RU2305072C1 - Способ биологического удаления фосфора из сточных вод - Google Patents

Способ биологического удаления фосфора из сточных вод Download PDF

Info

Publication number
RU2305072C1
RU2305072C1 RU2005135938/15A RU2005135938A RU2305072C1 RU 2305072 C1 RU2305072 C1 RU 2305072C1 RU 2005135938/15 A RU2005135938/15 A RU 2005135938/15A RU 2005135938 A RU2005135938 A RU 2005135938A RU 2305072 C1 RU2305072 C1 RU 2305072C1
Authority
RU
Russia
Prior art keywords
sludge
phosphorus
subjected
mixture
flotation
Prior art date
Application number
RU2005135938/15A
Other languages
English (en)
Other versions
RU2005135938A (ru
Inventor
Николай Иванович Куликов (RU)
Николай Иванович Куликов
к Пётр Ильич Гвозд (UA)
Пётр Ильич Гвоздяк
Леонид Иванович Глоба (UA)
Леонид Иванович Глоба
Пётр Алексеевич Ивкин (RU)
Пётр Алексеевич Ивкин
Original Assignee
Николай Иванович Куликов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Николай Иванович Куликов filed Critical Николай Иванович Куликов
Priority to RU2005135938/15A priority Critical patent/RU2305072C1/ru
Publication of RU2005135938A publication Critical patent/RU2005135938A/ru
Application granted granted Critical
Publication of RU2305072C1 publication Critical patent/RU2305072C1/ru

Links

Landscapes

  • Physical Water Treatments (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

Изобретение относится к способам биологической очистки бытовых и близких к ним по составу промышленных сточных вод. Способ включает последовательное выдерживание сообщества микроорганизмов, очищающих сточные воды от органических и минеральных примесей, в анаэробных, аноксидных и аэробных условиях в емкостных сооружениях с интенсивным массообменном, создаваемым с помощью, соответственно, мешалок, насосов и барботажа воздухом. Возвратный активный ил из вторичных отстойников смешивают с потоком исходной сточной воды, прошедшим решетки и песколовки, смесь подвергают флотационной обработке, после чего флотоконцентрат выдерживают в течение не менее получаса в анаэробных биореакторах при непрерывном перемешивании, а осветленную жидкость с иловой водой подают в денитрификатор вместе с циркуляционным потоком иловой смеси с выхода нитрификатора и анаэробнообработанным флотоконцентратом, далее иловую смесь из денитрификатора направляют в нитрификатор, где подвергают перемешиванию барботажем воздуха, при этом прирастающую в аэробных условиях нитрификатора биомассу избыточного активного ила подвергают флотационной обработке на флотаторах, флотоконцентрат избыточного активного ила обезвоживают до кека и подвергают биокомпостированию в аэробных условиях без потери фосфора в смеси с опилками до получения обогащенного фосфором биогумуса. Технический эффект - снижение объемов емкостных сооружений и энергетических затрат на очистку сточных вод от фосфора и увеличение содержания фосфора в биогумусе, полученном из прирастающего на очистной станции активного ила. 1 ил.

Description

Изобретение относится к способам биологической очистки бытовых и близких к ним по составу промышленных сточных вод и может быть использовано в коммунальном хозяйстве городов, поселков и промышленных предприятий при очистке сточных вод от органических и минеральных примесей, в том числе биогенных элементов.
Известно использование биологического метода для удаления из сточных вод биогенных элементов, в том числе фосфора [1] путем создания в аэротенках с активным илом последовательно аноксидных, анаэробных и аэробных зон с интенсивным массообменном в каждой зоне за счет устройства мешалок, гидравлического перемешивания с помощью осевых и винтовых насосов, а также барботажа воздухом.
К недостаткам известного способа относятся: громоздкость и высокие энергетические затраты анаэробных и аноксидных зон вследствие пропускания через них всего объема сточных вод, подлежащих очистке; большая поверхность зеркала воды в емкостных сооружениях, где организуются анаэробные и аноксидные условия, через которую в иловую смесь поступает из воздуха кислород, ухудшающий условия для регенерации фосфорпоглощающих бактерий; потери фосфора при длительном уплотнении приросшего активного ила в гравитационных илоуплотнителях.
Задача изобретения - снижение объемов емкостных сооружений и энергетических затрат на очистку сточных вод от фосфора и увеличение содержания фосфора в биогумусе, полученном из прирастающего на очистной станции активного ила.
Решается поставленная задача тем, что в известном способе исключают первичные отстойники и весь возвратный активный ил из вторичных отстойников смешивают с потоком исходной сточной воды, прошедшим процеживание в решетках и улавливание песка в песколовках, смесь подвергают флотационной обработке и затем флотоконцентрат направляют на получасовую анаэробную обработку при непрерывном перемешивании бродящей массы, а осветленную воду с иловой водой подают в денитрификатор вместе с циркуляционным потоком иловой смеси с выхода аэротенка-нитрификатора и анаэробнообработанным флотоконцентратом. Далее иловую смесь из денитрификатора направляют в нитрификатор с интенсивным барботажем воздухом для перемешивания иловой смеси и внесения растворяющегося в воде кислорода воздуха.
Прирастающую в аэробных условиях нитрификатора биомассу избыточного активного ила подвергают флотационной обработке на флотаторах, высвобождаемых в часы минимального притока сточных вод на очистную станцию, и флотоконцентрат приросшей биомассы избыточного активного ила направляют на смешивание с опилками или другими измельченными растительными отходами, и тут же на обезвоживание в отжимных аппаратах, из которых иловую воду возвращают в денитрификаторы, а кек подают в биокомпостеры для получения биогумуса.
Технологическая схема предлагаемого способа биологического удаления фосфора из сточных вод приведена на чертеже. Условные обозначения на схеме следующие:
А - поток исходной сточной воды;
1 - решетки;
2 - песколовки;
3 - флотаторы сточной воды;
4 - анаэробный биореактор;
5 - денитрификатор;
6 - нитрификатор;
7 - вторичные отстойники;
8 - реактор доочистки;
9 - контактный резервуар;
10 - флотаторы избыточного активного ила;
11 - смеситель;
12 - аппарат отжима;
13 - биокомпостер;
14 - бак с мусором;
15 - песковый бункер;
16 - флотоконцентрат;
17 - воздуховод;
18 - осветленный сток после флотации;
19 - избыточный активный ил;
20 - возвратный активный ил;
21 - хлорагент;
22 - иловая вода;
23 - опилки;
24 - флотоконцентрат избыточного активного ила;
25 - кек;
26 - биогумус;
27 - циркуляционный поток иловой смеси;
Б - очищенная вода.
В соответствии с технологической схемой исходную сточную воду А направляют на процеживание в решетки 1, на выделение песка в песколовки 2, а затем после смешивания с потоком возвратного активного ила подают во флотаторы 3, где с помощью водовоздушной смеси, полученной при давлении не менее 15 МПа, обеспечивают выведение во флотоконцентрат 16 биомассы возвратного активного ила 20 взвешенных веществ и сорбированных активным илом растворенных органических веществ потока исходной сточной воды. Осветленную исходную сточную воду и иловую воду возвратного активного ила потоком осветленного стока после флотации направляют в денитрификатор 5. В денитрификатор 5 подают также циркуляционный поток иловой смеси 27 с выхода из нитрификатора 6, а также анаэробнообработанный в анаэробных биореакторах 4 флотоконцентрат. Перемешивание иловой смеси как в денитрификаторах 5, так и в нитрификаторах 6, осуществляют барботажем воздухом, подаваемым по воздуховодам 17.
Из нитрификаторов 6 иловую смесь подают во вторичные отстойники 7. Возвратный активный ил возвращают перед флотаторами 3, а биологически очищенную осветленную сточную воду направляют в реактор доочистки 8. В реакторы доочистки 8 подают воздух по воздуховодам 17. Доочищенный сток направляют на обеззараживание в контактный резервуар 9, где сточная вода контактирует с хлорагентом или подвергается ультрафиолетовому облучению.
Обеззараженную сточную воду потоком очищенной воды отводят в водоприемник.
Отходы сточной воды выводят в виде отбросов в бак с мусором 14, в песковый бункер15.
Приросшую биомассу избыточного активного ила выводят во флотаторы 10, из которых иловую воду возвращают в нитрификатор 5, а флотоконцентрат избыточного ила направляют в смеситель 11 на смешивание с опилками и далее на аппарат отжима 12. Из аппарата отжима 12 кек подают в биокомпостер 13 для получения биогумуса, а иловую воду перекачивают в нитрификатор 6.
Процесс биологической очистки сточных вод от фосфора осуществляют следующим образом.
Исходный сток, освобожденный от крупных механических примесей (тряпок, косточек фруктов, кульков и др. пластмассовых изделий) в решетках 1, а также от песка в песколовках 2, поступает во флотатор 3. Одновременно во флотатор 3 подают возвратный активный ил 20 и водовоздушную смесь, полученную из воды питьевого качества и воздуха под давлением не ниже 15 МПа. Во флотаторе 3 микропузырьки воздуха, выделившегося из водовоздушной смеси вследствие снижения давления до атмосферного и наличия в сточной воде гидрофобных и поверхностно-активных веществ - центров выделения микропузырьков, поднимают на поверхность воды флотатора 3 частички активного ила, взвешенные вещества сточной воды, ее органические примеси, в том числе жировые, поверхностно-активные и гидрофобные вещества такие, как, например, нефтепродукты. Всплывшие на поверхность примеси образуют флотоконцентрат 16, имеющий влажность 95...96%. Величина химической потребности в кислороде в жидкой фазе флотоконцентрата достигает 40...50 кгО/м3. При этом большая часть массы взвешенных веществ флотоконцентрата представлена микроорганизмами активного ила, нуждающимися в кислороде для своей жизнедеятельности.
Флотоконцентрат собирают с поверхности флотатора 3 и направляют в анаэробные биореакторы 4, где при непрерывном перемешивании в течение не менее получаса суспензии активного ила и примесей сточных вод присутствующие там органические примеси трансформируются в более усваиваемые аэробными микроорганизмами соединения, такие как ацетат, пропионат, бутират и лактат. Фосфорпоглощающие бактерии в анаэробной зоне потребляют вышеназванные соединения и превращают их в полигидроксиалконаты (РНА), главным образом, поли-β-гидроксибутират и поли- β-гидроксивалериат. Транспорт органических кислот в клетку и биосинтез РИА требует энергии, которую polyphosphate accumulating organisms (PAOS) получают путем гидролитического расщепления полифосфата. Полифосфат они синтезируют в аэробных условиях, изымая из сточной воды фосфор и накапливая его в клетках в значительно больших количествах, чем это требуется для клеточного синтеза и физиологических потребностей. Для биосинтеза полифосфата в условиях ограниченного наличия питательных веществ в аэробной зоне PAOS используют в качестве энергии РНА, накопленные в анаэробных условиях. В анаэробных условиях фосфор выходит из клетки и насыщает сточную воду. В аэробных условиях фосфор входит в клетку, извлекаясь ею из сточной воды. Поэтому выводить из очистной станции избыток активного ила следует только в аэробных условиях и не допускать создания анаэробных условий как при уплотнении избыточного активного ила, так и при его обезвоживании.
Из анаэробных биореакторов 4 флотоконцентрат подают, смешивая вновь с осветленной во флотаторах 3 сточной водой, а также с циркуляционным потоком иловой смеси из нитрификатора 6, в денитрификатор 5. И поток осветленной во флотаторах 3 сточной воды и циркуляционный поток иловой смеси содержат нитраты, которые в денитрификаторах 5 восстанавливаются до азота молекулярного, поглащая электроны в окислительных процессах, выполняемых микроорганизмами-денитрификаторами. Учитывая необходимость создания интенсивного массообмена в объеме резервуаров денитрификации, удаления с поверхности клеток выделившегося молекулярного азота, перемешивание иловой смеси в денитрификаторах 5 организуется несколькими приемами.
У дна иловая смесь взмучивается мешалками или осевыми либо пропеллерными насосами, а ближе к поверхности зеркала воды в резервуарах денитрификации, где размещаются кассеты с насадкой для удерживания прикрепленных микроорганизмов, располагаются барботеры аэрации сжатым воздухом под насадкой. Барботаж выполняется периодически для обновления поверхности насадки и разрыхления образовавшихся сгустков взвешенных веществ и биомассы микроорганизмов-денитрификаторов.
Из денитрификаторов 5 иловая смесь самотеком поступает в нитрификатор 6, где непрерывно перемешивается за счет интенсивного барботажа воздухом, поступающим по воздуховодам 17. В нитрификаторах 6 активный ил насыщается фосфором с образованием полифосфатов, окисляется азот аммонийный до нитратов, снижается общая концентрация растворенных в воде органических веществ, поэтому при перетекании иловой смеси во вторичные отстойники 7 или тонкослойные илоотделители она после отделения от биомассы возвратного активного ила имеет параметры качества, близкие к нормативам качества воды рыбохозяйственных водоемов. Для доведения качества очищенной сточной воды до уровня требований сброса в водоприемник ее направляют в блок реакторов доочистки 8. В блоки доочистки 8 наряду с биологическими процессами выедания фильтраторами-седиментаторами частиц активного ила, вынесенного из вторичных отстойников 7, организуют обработку сточных вод реагентами для связывания остаточных количеств фосфора, растворенного в воде в нерастворимые соединения и фильтрование сточной воды через зернистую или иную загрузки для отделения нерастворимых в воде примесей от сточной воды. Из блока доочистки 8 очищенная сточная вода перетекает в контактный резервуар 9 для контакта с хлор-агентом, обеззараживания и доведения качества очищенной воды Б по бактериальной обсемененности до нормативов выпуска в водоем рыбохозяйственного значения.
Осадки сточных вод выводятся из трех мест сооружения. Грубые механические примеси, выделенные в решетках 1, складируют в баки с мусором 14 и периодически, по мере накопления, вывозят на полигоны твердых бытовых отходов для утилизации в топливо или строительные материалы. Песок, выделяемый в песколовках 2, выводят в песковые бункера 15, где он по мере накопления через дренажную систему освобождается от избыточной влаги и затем его вывозят для рекультивации нарушенных земель или для строительных нужд. И, наконец, избыточный активный ил выводят из вторичных отстойников 7 во флотаторы избыточного активного ила 10, где его сгущают, разделяя на два потока. Один поток - поток иловой воды 22, возвращается в нитрификатор 6, а второй поток - поток флотоконцентрата избыточного активного ила подают в смеситель 11, где иловая смесь, взаимодействуя с опилками, кондиционируется и подготавливается к обезвоживанию. Из смесителя 11 смесь флотоконцентрата избыточного активного ила и опилок направляется в аппарат отжима 12, где частично освобождается от излишней иловой воды 22, возвращаемой в нитрификатор 6, и выгружается в виде кека 25 в биокомпостер 13. После переработки микроорганизмами и вермикультурой кек превращается в биогумус, который можно использовать в качестве органоминерального удобрения в сельском хозяйстве и зеленом хозяйстве городов.
Реализация поставленной в изобретении задачи может быть продемонстрирована на примере. В качестве примера использован опыт реконструкции секций аэротенков Курьяновской и Люберецкой станций аэрации МГП «Мосводоканал». Так, при реконструкции четырехкоридорной секции аэротенка Люберецкой станции аэрации под процессы анаэробной и аноксидной стадий обработки сточных вод и возвратного активного ила были задействованы два коридора из четырех в секции. Если перейти на предлагаемый способ удаления фосфора из сточных вод биологическим путем, то при задействовании первичных отстойников, выключенных из работы при проведении эксперимента на Люберецкой станции аэрации, в них за 2 часа пребывания стоков можно организовать не только процесс флотации, но и процесс анаэробной обработки флотоконцентрата. В результате можно высвободить полтора коридора аэротенка, ранее занятые анаэробно-аноксидными процессами, для аэробной биологической очистки или увеличить подачу стоков на 30% от ныне существующей. Если строить новую очистную станцию, то на 30% снижается объем капиталовложений в строительство сооружений по биологической очистке сточных вод. Снижение объемов анаэробных биореакторов более чем в 5 раз позволяет уменьшить энергозатраты на перемешивание в них бродящей массы.
Поскольку биогумус получен из избыточного активного ила, обезвоженного без нахождения в анаэробных условиях, то потери фосфора из него исключены, а это гарантирует решение еще одной поставленной задачи - повышения содержания фосфора в биогумусе.

Claims (1)

  1. Способ биологического удаления фосфора из сточных вод, включающий последовательное выдерживание сообщества микроорганизмов, очищающих сточные воды от органических и минеральных примесей, в анаэробных, аноксидных и аэробных условиях в емкостных сооружениях с интенсивным массообменном, создаваемым с помощью соответственно мешалок, насосов и барботажа воздухом, отличающийся тем, что возвратный активный ил из вторичных отстойников смешивают с потоком исходной сточной воды, прошедшим решетки и песколовки, смесь подвергают флотационной обработке, после чего флотоконцентрат выдерживают в течение не менее получаса в анаэробных биореакторах при непрерывном перемешивании, а осветленную жидкость с иловой водой подают в денитрификатор вместе с циркуляционным потоком иловой смеси с выхода нитрификатора и анаэробнообработанным флотоконцентратом, далее иловую смесь из денитрификатора направляют в нитрификатор, где подвергают перемешиванию барботажем воздуха, при этом прирастающую в аэробных условиях нитрификатора биомассу избыточного активного ила подвергают флотационной обработке на флотаторах, флотоконцентрат избыточного активного ила обезвоживают до кека и подвергают биокомпостированию в аэробных условиях без потери фосфора в смеси с опилками до получения обогащенного фосфором биогумуса.
RU2005135938/15A 2005-11-18 2005-11-18 Способ биологического удаления фосфора из сточных вод RU2305072C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2005135938/15A RU2305072C1 (ru) 2005-11-18 2005-11-18 Способ биологического удаления фосфора из сточных вод

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2005135938/15A RU2305072C1 (ru) 2005-11-18 2005-11-18 Способ биологического удаления фосфора из сточных вод

Publications (2)

Publication Number Publication Date
RU2005135938A RU2005135938A (ru) 2007-05-27
RU2305072C1 true RU2305072C1 (ru) 2007-08-27

Family

ID=38310400

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2005135938/15A RU2305072C1 (ru) 2005-11-18 2005-11-18 Способ биологического удаления фосфора из сточных вод

Country Status (1)

Country Link
RU (1) RU2305072C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009101528A1 (ru) * 2008-02-14 2009-08-20 Ooo "Maks K" Способ экологизации технологий пищевой промышленности и система для его осуществления
RU187325U1 (ru) * 2018-06-19 2019-03-01 Общество с ограниченной ответственностью "ИНФРАЭКОПРОЕКТ" Устройство для очистки сточных вод

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ЗАГОРСКИЙ В.А. и др. Опыт промышленного внедрения технологий биологического удаления азота и фосфора. Водоснабжение и санитарная техника. 2001, №12, с.21-27. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009101528A1 (ru) * 2008-02-14 2009-08-20 Ooo "Maks K" Способ экологизации технологий пищевой промышленности и система для его осуществления
RU187325U1 (ru) * 2018-06-19 2019-03-01 Общество с ограниченной ответственностью "ИНФРАЭКОПРОЕКТ" Устройство для очистки сточных вод

Also Published As

Publication number Publication date
RU2005135938A (ru) 2007-05-27

Similar Documents

Publication Publication Date Title
AU751277B2 (en) Method and device for sewage treatment
JP4801256B2 (ja) サージ無酸素性混合連続回分反応システム
US6811700B2 (en) Integrated hydroponic and fixed-film wastewater treatment systems and associated methods
US6838000B2 (en) Method and device for sewage treatment
EP0302545A2 (en) Process for the biological purification of waste waters
JP7384452B2 (ja) 廃水を処理する、及びクラスa汚泥を生産するためのシステム及び方法
US6391202B1 (en) Process and apparatus for treating wastewater from oil plant processing and cereal processing
CN114291964B (zh) 一种脱氮回收磷的污水处理***及其方法
CN205874139U (zh) 一种焦化废水处理***
RU2305072C1 (ru) Способ биологического удаления фосфора из сточных вод
MXPA03003078A (es) Aparato y metodo para tratamiento de agua de desecho con reduccion de solidos mejorada.
HU230285B1 (hu) Folyamatos betáplálású szennyvízkezelő reaktor és eljárás szennyvíz kezelésére
CZ20002825A3 (en) Sewage treatment process
RU2304085C2 (ru) Способ подготовки сточных вод к аэробной биологической очистке
RU2440307C2 (ru) Способ биологической очистки сточных вод
Shivaranjani et al. Performance study for treatment of institutional wastewater by activated sludge process
RU2225368C1 (ru) Способ глубокой биологической очистки сточных вод и станция глубокой биологической очистки сточных вод
KR102299806B1 (ko) 유기성 폐기물 처리장치 및 이를 이용하는 유기성 폐기물 처리방법
RU2758398C1 (ru) Способ и установка биологической очистки стоков
RU2264353C2 (ru) Способ трехиловой биологической очистки сточных вод
WO2011031181A1 (ru) Способ биологической очистки сточных вод
RU2240291C2 (ru) Способ биологической очистки сточных вод
RU10167U1 (ru) Биореактор для очистки сточных вод от биогенных элементов - азота и фосфора
KR20020038409A (ko) 수중퇴비화 장치 및 그를 이용한 하폐수의 정화방법
RU2201404C2 (ru) Способ очистки сточных вод

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20081119