RU2259262C1 - Плазмотрон - Google Patents

Плазмотрон Download PDF

Info

Publication number
RU2259262C1
RU2259262C1 RU2004108248/02A RU2004108248A RU2259262C1 RU 2259262 C1 RU2259262 C1 RU 2259262C1 RU 2004108248/02 A RU2004108248/02 A RU 2004108248/02A RU 2004108248 A RU2004108248 A RU 2004108248A RU 2259262 C1 RU2259262 C1 RU 2259262C1
Authority
RU
Russia
Prior art keywords
housing
plasma
nozzle
supplying
annular channel
Prior art date
Application number
RU2004108248/02A
Other languages
English (en)
Inventor
Ю.Д. Щицын (RU)
Ю.Д. Щицын
В.Ю. Щицын (RU)
В.Ю. Щицын
Original Assignee
Государственное образовательное учреждение высшего профессионального образования "Пермский государственный технический университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное образовательное учреждение высшего профессионального образования "Пермский государственный технический университет" filed Critical Государственное образовательное учреждение высшего профессионального образования "Пермский государственный технический университет"
Priority to RU2004108248/02A priority Critical patent/RU2259262C1/ru
Application granted granted Critical
Publication of RU2259262C1 publication Critical patent/RU2259262C1/ru

Links

Images

Landscapes

  • Plasma Technology (AREA)

Abstract

Изобретение относится к области плазменной обработки металлов, а именно к устройствам для плазменной наплавки, сварки, резки черных и цветных металлов. Плазмотрон состоит из корпуса 1, установленного на нем при помощи резьбового соединения защитного сопла 2, размещенного в корпусе 1 плазмообразующего сопла 3, которое закрепляется винтом 4 и электрически изолируется от корпуса 1 втулкой 5 и изоляторами-уплотнителями 6 и 7. В винт 4 установлен на резьбе изолятор 8. В изоляторе 8 размещен на резьбе электродный узел 9, имеющий автономную систему охлаждения. Корпус 1 имеет штуцера 11 и 12 и радиальные каналы 13 и 14 для подвода и отвода охлаждающей жидкости системы охлаждения плазмообразующего сопла. Диаметрально противоположные и параллельно расположенные каналы 15 и 16 нижними концами выходят в проточку 18, выполненную в корпусе 1, соединяющуюся с нижней частью кольцевого канала 17, расположенного на внешней стороне плазмообразующего сопла 3. Штуцер 19 и каналы 20 и 21, выполненные в корпусе 1, служат для подачи защитного газа под защитное сопло 2. Винт 4 снабжен штуцером 22 и каналом 23 для подвода плазмообразующего газа. Технический результат заключается в повышении надежности, расширении технологических возможностей плазмотрона и упрощении его изготовления и обслуживания. 2 ил.

Description

Изобретение относится к области плазменной обработки металлов, а именно к устройствам для плазменной наплавки, сварки, резки черных и цветных металлов.
Известен плазмотрон, содержащий электродный узел, корпус, изолятор, их разделяющий, плазмообразующее и защитное сопла. Электродный узел и плазмообразующее сопло снабжены автономными системами охлаждения. Система охлаждения плазмообразующего сопла состоит из кольцевого охлаждающего канала, соединенного в верхней части с подводящими и отводящими каналами, выполненными диаметрально противоположно в корпусе (патент США №4389559, 1983 г.). Такое устройство системы охлаждения плазмообразующего сопла позволило уменьшить габариты плазмотрона, обеспечить возможность замены плазмообразующего сопла, что расширяет возможности и повышает срок службы плазмотрона.
К недостаткам известного плазмотрона можно отнести сложность устройства, значительное количество комплектующих деталей сложной формы, недостаточную эффективность охлаждения теплонагруженных элементов за счет последовательного соединения систем охлаждения электродного узла и плазмообразующего сопла. Кроме того, подвод и отвод охлаждающей жидкости осуществляется в верней части охлаждающего кольцевого канала на наружной поверхности плазмообразующего сопла, вследствие чего большая часть жидкости циркулирует в верхней части кольцевого канала по кратчайшему пути, а в нижней части вблизи наиболее теплонагруженной зоны образуется застойная зона. Это снижает эффективность охлаждения теплонагруженных элементов, а следовательно, мощность и надежность работы плазмотрона. Попытки направить охлаждающую жидкость в нижнюю зону за счет устройства направляющих пазов, ребер и т.п., как это выполнено в известных устройствах (см., например, патент США №4275287), неизбежно приводят к усложнению конструкции и увеличению радиальных размеров плазмотрона.
Наиболее близким по технической сущности к предлагаемому является плазмотрон (патент RU №2058865 от 27.04.1996 г.), содержащий полый корпус со штуцерами для подвода и отвода охлаждающей жидкости, защитное и плазмообразующее сопла, закрепленные на наружной и внутренней поверхностях корпуса, установленный в корпусе электродный узел с системой его охлаждения, изолятор, разделяющий электродный узел и плазмообразующее сопло, систему подвода защитного и плазмообразующего газов, кольцевой канал на наружной поверхности плазмообразующего сопла, диаметрально противоположные каналы подвода и отвода охлаждающей жидкости, выполненные в корпусе. Каналы для подвода и отвода охлаждающей жидкости и кольцевой канал соединены проходными отверстиями, образованными пересечением боковых поверхностей этих каналов, по высоте равными высоте кольцевого канала и имеющими площадь, равную площади поперечного сечения соответственно канала для подвода и отвода охлаждающей жидкости.
Такое устройство позволяет повысить надежность работы плазмотрона за счет эффективного охлаждения теплонагруженных элементов и, как следствие, снизить поперечные габариты и массу плазмотрона и упростить его конструкцию. Данное устройство принято за прототип.
Недостатком известного устройства, принятого за прототип, является то, что в таком устройстве трудно обеспечить при изготовлении равенство площади проходных отверстий площади поперечного сечения соответственно канала для подвода и отвода охлаждающей жидкости, что определяет эффективность охлаждения плазмотрона. Кроме того, в известных устройствах плазмообразующее сопло имеет электрическую связь с защитным соплом, т.к. они установлены на корпусе, выполненном из электропроводного материала, при помощи резьбового соединения. При замыкании защитного сопла на изделие в процессе работы возникает возможность двойного дугообразования, что приводит к выходу из строя плазмообразующего сопла. Это снижает надежность конструкции и ограничивает технологические возможности плазмотрона.
Признаки известного устройства, совпадающие с признаками заявляемого, - полый корпус со штуцерами для подвода и отвода охлаждающей жидкости; защитное и плазмообразующее сопла, закрепленные соответственно на наружной и внутренней поверхностях корпуса; установленный в корпусе электродный узел с системой его охлаждения; изолятор между электродом и плазмообразующим соплом; система подвода защитного и плазмообразующего газов; кольцевой канал на наружной поверхности плазмообразующего сопла; расположенные в корпусе и соединенные с кольцевым каналом диаметрально противоположные каналы подвода и отвода охлаждающей жидкости.
Задача изобретения - повышение надежности и расширение технологических возможностей плазмотрона, упрощение его изготовления и обслуживания.
Технический результат изобретения заключается в обеспечении интенсивного охлаждения теплонагруженных элементов плазмотрона при упрощении конструкции и исключении возможности двойного дугообразования в процессе эксплуатации.
Указанный технический результат при осуществлении изобретения достигается тем, что в плазмотроне, содержащем полый корпус со штуцерами для подвода и отвода охлаждающей жидкости, защитное и плазмообразующее сопла, закрепленные соответственно на наружной и внутренней поверхностях корпуса, установленный в корпусе электродный узел с системой его охлаждения, изолятор между электродом и плазмообразующим соплом, систему подвода защитного и плазмообразующего газов, кольцевой канал на наружной поверхности плазмообразующего сопла, расположенные в корпусе и соединенные с кольцевым каналом диаметрально противоположные каналы подвода и отвода охлаждающей жидкости, каналы для подвода и отвода охлаждающей жидкости нижними концами выходят в проточку, выполненную в корпусе, соединяющуюся с нижней частью кольцевого канала, корпус дополнительно снабжен втулкой и изоляторами-уплотнителями, в которые установлены, электрически изолированно от корпуса, плазмообразующее сопло и винт, резьбовое соединение которых обеспечивает герметизацию кольцевого канала, в полости винта установлен изолятор с закрепленным в нем электродным узлом.
Признаки заявляемого решения, отличительные от прототипа, - каналы для подвода и отвода охлаждающей жидкости нижними концами выходят в проточку, выполненную в корпусе, соединяющуюся с нижней частью кольцевого канала; плазмообразующее сопло закрепляется внутри корпуса при помощи винта и электрически изолировано от корпуса втулкой и изоляторами-уплотнителями; изолятор с размещенным в нем электродным узлом устанавливается внутри винта. В заявляемом устройстве резьбовое соединение плазмообразующего сопла и винта обеспечивает герметизацию кольцевого канала.
В результате такого выполнения независимой системы охлаждения плазмообразующего сопла достигается высокая эффективность охлаждения плазмообразующего сопла при упрощении конструкции. В результате сообщения подводящего и отводящего каналов с проточкой, выполненной в корпусе, сообщающейся (соединяющейся) с нижней частью кольцевого канала, обеспечивается интенсивное проточное движение охлаждающей жидкости вблизи наиболее теплонагруженной зоны плазмообразующего сопла. При этом исключается возникновение застойной зоны в нижней части кольцевого канала, что способствует повышению эффективности охлаждения плазмообразующего сопла. Предлагаемая система охлаждения плазмообразующего сопла позволяет упростить изготовление при малых радиальных габаритах плазмотрона, обеспечивает простое обслуживание и ремонт плазмотрона.
Закрепление плазмообразующего сопла электрически изолировано от корпуса, а следовательно, от защитного сопла, исключает возможность двойного дугообразования в процессе эксплуатации. Таким образом, предлагаемое решение обеспечивает высокую надежность и широкие технологические возможности плазмотрона, упрощение его изготовления и обслуживания.
На фиг.1 показан общий вид плазмотрона с продольным разрезом по системе подвода и отвода охлаждающей жидкости. На фиг.2 показан плазмотрон с продольным разрезом по системе подвода плазмообразующего и защитного газа.
Плазмотрон состоит из корпуса 1, установленного на нем при помощи резьбового соединения защитного сопла 2, размещенного в корпусе 1 плазмообразующего сопла 3, которое закрепляется винтом 4 и электрически изолируется от корпуса 1 втулкой 5 и изоляторами-уплотнителями 6 и 7, при этом обеспечивается электрическая изоляция плазмообразующего сопла 3 от защитного сопла 2. В винт 4 установлен на резьбе изолятор 8, выполненный, например, из фторопласта. В изоляторе 8 размещен на резьбе электродный узел 9, имеющий автономную систему охлаждения (на схеме не показана), электродный узел 9 фиксируется контргайкой 10. Корпус 1 имеет штуцера 11 и 12 и радиальные каналы 13 и 14 для подвода и отвода охлаждающей жидкости системы охлаждения плазмообразующего сопла, диаметрально противоположные и параллельно расположенные каналы 15 и 16, засверленные с торца корпуса 1, а затем заглушенные, и кольцевой канал 17, охватывающий плазмообразующее сопло 3 вблизи теплонагруженной зоны. Каналы 15 и 16 нижними концами выходят в проточку 18, выполненную в корпусе 1, соединяющуюся с нижней частью кольцевого канала 17. Корпус 1 имеет штуцер 19 и каналы 20 и 21 для подачи защитного газа под защитное сопло 2. Винт 4 снабжен штуцером 22 и каналом 23 для подвода плазмообразующего газа, на внешней цилиндрической поверхности изолятора 8 выполнена винтовая проточка 24, которая при установке изолятора 8 в винт 4 образует винтовой канал для тангенциальной подачи плазмообразующего газа в плазмообразующее сопло 3.
Плазмотрон работает следующим образом. Плазмотрон подключается к источнику питания сжатой дуги. Включается подача по штуцеру 22 и каналам 23 и 24 плазмообразующего газа, а по штуцеру 19 и каналам 20 и 21 защитного газа. Охлаждающая жидкость (например, вода) подается раздельно в систему охлаждения электродного узла 9 (не показана) и в систему охлаждения плазмообразующего сопла 3 через штуцер 11 и каналы 13 и 15 в кольцевой канал 17, охватывающий плазмообразующее сопло 3, и далее через каналы 16, 14 и штуцер 12 на слив. Подвод охлаждающей жидкости в кольцевой канал 17 и проточная циркуляция ее вблизи теплонагруженной зоны плазмообразующего сопла 3 обеспечивается соединением нижних концов каналов 15 и 16 с проточкой 18, сопрягаемой с нижней частью кольцевого канала 17.
Изобретение позволяет повысить надежность работы и расширить технологические возможности плазмотрона за счет обеспечения интенсивного охлаждения теплонагруженных элементов и исключения возможности двойного дугообразования в процессе эксплуатации, упростить его изготовление и обслуживание.
Испытания опытного образца плазмотрона с габаритами, равными D32*100 мм, и массой 0,35 кг при расходе охлаждающей воды 2,5 л/мин показали надежную работу плазмотрона в диапазоне рабочих токов 20-450 А. При расходе воды 4-5 л/мин рабочий ток может достигать 600 А.

Claims (1)

  1. Плазмотрон, содержащий полый корпус со штуцерами для подвода и отвода охлаждающей жидкости, защитное и плазмообразующее сопла, закрепленные соответственно на наружной и внутренней поверхностях корпуса, установленный в корпусе электродный узел с системой его охлаждения и изолятор между электродом и плазмообразующим соплом, систему подвода защитного и плазмообразующего газов, кольцевой канал на наружной поверхности плазмообразующего сопла, расположенные в корпусе и соединенные с кольцевым каналом диаметрально противоположные каналы подвода и отвода охлаждающей жидкости, отличающийся тем, что каналы для подвода и отвода охлаждающей жидкости нижними концами выходят в проточку, выполненную в корпусе, соединяющуюся с нижней частью кольцевого канала, корпус дополнительно снабжен втулкой и изоляторами уплотнителями, в которые установлены электрически изолированно от корпуса плазмообразующее сопло и винт, резьбовое соединение которых обеспечивает герметизацию кольцевого канала, в полости винта установлен изолятор с закрепленным в нем электродным узлом.
RU2004108248/02A 2004-03-22 2004-03-22 Плазмотрон RU2259262C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2004108248/02A RU2259262C1 (ru) 2004-03-22 2004-03-22 Плазмотрон

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2004108248/02A RU2259262C1 (ru) 2004-03-22 2004-03-22 Плазмотрон

Publications (1)

Publication Number Publication Date
RU2259262C1 true RU2259262C1 (ru) 2005-08-27

Family

ID=35846660

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2004108248/02A RU2259262C1 (ru) 2004-03-22 2004-03-22 Плазмотрон

Country Status (1)

Country Link
RU (1) RU2259262C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10730063B2 (en) 2009-03-31 2020-08-04 Ford Global Technologies, Llc Plasma transfer wire arc thermal spray system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10730063B2 (en) 2009-03-31 2020-08-04 Ford Global Technologies, Llc Plasma transfer wire arc thermal spray system
US12030078B2 (en) 2009-03-31 2024-07-09 Ford Global Technologies, Llc Plasma transfer wire arc thermal spray system

Similar Documents

Publication Publication Date Title
KR100827737B1 (ko) 플라즈마 아크 토치, 플라즈마 아크 토치의 조립 및 분해 방법, 및 플라즈마 아크 토치의 전극 어셈블리의 교체 방법
US5362939A (en) Convertible plasma arc torch and method of use
CN1326657C (zh) 启动等离子弧吹管、相应的启动夹头、启动器、吹管头以及启动方法
US20130292363A1 (en) Non-transferred and hollow type plasma torch
JPH0533520B2 (ru)
US6525292B1 (en) Cartridge for a plasma torch and plasma torch fitted therewith
RU2411286C1 (ru) Устройство для плазмохимического гидрокрекинга углеводородных фракций
CN110677974A (zh) 等离子体发生器
RU2259262C1 (ru) Плазмотрон
RU2309825C2 (ru) Плазмотрон
KR100715292B1 (ko) 소재용융 공정용 고출력 공동형 플라즈마 토치
RU190460U1 (ru) Плазмотрон
US3480829A (en) Electric arc light source and method
RU2458489C1 (ru) Двухструйный дуговой плазматрон
RU2071189C1 (ru) Плазмотрон
RU2823283C1 (ru) Плазмотрон обратной полярности для резки цветных металлов больших толщин
RU2702512C1 (ru) Плазмотрон
RU2254395C1 (ru) Электродуговой плазмотрон для обработки материалов
RU2778889C1 (ru) Плазмотрон для наплавки внутренней поверхности порошковым материалом
RU1557833C (ru) Плазмотрон дл сварки плав щимс электродом
RU2703515C1 (ru) Устройство для плазмохимического гидрокрекинга тяжелых углеводородов
RU2058865C1 (ru) Плазмотрон
RU20871U1 (ru) Плазмотрон
RU2050235C1 (ru) Плазмотрон
RU2060130C1 (ru) Плазмотрон

Legal Events

Date Code Title Description
QB4A Licence on use of patent

Effective date: 20100720

PD4A Correction of name of patent owner
QZ41 Official registration of changes to a registered agreement (patent)

Free format text: LICENCE FORMERLY AGREED ON 20100720

Effective date: 20161219