II, ч. Б.-М.: Мир, 1967.
10. Кнэпп Р., Дейли Дж., Хэммит Ф., Кавитация. - М: Мир, 1974.
11. Кунтц И.Д. Физические свойства воды, связанной с биомакромолекулами / в кн. Вода в пищевых продуктах п/р. Р.Б.Дакуорта. - М: Пищевая промышленность, 1980.
12. Малых Н.В. Ультразвуковые химические кавитационные технологии // Труды XI сессии Российского Акустического Общества. - М.: ГЕОС, Том 2, 2001, с.269-299.
13. Frusteri F. Partial oxidation of ethane in a three-phase electro-fenton system // Studies in Surface Science and Catalysis. V.119, p.429-434, 1998.
14. Установка СТЭЛ-10K-120-01 (мод. 20-03). Паспорт.
15. Аппарат «Сиринкс 4000» для кавитационной дезинтеграции жидких пищевых сред СИТБ.443146.002 ТУ, Руководство по эксплуатации.
16. Технологическая инструкция по кавитационной дезинтеграции воды и рассолов на аппаратах «Сиринкс» и их использованию в производстве вареных колбасных изделий. - М: ВНИИМП им. В.М.Горбатова, 2006.

Claims (1)

  1. Способ посола мяса при производстве мясопродуктов, характеризующийся тем, что рассол обрабатывают путем возбуждения в нем кавитации, а в качестве растворителя в рассоле используют фракцию слабоминерализованной воды, полученную в катодном пространстве диафрагменного электролизера.
RU2007116675/13A 2007-05-02 2007-05-02 Способ посола мяса при производстве мясопродуктов RU2323578C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2007116675/13A RU2323578C1 (ru) 2007-05-02 2007-05-02 Способ посола мяса при производстве мясопродуктов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2007116675/13A RU2323578C1 (ru) 2007-05-02 2007-05-02 Способ посола мяса при производстве мясопродуктов

Publications (1)

Publication Number Publication Date
RU2323578C1 true RU2323578C1 (ru) 2008-05-10

Family

ID=39799779

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007116675/13A RU2323578C1 (ru) 2007-05-02 2007-05-02 Способ посола мяса при производстве мясопродуктов

Country Status (1)

Country Link
RU (1) RU2323578C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2525270C1 (ru) * 2013-02-21 2014-08-10 Ольга Николаевна Красуля Способ производства вареных колбасных изделий

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
http://www/cbio.ru/modules/news/printphp?storyid=999, Новые технологии производства качественных продуктов питания, 22.06.2005. http://www.u-sonic.ru/monl/mon62.shtml, Ультразвуковая обработка мяса и рыбопродуктов, 2000-2005. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2525270C1 (ru) * 2013-02-21 2014-08-10 Ольга Николаевна Красуля Способ производства вареных колбасных изделий

Similar Documents

Publication Publication Date Title
Leães et al. Ultrasound and basic electrolyzed water: A green approach to reduce the technological defects caused by NaCl reduction in meat emulsions
Yao et al. Mass transfer enhancement of tuna brining with different NaCl concentrations assisted by ultrasound
Zhang et al. Influence of ultrasound-assisted tumbling on NaCl transport and the quality of pork
Lertwittayanon et al. Effect of different salts on dewatering and properties of yellowtail barracuda surimi
Krasulya et al. The study of changes in raw meat salting using acoustically activated brine
Guo et al. Application of simultaneous ultrasonic curing on pork (Longissimus dorsi): Mass transport of NaCl, physical characteristics, and microstructure
RU2323578C1 (ru) Способ посола мяса при производстве мясопродуктов
Wang et al. A method to improve water‐holding capacity of beef during freezing‐thawing process using ultrasound treatment
Kataoka et al. Effects of chitosan on gelling properties of low quality surimi
RU2429727C2 (ru) Способ консервирования панцирьсодержащего сырья
RU2286204C1 (ru) Способ приготовления водных растворов электролитов под воздействием ультразвуковой кавитации
RU2245624C1 (ru) Способ производства мясопродуктов
RU2562380C1 (ru) Способ производства рубленых полуфабрикатов из мяса цыплят-бройлеров
RU2329650C1 (ru) Способ восстановления сухого молока
Dolatowski et al. Effect of sonication on technological properties of beef
Zhang et al. Effects of ultrasound‐assisted intermittent tumbling on the quality of cooked ham through modifying muscle structure and protein extraction
RU2331478C1 (ru) Способ гидратации биополимеров и продукт из гидратированной биомассы
RU2468586C2 (ru) Композиция для посола мясного сырья
RU2429726C2 (ru) Способ консервирования панцирьсодержащих отходов комплексной переработки криля
RU2442439C1 (ru) Способ приготовления водного раствора посолочных веществ
RU2337577C2 (ru) Способ восполнения влаги в измельченном мясе и получаемый из него мясопродукт
RU2302739C1 (ru) Способ посола рыбы
RU2487546C2 (ru) Способ хранения мяса животных в охлажденном состоянии
RU2440001C1 (ru) Способ посола мяса при производстве мясопродуктов
Marynin et al. Influence of electrochemically activated water on the physical properties and rheological indicators of meat pates

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20120503