RU2306634C1 - Полупроводниковая светоизлучающая гетероструктура - Google Patents

Полупроводниковая светоизлучающая гетероструктура Download PDF

Info

Publication number
RU2306634C1
RU2306634C1 RU2006129223/28A RU2006129223A RU2306634C1 RU 2306634 C1 RU2306634 C1 RU 2306634C1 RU 2006129223/28 A RU2006129223/28 A RU 2006129223/28A RU 2006129223 A RU2006129223 A RU 2006129223A RU 2306634 C1 RU2306634 C1 RU 2306634C1
Authority
RU
Russia
Prior art keywords
region
type conductivity
nitride material
gan
layer made
Prior art date
Application number
RU2006129223/28A
Other languages
English (en)
Inventor
Дмитрий Александрович Закгейм (RU)
Дмитрий Александрович Закгейм
Игорь Владимирович Рожанский (RU)
Игорь Владимирович Рожанский
Original Assignee
Закрытое Акционерное Общество "Светлана - Оптоэлектроника"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Закрытое Акционерное Общество "Светлана - Оптоэлектроника" filed Critical Закрытое Акционерное Общество "Светлана - Оптоэлектроника"
Priority to RU2006129223/28A priority Critical patent/RU2306634C1/ru
Priority to PCT/RU2007/000441 priority patent/WO2008018817A1/ru
Priority to EP07834967.7A priority patent/EP2071638A4/de
Application granted granted Critical
Publication of RU2306634C1 publication Critical patent/RU2306634C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

Полупроводниковая светоизлучающая гетероструктура на основе твердых растворов нитридов металлов третьей группы AlхInyGa1-(x+y)N (0≤х≤1, 0≤у≤1) с р-n переходом содержит последовательность эпитаксиальных слоев, образующих области n- и р-типа проводимости. В одной из этих областей сформирована активная область, имеющая по меньшей мере одну квантовую яму, а другая область включает токоограничивающий слой. Активная область размещена внутри области, имеющей р-тип проводимости, а токоограничивающий слой размещен в области, имеющей n-тип проводимости. Такая светоизлучающая гетероструктура обеспечивает повышение внешней квантовой эффективности. 2 з.п. ф-лы, 2 ил.

Description

Изобретение относится к области полупроводниковых светоизлучающих приборов, в частности к светодиодам на основе твердых растворов нитридов металлов третьей группы.
Известны светоизлучающие гетероструктуры на основе твердых растворов нитридов металлов третьей группы AlInGaN с p-n переходом, содержащие последовательность эпитаксиальных слоев, которые образуют область n-типа проводимости и область p-типа проводимости, при этом в области n-типа проводимости сформирована активная область, имеющая одну или несколько квантовых ям, а в области p-типа проводимости расположен широкозонный токоограничивающий слой, выполненный из нитридного материала, имеющего p-тип легирования (см., например, US 6515313, RU 2262155, RU 2277736).
При пропускании тока в прямом направлении дырки из p-эмиттера инжектируются в активную область, где происходит их излучательная рекомбинация с электронами. Обратный процесс инжекции электронов в p-область является паразитным, так как рекомбинация в этой области происходит безызлучательно. Размещенный в p-области токоограничивающий (барьерный, эмиттерный) слой, выполненный из нитридного материала p-типа проводимости с большой шириной запрещенной зоны, препятствует проникновению электронов в p-область, что способствует повышению эффективности инжекции дырок, и, как следствие, повышению внешней квантовой эффективности светоизлучающей гетероструктуры.
Отличительной особенностью рассматриваемых светоизлучающих гетероструктур на основе твердых растворов нитридов металлов третьей группы AlInGaN является наличие в них встроенных электрических полей сложной конфигурации на границе GaN/AlGaN, образующихся из-за пьезоэффекта и спонтанной поляризации. При этом оказывается, что способность токоограничивающего слоя препятствовать проникновению электронов в p-область значительно подавляется. Для повышения внешней квантовой эффективности указанных структур приходится использовать специальные приемы, направленные на увеличение энергетического барьера для электронов в токоограничивающем слое и/или на повышение концентрации дырок и увеличение эффективности их инжекции, что достигается, в частности, путем подбора состава нитридных соединений.
В качестве ближайшего аналога авторами заявляемого изобретения выбрана полупроводниковая светоизлучающая гетероструктура, описанная в RU 2262155.
Данная полупроводниковая светоизлучающая гетероструктура на основе твердых растворов нитридов металлов третьей группы AlxInyGa1-(x+y)N (0≤х≤1, 0≤y≤1) с p-n переходом содержит последовательность эпитаксиальных слоев, образующих области n- и p-типа проводимости. При этом в направлении эпитаксиального роста гетероструктура последовательно содержит расположенные в области n-типа проводимости n-контактный слой и активный слой с одной квантовой ямой, выполненной из нитридного материала, имеющего n-тип легирования, а также расположенные в области p-типа проводимости широкозонный токоограничивающий (барьерный) слой, выполненный из нитридного материала AlGaN, имеющего p-тип легирования, и p-контактный слой.
Благодаря выбранным составу материала и ширине эпитаксиальных слоев в рассматриваемой гетероструктуре повышается концентрация дырок на границе активного слоя, что способствует увеличению ее внешней квантовой эффективности. Однако в данной гетероструктуре, как и в описанных выше гетероструктурах на основе твердых растворов нитридов металлов третьей группы AlInGaN, в которых область рекомбинации размещена в n-области, а токоограничивающий слой размещен в p-области, и которые характеризуются наличием сильных встроенных пьезоэлектрических полей, при увеличении плотности тока накачки снижается эффективность инжекции дырок в активную область, а следовательно, падает внешняя квантовая эффективность гетероструктуры.
Задачей изобретения является повышение внешней квантовой эффективности полупроводниковой светоизлучающей гетероструктуры.
Сущность изобретения заключается в том, что в полупроводниковой светоизлучающей гетероструктуре на основе твердых растворов нитридов металлов третьей группы AlxInyGa1-(x+y)N (0≤x≤1, 0≤у≤1) с p-n переходом, содержащей последовательность эпитаксиальных слоев, образующих области n- и p-типа проводимости, в одной из которых сформирована активная область, имеющая по меньшей мере одну квантовую яму, а другая включает токоограничивающий слой, согласно изобретению активная область размещена внутри области, имеющей p-тип проводимости, а токоограничивающий слой размещен в области, имеющей n-тип проводимости.
В частном случае выполнения изобретения полупроводниковая светоизлучающая гетероструктура в направлении ее эпитаксиального роста последовательно содержит область n-типа проводимости и область p-типа проводимости, при этом область n-типа проводимости включает последовательно расположенные слой, выполненный из нитридного материала (GaN) n-типа проводимости, служащий для растекания тока, и токоограничивающий слой, выполненный из нитридного материала (AlxGa1-xN) n-типа проводимости, а область p-типа проводимости включает последовательно расположенные тонкий слой, выполненный из нитридного материала (GaN) p-типа проводимости, активную область с квантовыми ямами, образованными слоями, выполненными из нитридного нелегированного материала (InyGa1-yN), и контактный слой, выполненный из нитридного материала (GaN) p-типа проводимости.
В частном случае выполнения изобретения полупроводниковая светоизлучающая гетероструктура в направлении ее эпитаксиального роста последовательно содержит область p-типа проводимости и область n-типа проводимости, при этом область p-типа проводимости включает последовательно расположенные слой, выполненный из нитридного материала (GaN) p-типа проводимости, активную область с квантовыми ямами, образованную слоями, выполненными из нитридного нелегированного материала (InyGa1-yN), и тонкий слой, выполненный из нитридного материала (GaN) p-типа проводимости, а область n-типа проводимости включает последовательно расположенные токоограничивающий слой, выполненный из нитридного материала (AlxGa1-xN) n-типа проводимости, и контактный слой, выполненный из нитридного материала (GaN) n-типа проводимости, причем расположенный перед активной областью слой, выполненный из нитридного материала (GaN) p-типа проводимости, имеет в нижней своей части область с высокой степенью p+ легирования, а гетероструктура дополнительно содержит расположенный перед указанной областью с высокой степенью p+ легирования слой, выполненный из нитридного материала (GaN) с высокой степенью n+ легирования, служащий для растекания тока и образующий с областью с высокой степенью p+ легирования обратно-смещенный туннельный p-n переход.
Принципиальным отличием заявленной (инверсной) полупроводниковой светоизлучающей гетероструктуры является смещение в ней активной области в p-область с тем, чтобы интенсивность рекомбинации носителей в активной области определялась не инжекцией дырок, а инжекцией электронов. При этом широкозонный токоограничивающий слой препятствует проникновению дырок в n-область. Как показали проведенные авторами расчетные и экспериментальные исследования, в такой инверсной гетероструктуре на основе твердых растворов нитридов металлов третьей группы AlInGaN высота потенциального барьера для дырок, создаваемого токоограничивающим слоем, оказывается достаточно большой даже с учетом встроенных электрических полей, а доля дырок, проникающих в n-область и тем самым снижающих эффективность инжекции электронов, является незначительной. Таким образом, техническим результатом заявляемого изобретения является создание энергетического барьера для дырок, что в совокупности с эффективной инжекцией электронов способствует повышению концентрации носителей в активной области. Соответственно, повышается внешняя квантовая эффективность заявляемой гетероструктуры, при этом ее зависимость от тока накачки не испытывает падения при большой плотности тока.
Возможен частный случай выполнения заявляемой полупроводниковой светоизлучающей гетероструктуры с одним p-n переходом, которая в направлении своего эпитаксиального роста последовательно содержит сначала область n-типа проводимости, а затем область p-типа проводимости. При этом в области n-типа проводимости гетероструктура последовательно содержит слой, выполненный из нитридного материала (GaN) n-типа проводимости, служащий для растекания тока, и токоограничивающий слой, выполненный из нитридного материала (AlxGa1-xN) n-типа проводимости. В области p-типа проводимости гетероструктура последовательно содержит тонкий слой, выполненный из нитридного материала (GaN) p-типа проводимости, активную область с квантовыми ямами, образованными слоями, выполненными из нитридного нелегированного материала (InyGa1-yN), и контактный слой, выполненный из нитридного материала (GaN) p-типа проводимости.
В данной гетероструктуре, поскольку она содержит активную область с несколькими квантовыми ямами, основная доля излучательной рекомбинации электронов, инжектируемых из n-области в p-область, с дырками приходится на нижнюю (первую в направлении эпитаксиального роста гетероструктуры) яму. Между тем, в многоямной активной области нижняя яма имеет наихудшее из всех прочих технологическое качество материала, а верхняя яма - наилучшее.
Для того чтобы основная часть излучательной рекомбинации электронов с дырками в многоямной активной области приходилась на верхнюю яму, обладающую наилучшим технологическим качеством материала, целесообразным является выполнение заявляемой полупроводниковой светоизлучающей гетероструктуры с двумя p-n переходами.
Такая гетероструктура содержит образующие в направлении ее эпитаксиального роста верхний p-n переход области p- и n-типа проводимости. При этом область p-типа проводимости включает последовательно расположенные слой, выполненный из нитридного материала (GaN) p-типа проводимости, активную область с квантовыми ямами, образованными слоями, выполненными из нитридного нелегированного материала (InyGa1-yN), и тонкий слой, выполненный из нитридного материала (GaN) p-типа проводимости, а область n-типа проводимости включает последовательно расположенные токоограничивающий слой, выполненный из нитридного материала (AlxGa1-xN) n-типа проводимости, и контактный слой, выполненный из нитридного материала (GaN) n-типа проводимости. Расположенный перед активной областью слой, выполненный из нитридного материала (GaN) p-типа проводимости, имеет в нижней своей части область с высокой степенью p+ легирования. При этом гетероструктура дополнительно содержит расположенный перед указанной областью с высокой степенью p+ легирования слой, выполненный из нитридного материала (GaN) с высокой степенью n+ легирования, служащий для растекания тока и образующий с областью с высокой степенью p+ легирования обратно-смещенный туннельный p-n переход.
На фиг.1 представлена схема заявляемой гетероструктуры с одним p-n переходом; на фиг.2 представлена схема заявляемой гетероструктуры с двумя p-n переходами.
Полупроводниковая светоизлучающая гетероструктура, представленная на фиг.1, последовательно в направлении ее эпитаксиального роста включает:
толстый (3-4 мкм) слой 1, выполненный из нитридного материала (GaN) n-типа проводимости, служащий для растекания тока;
широкозонный токоограничивающий слой 2, выполненный из нитридного материала (AlxGa1-xN) n-типа проводимости;
тонкий (0,01-0,03 мкм) слой 3, выполненный из нитридного материала (GaN) p-типа проводимости;
активную область 4 с пятью квантовыми ямами, образованными слоями, выполненными из нитридного нелегированного материала (InyGa1-yN);
слой 5 (толщиной 0,1-0,3 мкм), выполненный из нитридного материала (GaN) p-типа проводимости (контактный).
В данной гетероструктуре слои 1 и 2 образуют область n-типа проводимости, слой 3, область 4 и слой 5 образуют область p-типа проводимости.
Полупроводниковая светоизлучающая гетероструктура, представленная на фиг.2, последовательно в направлении ее эпитаксиального роста включает:
толстый (3-4 мкм) слой 6, выполненный из нитридного материала (GaN) n-типа проводимости, служащий для растекания тока и имеющий область с высокой степенью n + легирования;
слой 7 (толщиной 0,05-0,1 мкм), выполненный из нитридного материала (GaN) p-типа проводимости, в нижней части которого сформирована область с высокой степенью p + легирования;
активную область 4 с пятью квантовыми ямами, образованными слоями, выполненными из нитридного нелегированного материала (InyGa1-yN);
тонкий (0,01-0,03 мкм) слой 3, выполненный из нитридного материала (GaN) p-типа проводимости;
широкозонный токоограничивающий слой 2, выполненный из нитридного материала (AlxGa1-xN) n-типа проводимости;
слой 1, выполненный из нитридного материала (GaN) n-типа проводимости (контактный).
Верхние стрелки на фиг.1 и 2 обозначают инжекцию электронов в активную область, нижние стрелки обозначают инжекцию дырок в активную область. Стрелка, расположенная под фиг.1 и фиг.2, обозначает направление эпитаксиального роста гетероструктуры.
Заявляемая гетероструктура, частные случаи выполнения которой представлены на фиг.1 и 2, может быть получена методом газофазной эпитаксии из металлоорганических соединений на изолирующей подложке, в частности, выполненной из сапфира.
Полупроводниковая светоизлучающая структура работает следующим образом.
При пропускании тока в прямом направлении электроны из области n-типа проводимости инжектируются в активную область 4, расположенную внутри области p-типа проводимости. В указанную активную область 4 также поступают дырки из области p-типа проводимости. При этом токоограничивающий слой 2, расположенный в области n-типа проводимости, препятствует проникновению дырок из p-области в n-область проводимости. Движущиеся навстречу друг другу электронно-дырочные носители рекомбинируют в активной области 4, передавая свою энергию квантам света.
Рекомбинация носителей происходит в квантовых ямах активной области 4, материал которых имеет ширину запрещенной зоны, меньшую, чем остальной материал активной области 4.
В гетероструктуре, представленной на фиг.1, основная доля излучательной рекомбинации носителей приходится на нижнюю в направлении ее эпитаксиального роста (ближнюю к подложке, на которой выращивается гетероструктура) яму, которая имеет наихудшее технологическое качество материала.
В гетероструктуре с двумя p-n-переходами, представленной на фиг.2, излучательная рекомбинация осуществляется в активной области 4 верхнего p-n-перехода, причем основная доля рекомбинации носителей происходит в верхней в направлении эпитаксиального роста гетероструктуры яме, которая, как правило, имеет наилучшее технологическое качество материала. Благодаря указанному фактору данная гетероструктура обладает лучшими светоизлучательными характеристиками. При этом, поскольку в рабочем режиме гетероструктуры нижний p-n переход оказывается обратно-смещенным, он должен быть туннельно-прозрачным, для чего он образован сильно-легированными n+ и p+ областями, расположенными в нижней части гетероструктуры соответственно в слоях 6 и 7.

Claims (3)

1. Полупроводниковая светоизлучающая гетероструктура на основе твердых растворов нитридов металлов третьей группы AlхInyGa1-(x+y)N (0≤х≤1, 0≤у≤1) с р-n переходом, содержащая последовательность эпитаксиальных слоев, образующих области n- и р-типа проводимости, в одной из которых сформирована активная область, имеющая по меньшей мере одну квантовую яму, а другая включает токоограничивающий слой, отличающаяся тем, что активная область размещена внутри области, имеющей р-тип проводимости, а токоограничивающий слой размещен в области, имеющей n-тип проводимости.
2. Полупроводниковая светоизлучающая гетероструктура по п.1, отличающаяся тем, что в направлении ее эпитаксиального роста она последовательно содержит область n-типа проводимости и область р-типа проводимости, при этом область n-типа проводимости включает последовательно расположенные слой, выполненный из нитридного материала (GaN) n-типа проводимости, служащий для растекания тока, и токоограничивающий слой, выполненный из нитридного материала (AlхInyGa1-xN) n-типа проводимости, а область р-типа проводимости включает последовательно расположенные тонкий слой, выполненный из нитридного материала (GaN) р-типа проводимости, активную область с квантовыми ямами, образованными слоями, выполненными из нитридного нелегированного материала (InyGa1-yN), и контактный слой, выполненный из нитридного материала (GaN) р-типа проводимости.
3. Полупроводниковая светоизлучающая гетероструктура по п.1, отличающаяся тем, что в направлении ее эпитаксиального роста она последовательно содержит область р-типа проводимости и область n-типа проводимости, при этом область р-типа проводимости включает последовательно расположенные слой, выполненный из нитридного материала (GaN) р-типа проводимости, активную область с квантовыми ямами, образованными слоями, выполненными из нитридного нелегированного материала (InyGa1-yN), и тонкий слой, выполненный из нитридного материала (GaN) р-типа проводимости, а область n-типа проводимости включает последовательно расположенные токоограничивающий слой, выполненный из нитридного материала (InyGa1-xN) n-типа проводимости, и контактный слой, выполненный из нитридного материала (GaN) n-типа проводимости, причем расположенный перед активной областью слой, выполненный из нитридного материала (GaN) р-типа проводимости, имеет в нижней своей части область с высокой степенью р + легирования, а гетероструктура дополнительно содержит расположенный перед указанной областью с высокой степенью р + легирования слой, выполненный из нитридного материала (GaN) с высокой степенью n + легирования, служащий для растекания тока и образующий с областью с высокой степенью р + легирования обратно-смещенный туннельный р-n переход.
RU2006129223/28A 2006-08-08 2006-08-08 Полупроводниковая светоизлучающая гетероструктура RU2306634C1 (ru)

Priority Applications (3)

Application Number Priority Date Filing Date Title
RU2006129223/28A RU2306634C1 (ru) 2006-08-08 2006-08-08 Полупроводниковая светоизлучающая гетероструктура
PCT/RU2007/000441 WO2008018817A1 (fr) 2006-08-08 2007-08-01 Hétérostructure électroluminescente semi-conductrice
EP07834967.7A EP2071638A4 (de) 2006-08-08 2007-08-01 Lichtemittierende halbleiter-heterostruktur

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2006129223/28A RU2306634C1 (ru) 2006-08-08 2006-08-08 Полупроводниковая светоизлучающая гетероструктура

Publications (1)

Publication Number Publication Date
RU2306634C1 true RU2306634C1 (ru) 2007-09-20

Family

ID=38695423

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006129223/28A RU2306634C1 (ru) 2006-08-08 2006-08-08 Полупроводниковая светоизлучающая гетероструктура

Country Status (3)

Country Link
EP (1) EP2071638A4 (ru)
RU (1) RU2306634C1 (ru)
WO (1) WO2008018817A1 (ru)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1653524A1 (en) * 1995-11-06 2006-05-03 Nichia Corporation Nitride semiconductor device
SG63757A1 (en) * 1997-03-12 1999-03-30 Hewlett Packard Co Adding impurities to improve the efficiency of allngan quantum well led's
US6515313B1 (en) 1999-12-02 2003-02-04 Cree Lighting Company High efficiency light emitters with reduced polarization-induced charges
EP1536486A4 (en) * 2002-07-16 2006-11-08 Nitride Semiconductors Co Ltd COMPOSITE SEMICONDUCTOR ELEMENT ON GALLIUM NITRID BASE
US6835957B2 (en) * 2002-07-30 2004-12-28 Lumileds Lighting U.S., Llc III-nitride light emitting device with p-type active layer
US6822991B2 (en) * 2002-09-30 2004-11-23 Lumileds Lighting U.S., Llc Light emitting devices including tunnel junctions
RU2262155C1 (ru) 2004-09-14 2005-10-10 Закрытое акционерное общество "Нитридные источники света" Полупроводниковый элемент, излучающий свет в ультрафиолетовом диапазоне
US20060076574A1 (en) * 2004-10-12 2006-04-13 Liang-Wen Wu Gallium-nitride based light-emitting diodes structure with high reverse withstanding voltage and anti-ESD capability
RU2277736C1 (ru) 2005-02-02 2006-06-10 Закрытое акционерное общество "Нитридные источники света" Полупроводниковый элемент, излучающий свет в синей области видимого спектра

Also Published As

Publication number Publication date
WO2008018817A1 (fr) 2008-02-14
EP2071638A4 (de) 2014-07-16
EP2071638A1 (de) 2009-06-17

Similar Documents

Publication Publication Date Title
JP5940069B2 (ja) 発光するナノワイヤー系光電子デバイス
US8330174B2 (en) LED having current spreading layer
US7737451B2 (en) High efficiency LED with tunnel junction layer
US6526082B1 (en) P-contact for GaN-based semiconductors utilizing a reverse-biased tunnel junction
US9257599B2 (en) Semiconductor light emitting device including hole injection layer
US10153393B2 (en) Light emitting diode of which an active area comprises layers of inn
KR101488846B1 (ko) 다중 양자 우물 구조를 포함한 광전 반도체칩
KR100604406B1 (ko) 질화물 반도체 소자
US9362445B2 (en) Light-emitting device
KR20100027411A (ko) 반도체 발광소자 및 그 제조방법
EP2919282B1 (en) Nitride semiconductor stacked body and semiconductor light emitting device comprising the same
WO2018205733A1 (zh) 发光二极管
KR100542720B1 (ko) GaN계 접합 구조
KR20130096991A (ko) 자외선 발광소자
KR20090002199A (ko) 질화물 반도체 발광소자 및 그 제조방법
KR100638729B1 (ko) 3족 질화물 발광 소자
Liu et al. Efficiency enhancement of InGaN LEDs with an n-type AlGaN/GaN/InGaN current spreading layer
US20130228740A1 (en) Light-emitting diode device
RU2306634C1 (ru) Полупроводниковая светоизлучающая гетероструктура
Su et al. Nitride-based LEDs with n/sup-/-GaN current spreading layers
KR101392218B1 (ko) 반도체 발광소자
CN109671825B (zh) 一种极性半导体发光二极管
KR100687527B1 (ko) 발광다이오드 및 그 형성 방법
RU2370857C1 (ru) Полупроводниковая светоизлучающая гетероструктура
KR101772815B1 (ko) 고효율 Ga-polar 수직 발광 다이오드 소자 및 그 제조방법

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20080809

MM4A The patent is invalid due to non-payment of fees

Effective date: 20180809