RU2257008C2 - Способ уменьшения времени поиска пилот-сигнала с использованием информации о местоположении мобильной станции и устройство для его осуществления - Google Patents

Способ уменьшения времени поиска пилот-сигнала с использованием информации о местоположении мобильной станции и устройство для его осуществления Download PDF

Info

Publication number
RU2257008C2
RU2257008C2 RU2002108002/09A RU2002108002A RU2257008C2 RU 2257008 C2 RU2257008 C2 RU 2257008C2 RU 2002108002/09 A RU2002108002/09 A RU 2002108002/09A RU 2002108002 A RU2002108002 A RU 2002108002A RU 2257008 C2 RU2257008 C2 RU 2257008C2
Authority
RU
Russia
Prior art keywords
search
pilot
mobile phone
base station
mobile station
Prior art date
Application number
RU2002108002/09A
Other languages
English (en)
Other versions
RU2002108002A (ru
Inventor
Самир С. СОЛИМАН (US)
Самир С. СОЛИМАН
Original Assignee
Квэлкомм Инкорпорейтед
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Квэлкомм Инкорпорейтед filed Critical Квэлкомм Инкорпорейтед
Publication of RU2002108002A publication Critical patent/RU2002108002A/ru
Application granted granted Critical
Publication of RU2257008C2 publication Critical patent/RU2257008C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7073Synchronisation aspects
    • H04B1/7085Synchronisation aspects using a code tracking loop, e.g. a delay-locked loop
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7073Synchronisation aspects
    • H04B1/7075Synchronisation aspects with code phase acquisition
    • H04B1/70754Setting of search window, i.e. range of code offsets to be searched
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0012Modulated-carrier systems arrangements for identifying the type of modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • H04B1/711Interference-related aspects the interference being multi-path interference
    • H04B1/7115Constructive combining of multi-path signals, i.e. RAKE receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2201/00Indexing scheme relating to details of transmission systems not covered by a single group of H04B3/00 - H04B13/00
    • H04B2201/69Orthogonal indexing scheme relating to spread spectrum techniques in general
    • H04B2201/707Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation
    • H04B2201/70701Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation featuring pilot assisted reception
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2201/00Indexing scheme relating to details of transmission systems not covered by a single group of H04B3/00 - H04B13/00
    • H04B2201/69Orthogonal indexing scheme relating to spread spectrum techniques in general
    • H04B2201/707Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation
    • H04B2201/70702Intercell-related aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Communication Control (AREA)

Abstract

Изобретение относится к области связи. Достигаемым техническим результатом является уменьшение времени поиска передачи обслуживания вызова с одной базовой станции на другую базовую станцию. Для этого в способе и устройстве для проведения поиска пилот-сигнала в беспроводной сети связи определяют местоположение мобильной станции в сети, затем это местоположение используют при определении размеров поискового окна и информации о других параметрах поиска, которую используют для поиска всех пилот-сигналов, идентифицированных в выделенном наборе пилот-сигналов. Размер поискового окна также определяют на основе местоположения мобильной станции и другого компонента, относящегося к эффектам многолучевого распространения для передаваемого пилот-сигнала. 2 н.п.ф-лы, 5 ил., 1 табл.

Description

Область техники, к которой относится изобретение
Настоящее изобретение относится к области связи. В частности, изобретение касается способа и устройства для уменьшения времени поиска, связанного с передачей обслуживания вызова с одной базовой станции на другую базовую станцию.
Уровень техники
Беспроводные системы связи в общем случае содержат наряду с другими элементами беспроводный телефон, обычно называемый мобильным телефоном, который поддерживает связь с одной или несколькими базовыми станциями при выполнении вызова. Мобильный телефон поддерживает связь с базовыми станциями по одному или нескольким каналам, которые находятся в полосе частот, присвоенной данному мобильному телефону контроллером базовой станции. Передача от мобильного телефона на базовую станцию выполняется по так называемой "обратной линии связи", а передача от базовой станции на мобильную станцию выполняется по "прямой линии связи". В ходе вызова мобильная станция постоянно ищет другие базовые станции, которые возможно потребуются мобильному телефону для продолжения работы с вызовом при перемещении мобильной станции.
Одним из важных элементов мобильного телефона, используемого в такой беспроводной системе связи, является искатель. Искатель запрограммирован для поиска пилот-сигналов, передаваемых от различных базовых станций по меньшей мере в трех случаях: 1) когда мобильный телефон пытается "захватить" базовую станцию для связи; 2) в состоянии ожидания, когда мобильный телефон работает по каналам пейджинговой связи или доступа; и 3) в состоянии трафика, когда мобильный телефон управляет каналом трафика. Эффективность поиска, выполняемого мобильным телефоном, определяется скоростью поиска пилот-сигналов на частоте, присвоенной данному мобильному телефону, и на других частотах. Назначением режима поиска с выделением временных интервалов (сегментированного режима) является поиск всех пилот-сигналов в соседнем наборе, прежде чем закончится данный временной интервал. Режим поиска с выделением временных интервалов относится к рабочему режиму мобильного телефона, когда он выполняет контроль только в течение выбранных временных интервалов. К тому же при поиске пилот-сигналов на частоте-"кандидате" мобильному телефону необходимо завершить поиск всех пилот-сигналов в наборе кандидатов как можно быстрее, так чтобы снова настроиться на частоту обслуживания и свести к минимуму ухудшение речи, вызванное поиском частоты-"кандидата". Как обсуждается ниже, частота-"кандидат" - это потенциальная частота для передачи обслуживания, а указанные способы поиска используются для координации передачи обслуживания связи в системе беспроводной связи.
А. Передача обслуживания
Мобильный телефон, используемый в беспроводной системе с множественным доступом и кодовым разделением каналов (МДКР), поддерживает процедуры передачи обслуживания трех типов, когда мобильный телефон управляет каналом трафика. Использование технологий МДКР в системе связи с множественным доступом раскрыто в патенте США №4901307, выданном 13 февраля 1990 года, "SPREAD SPECTRUM MULTIPLE EXCESS COMMUNICATION SYSTEM USING SATELLITE OR TERRESTRIAL REPEATERS" ("Система связи множественного доступа с расширенным спектром, использующая спутниковые и наземные ретрансляторы"), права на который принадлежат правопреемнику настоящего изобретения. Существуют три типа переключений передачи обслуживания.
1. Мягкая передача обслуживания - передача обслуживания, при которой мобильный телефон начинает поддерживать связь с новой базовой станцией, не прерывая связь со старой базовой станцией. Мягкую передачу обслуживания можно использовать только между каналами МДКР, имеющими присвоения идентичных частот.
2. Жесткая передача обслуживания с МДКР на МДКР - передача обслуживания, при которой мобильный телефон переводят с одного не перекрывающегося набора базовых станций на другой, изменяют категорию диапазона частот, присвоение частот либо кадровое смещение.
3. Передача обслуживания от МДКР на аналоговые каналы - передача обслуживания, при которой мобильный телефон переводят с прямого канала трафика МДКР на аналоговый речевой канал.
Для выполнения мягкой передачи обслуживания мобильный телефон непрерывно ищет присвоенные наборы пилот-сигналов. Термин "пилот-сигнал" относится к каналу пилот-сигнала, который идентифицируется по смещению последовательности пилот-сигнала и присвоению частот. Пилот-сигнал связан с каналами трафика прямой линии связи в канале МДКР той же самой прямой линии связи или аналогично с обратной линией связи в системах, где используют пилот-сигналы обратной линии связи. Все пилот-сигналы в наборе пилот-сигналов имеют присвоение одних и тех же частот МДКР. Для ясности пилот-сигналы рассматриваются только применительно к прямой линии связи.
Мобильный телефон ищет пилот-сигналы по текущему присвоению частот МДКР, чтобы обнаружить наличие каналов МДКР и измерить уровень их сигналов. Когда мобильный телефон обнаруживает пилот-сигнал с достаточным уровнем, который не связан с каким-либо уже присвоенным ему каналом из числа каналов трафика прямой линии связи, он посылает сообщение с данными измерения уровня пилот-сигнала на базовую станцию, с которой он в настоящее время поддерживает связь. Затем базовая станция может присвоить мобильному телефону канал трафика прямой линии связи, связанный с этим пилот-сигналом, и дать команду мобильному телефону выполнить передачу обслуживания.
Параметры поиска пилот-сигнала и правила передачи сообщений с данными измерения уровня пилот-сигнала выражаются в терминах для следующих наборов пилот-сигналов:
Активный набор: Пилот-сигналы, связанные с каналами трафика прямой линии связи, которые присвоены мобильному телефону.
Набор кандидатов: Пилот-сигналы, которые в данный момент не входят в активный набор, но были приняты мобильным телефоном при достаточном уровне сигнала, указывающем на то, что соответствующие каналы трафика прямой линии связи можно успешно демодулировать.
Соседний набор: Пилот-сигналы, которые в данный момент не входят в активный набор или набор кандидатов, но являются вероятными кандидатами для передачи обслуживания.
Оставшийся набор: Набор всех возможных пилот-сигналов в данной системе при текущем присвоении частот МДКР, исключая пилот-сигналы в соседнем наборе, в наборе кандидатов и активном наборе. Этот набор возможных пилот-сигналов состоит из пилот-сигналов, чьи индексы смещений псевдослучайной (ПС) последовательности пилот-сигнала являются цельно кратными некоторому приращению пилот-сигнала.
Базовая станция может дать команду мобильному телефону искать пилот-сигналы на другой частоте МДКР для обнаружения наличия каналов МДКР и измерения уровней их сигналов. Мобильный телефон сообщает на базовую станцию результаты поиска. В зависимости от данных измерения уровней пилот-сигналов базовая станция может дать команду мобильному телефону выполнить жесткую передачу обслуживания с одной частоты на другую.
Параметры поиска пилот-сигналов выражаются в терминах следующих наборов пилот-сигналов:
Соседний набор для частоты-кандидата: Список пилот-сигналов на частоте-кандидате МДКР.
Набор для поиска на частоте-кандидате: Поднабор соседнего набора для частоты-кандидата, который базовая станция может направить мобильному телефону для поиска.
В. Поиск пилот-сигнала
В существующих системах базовая станция устанавливает поисковое окно, то есть диапазон ПС смещений, в котором мобильный телефон должен искать используемые компоненты многолучевого распространения сигналов. Эти компоненты многолучевого распространения используются мобильным телефоном для демодуляции соответствующего канала трафика прямой линии связи. Критерий эффективности поиска и общий критерий для беспроводной системы определены в стандартах ТIА/ЕIА-95x и ТIА/ЕIА-98-В, изданными Ассоциацией промышленности средств связи, и стандарте ANSI J-STD-018, изданном Американским институтом национальных стандартов. Указанные процедуры поиска в общем случае подчиняются следующим правилам.
Активный набор и набор кандидатов: Процедуры поиска для пилот-сигналов в активном наборе и наборе кандидатов идентичны. Размер поискового окна для каждого пилот-сигнала в активном наборе и наборе кандидатов определяется количеством элементарных ПС сигналов, заданных в Таблице 1 в соответствии с
Figure 00000002
. Например,
Figure 00000003
соответствует поисковому окну из 28 ПС элементарных сигналов или ±14 ПС элементарных сигналов относительно центра поискового окна. Мобильная станция центрирует поисковое окно для каждого пилот-сигнала активного набора и набора кандидатов относительно ранее всех поступившего используемого компонента многолучевого распространения для данного пилот-сигнала.
Таблица 1
Figure 00000004
Figure 00000005
Figure 00000006
Figure 00000007
Figure 00000008
Поисковое окно
Figure 00000009
Figure 00000010
Figure 00000011
Figure 00000012
Figure 00000013
ПС элементарные сигналы
0 4 8 60
1 6 9 80
2 8 10 100
3 10 11 130
4 14 12 160
5 20 13 226
6 28 14 320
7 40 15 452
Соседний набор: Если установлен флаг для другого соседнего поискового окна, размер поискового окна для каждого пилот-сигнала в соседнем наборе определяется количеством ПС элементарных сигналов, заданных в таблице 1, в соответствии с параметром размера поискового окна, связанным с пилот-сигналом, который ищут. Если флаг не установлен, то размер поискового окна для каждого пилот-сигнала в соседнем наборе будет одинаков и равен количеству ПС элементарных сигналов, заданных в таблице 1, в соответствии с
Figure 00000014
. Мобильный телефон центрирует поисковое окно для каждого пилот-сигнала в соседнем наборе относительно смещения ПС последовательности пилот-сигнала, используя временное согласование, задаваемое временной привязкой мобильного телефона.
Оставшийся набор: Размер поискового окна для каждого пилот-сигнала в оставшемся наборе определяется количеством ПС элементарных сигналов, заданных в таблице 1, в соответствии с
Figure 00000015
. Мобильный телефон центрирует поисковое окно для каждого пилот-сигнала в оставшемся наборе относительно смещения ПС последовательности пилот-сигнала, используя временное согласование, задаваемое временной привязкой мобильного телефона. Мобильный телефон ищет пилот-сигналы в оставшемся наборе, чьи индексы смещений ПС последовательности пилот-сигнала равны целым кратным приращения пилот-сигнала.
Набор для поиска частоты-кандидата: Если установлен флаг для частоты-кандидата, размер поискового окна для каждого пилот-сигнала при поиске частоты-кандидата должен определяться количеством ПС элементарных сигналов, заданных в таблице 1, в соответствии с
Figure 00000016
, связанным с пилот-сигналом, который ищут. Если флаг не установлен, то размер поискового окна для каждого пилот-сигнала в наборе для поиска частоты-кандидата должен определяться количеством ПС элементарных сигналов, заданных в таблице 1, в соответствии с
Figure 00000017
. Мобильный телефон центрирует поисковое окно для каждого пилот-сигнала в наборе для поиска частоты-кандидата относительно смещения ПС последовательности пилот-сигнала, используя временное согласование, задаваемое временной привязкой мобильного телефона.
С. Время поиска
Каждый производитель телефонов предлагает свой путь реализации стратегии поиска. Во всех стратегиях время поиска конкретного пилот-сигнала зависит от размера окна и аппаратных средств, используемых в искателе. При данных аппаратных средствах время поиска пилот-сигнала прямо пропорционально размеру поискового окна. Уменьшение размера поискового окна приведет к существенному сокращению времени поиска. При использовании существующих процедур поиска размеры окна определяются в основном размером зоны охвата данной сотовой ячейки. Сотовая ячейка - это географическая зона, охватываемая базовой станцией для осуществления связи с мобильным телефоном. Четыре такие сотовые ячейки показаны на фиг.1. Независимо от местоположения мобильного телефона в обслуживающей сотовой ячейке текущие размеры поисковых окон соответствуют наихудшим сценариям. То есть их размеры устанавливают для случая, когда мобильный телефон находится на максимальном расстояние от базовой станции, но в границах сотовой ячейки.
Работая на канале пейджинговой связи или канале трафика, мобильный телефон центрирует свое поисковое окно для каждого пилот-сигнала в соседнем наборе относительно смещения ПС последовательности пилот-сигнала, используя временное согласование, задаваемое временной привязкой мобильного телефона. Временная привязка мобильного телефона определяется поступившим ранее других полезным лучом. Размер поискового окна определяют по наихудшему сценарию. Например, на фиг.1 показаны четыре смежных сотовых ячейки 102, 104, 106 и 108 в беспроводной системе 100, каждая из которых имеет пилот-сигнал, обозначенный как PN1, PN2, PN3 и PN4 соответственно. Размер поискового окна для пилот-сигнала PN1 определяют на основе местоположения мобильного телефона в точке А. Однако то же поисковое окно используется, даже если мобильный телефон находится в точке В. Это приводит к неэффективному расходованию ценных поисковых ресурсов, поскольку не учитывается местоположение мобильного телефона в сотовой ячейке 104. Если мобильный телефон находится в точке В, то размер поискового окна следует уменьшить по сравнению с размером поискового окна, необходимым для случая, когда мобильный телефон находится в точке А.
D. Способы определения местоположения
Для обеспечения функции автоматического определения местоположения мобильных телефонов рассматривается множество способов. Один способ включает измерение разницы во времени поступления сигналов от нескольких сотовых узлов (базовых станций). Эти сигналы "триангулируются" для выделения информации о местоположении. Чтобы быть эффективным, этот способ требует высокой концентрации сотовых узлов и/или увеличения мощности передачи узлов, поскольку в типовых системах МДКР необходимо, чтобы каждый мобильный телефон передавал сигнал с уровнем мощности, достаточным лишь для достижения ближайшего сотового узла. При указанной триангуляции необходимо поддерживать связь по меньшей мере с тремя узлами, что требует увеличения концентрации сотовых узлов, либо повышения мощности сигнала каждой мобильной станции. Другой подход предусматривает придание мобильному телефону функций GPS (Система глобального позиционирования). Этот подход предусматривает наличие радиовидимости до четырех спутников и не отличается быстродействием, но при этом обеспечивает максимальную точность при определении местоположения мобильного телефона.
Третий подход предусматривает посылку вспомогательной информации на мобильный телефон, указывающей, в каком частотном диапазоне мобильному телефону следует искать несущую GPS. Большинство приемников GPS используют так называемый спутниковый "альманах" GPS для минимизации поиска, выполняемого приемником в частотной области для сигнала от видимого спутника. Этот альманах представляет собой 15000-битный блок приближенных эфемеридных данных и данных временного моделирования для всей группировки спутников. Информация в альманахе, относящаяся к положению спутника и текущему времени дня, носит приблизительный характер. Без альманаха приемник GPS должен выполнить максимально широкий поиск возможных частот для обнаружения спутникового сигнала. Требуется дополнительная обработка для получения дополнительной информации, которая может помочь при "захвате" других спутников. Процесс обнаружения сигнала может занимать несколько минут из-за большого количества частотных поддиапазонов, которые необходимо просмотреть. Каждый частотный поддиапазон имеет центральную частоту и заданную ширину. Наличие альманаха уменьшает неопределенность, связанную с доплеровским сдвигом частоты на спутнике и, следовательно, количество поддиапазонов, которое необходимо просмотреть. Спутниковый альманах может быть выделен из навигационного сообщения GPS, либо послан по нисходящей прямой линии связи от спутника на мобильный телефон в виде сообщения с данными, либо сигнального сообщения. Приняв эту информацию, мобильный телефон выполняет обработку сигнала GPS для определения своего местоположения.
Таким образом, существует потребность в способе и устройстве, которое сможет использовать информацию о местоположении мобильного телефона в сочетании со способами поиска пилот-сигнала для повышения скорости, с которой мобильный телефон может выполнять поиск всех пилот-сигналов на присвоенной частоте, когда этот мобильный телефон управляет каналом трафика. Изобретение должно предоставлять возможность использования информации о физическом местоположении мобильного телефона для определения размера поискового окна для каждого пилот-сигнала в соседнем наборе и наборе кандидатов.
Сущность изобретения
В общем случае изобретение относится к сети связи. В частности, изобретение касается устройства и способа, в которых при определении размера поискового окна для пилот-сигнала в соседнем наборе и активном наборе кандидатов используется информация о положении мобильного телефона.
Один вариант изобретения предлагает способ проведения поиска пилот-сигнала в беспроводной сети связи. Сначала в сети определяют местоположение мобильного телефона. Затем местоположение мобильного телефона используют при определении размеров поискового окна и информации о параметрах поиска, которую используют для поиска всех пилот-сигналов, идентифицированных в наборе пилот-сигналов. Размер поискового окна определяют также на основе местоположения мобильного телефона и другого компонента, относящегося к эффектам многолучевого распространения для передаваемого пилот-сигнала.
В другом варианта изобретение предлагает продукт производства, содержащий цифровую информацию, выполняемую блоком обработки цифровых сигналов и используемую для проведения поиска пилот-сигнала в беспроводной сети связи. В другом варианте изобретение предлагает устройство, используемое для проведения поиска пилот-сигнала. В одном варианте устройство содержит по меньшей мере одну базовую станцию, причем каждая базовая станция передает пилот-сигнал и базовая станция используется для определения местоположения мобильного телефона в сети связи. Устройство может также включать по меньшей мере один мобильный телефон, причем мобильный телефон находится на связи по меньшей мере с одной базовой станцией и этот мобильный телефон использует переданные ему размеры поискового окна и информацию о других параметрах поиска для минимизации времени поиска, необходимого для поиска всех пилот-сигналов, связанных с выбранным набором пилот-сигналов.
Изобретение дает пользователям множество преимуществ. Одно преимущество состоит в том, что по сравнению с известными способами уменьшается время, необходимое для поиска набора пилот-сигналов. Другим преимуществом является то, что ценные ресурсы искателя не тратятся впустую, поскольку имеется возможность проведения более эффективного поиска. Изобретение также обеспечивает ряд других преимуществ и выгод, которые станут очевидными после ознакомления с последующим подробным описанием изобретения.
Краткое описание чертежей
Сущность, задачи, и преимущества настоящего изобретения станут более очевидными специалистам в данной области техники после рассмотрения последующего подробного описания вместе с сопроводительными чертежами, на которых одинаковые ссылочные позиции обозначают одинаковые части на всех чертежах и где
Фиг.1 - четыре смежных сотовых ячейки в беспроводной системе связи согласно изобретению;
Фиг 2А - устройство беспроводной связи, использующее спутниковую систему позиционирования согласно изобретению;
Фиг.2B - сеть беспроводной связи согласно изобретению;
Фиг.3 - блок-схема мобильного телефона согласно изобретению;
Фиг.4 - пример продукта производства согласно изобретению.
Подробное описание изобретения
На фигурах 2а-4 представлены примеры различных аспектов способа и устройства согласно настоящему изобретению. Для облегчения объяснения, но вовсе не с целью какого-либо ограничения эти примеры описываются в контексте устройства для обработки цифровых сигналов. Устройство для обработки цифровых сигналов, используемое для выполнения последовательности машинно-считываемых команд, названных выше, может быть воплощено с помощью различных аппаратных средств и соединений между ними. После ознакомления с приведенным ниже описанием способов согласно изобретению специалистам в данной области техники станут очевидными различные структуры указанных устройств для обработки цифровых сигналов.
Функционирование
Во всех вышеупомянутых патентах и публикациях описан пилот-сигнал, используемый для "захвата". Использование пилот-сигнала позволяет мобильному телефону своевременно осуществить "захват" местной базовой станции. Мобильный телефон получает информацию для синхронизации, включая фазовое смещение псевдослучайного шумового (ПС) кода и информацию об относительной мощности сигнала из принятого пилот-сигнала, распространяемого по каналу пилот-сигнала.
Обнаружив канал пилот-сигнала, мобильный телефон также "захватывает" канал синхронизации (синхроканал), который связан с каналом пилот-сигнала. Канал синхронизации используется для получения точной настройки команд временного согласования и тем самым позволяет мобильному телефону временно синхронизировать свои внутренние схемы по системному времени. Это может оказаться весьма ценным в свете вышеприведенного обсуждения, где была подчеркнута важность синхронизации внутреннего времени мобильного телефона по системному времени. Это дает возможность мобильному телефону знать, где в последовательности ПС кода находится данная базовая станция, и позволяет поддерживать связь между базовой станцией и мобильным телефоном. Соответственно, когда мобильный телефон находится на связи с базовой станцией, эта базовая станция передает на мобильный телефон системное время, облегчая синхронизацию.
В системах связи с расширенным спектром пилот-сигнал используют для синхронизации мобильной станции по фазе и частоте по передачам базовой станции. В приведенном в качестве примера варианте система связи с расширенным спектром представляет собой систему с расширенным спектром методом прямой последовательности (широкополосной модуляции). Примеры таких систем описаны в патенте США №5056109, выданном 3 марта 1992 года, "METHOD AND APPARATUS FOR CONTROLLING TRANSMISSION POWER IN A CDMA MOBILE TELEPHONE SYSTEM" ("Способ и устройство для управления мощностью передачи в системе мобильной телефонной связи МДКР" и патенте США №5103459, выданном 7 апреля 1992 года, "SYSTEM AND METHOD FOR GENERATING SIGNAL WAVEFORMS IN A CDMA CELLULAR TELEPHONE SYSTEM" ("Система и способ формирования форм сигналов в системе сотовой телефонной связи"), права на которые принадлежат правопреемнику настоящего изобретения. В системе связи с расширенным спектром и прямой последовательностью передаваемые сигналы расширены на диапазоне частот большем, чем минимальная полоса частот, необходимая для передачи информации, путем модуляции несущей сигналом данных с последующей повторной модуляцией результирующего сигнала широкополосным расширяющим сигналом. При использовании пилот-сигнала по одному варианту данные могут быть представлены в виде последовательности из одних единиц. Расширяющий сигнал обычно создается регистром сдвига с линейной обратной связью, реализация которого подробно описана в вышеупомянутых патентах. Расширяющий сигнал может быть представлен как вращающийся вектор вида
s(t)=Ae-ωt+φ
Для того чтобы захватить базовую станцию, мобильный телефон должен синхронизироваться по принимаемым от базовой станции сигналам как по фазе φ , так и по частоте ω . Искатель определяет фазу φ полученного сигнала. После определения фазы φ расширяющего сигнала находят частоту, используя элемент демодуляции, который имеет аппаратные средства отслеживания как фазы, так и частоты. Способ, посредством которого мобильный телефон определяет фазу полученного сигнала, состоит в проверке набора гипотез о фазе, обсужденных выше с точки зрения поискового окна, и определении того, является ли одна из допускаемых гипотез о фазе, называемых также гипотезами смещения, правильной. Пример искателя, действующего с использованием поисков в "окне", дан в патенте США №5805648, выданном 8 сентября 1998 года, "METHOD AND APPARATUS FOR PERFORMING SEARCH ACQUISITION IN A CDMA COMMUNICATION SYSTEM" ("Способ и устройство для осуществления сбора данных при поиске в системе связи МДКР"), права на который принадлежат правопреемнику настоящего изобретения.
Чтобы предоставить возможность передачи обслуживания вызова, беспроводная система использует так называемый поиск "в режиме выделения временных интервалов" (сегментированный поиск). Другими словами, мобильному телефону, выполняющему поиск в режиме выделения временных интервалов, выделяют периодические окна (называемые "временными интервалами") для поиска других базовых станций, на которые можно передать обслуживание вызова. Соответственно мобильные телефоны в соответствии с изложенными выше стандартами ищут сигналы каналов пилот-сигналов, передаваемые окружающими базовыми станциями, в заданном окне, центрированном относительно того места в последовательности ПС кода, в котором мобильный телефон ожидает обнаружить канал пилот-сигнала.
Базовая станция, с которой мобильный телефон поддерживает в данный момент связь, может послать мобильному телефону размер окна поиска и другие параметры. Специалистам в данной области техники очевидно, что указанное окно поиска для повторного захвата должно быть по возможности небольшим, чтобы избежать продолжительного поиска, но достаточно большим, чтобы учесть типовые погрешности внутреннего генератора тактовых импульсов. Кроме того, параметры поиска должны быть по возможности детально определены.
В приведенном в качестве примера варианте настоящего изобретения размер поискового окна для PN1, показанного на фиг.1, можно уменьшить втрое по сравнению с известными в настоящее время стандартными способами. Например, если мобильный телефон находится в точке В, то поисковое окно для PN1 может быть уменьшено в три раза. Если мобильный телефон находится в точке С, поисковое окно может быть уменьшено пропорциональным образом. В одном варианте изобретения это достигается путем использования данных о физическом местоположении мобильного телефона для точного определения размера поискового окна. В другом варианте изобретения данные о местоположении мобильного телефона используются для точного определения всех параметров поиска.
Для реализации данного способа должно быть известно приблизительное местоположение мобильного телефона. Это местоположение можно определить различными путями, известными в данной области техники и упомянутыми выше. Один из способов определения местоположения мобильного телефона обсуждается в одновременно рассматриваемой патентной заявке США №09/040501 "SYSTEM AND METHOD FOR DETERMINING THE POSITION OF A WIRELESS CDMA TRANSCEIVER" ("Система и способ для определения положения беспроводного приемопередатчика МДКР"), поданной 17 марта 1998 года, права на которую принадлежат правопреемнику настоящего изобретения. С точки зрения задач настоящего изобретения в точном определении положения нет необходимости. Для определения местоположения мобильного телефона можно использовать приближенные способы.
Как только мобильный телефон переходит к управлению каналом трафика, базовая станция, которая в данный момент поддерживает связь, передает на мобильный телефон сообщение о размере поисковых окон, которые необходимо использовать для поиска пилот-сигналов, содержащихся в соседнем наборе. Размеры поисковых окон определяются с учетом местоположения мобильного телефона в обслуживающей сотовой ячейке. В примере, показанном в таблице 1 и на фиг.1, поисковое окно для PN1 может быть уменьшено с 12 до 4 при уменьшении размера окна от 160 элементарных сигналов до 14 элементарных сигналов в случае расположения мобильного телефона в точке В. Поскольку уменьшился размер поискового окна, уменьшаются затраты на демодуляцию, и процедуры поиска быстро завершаются.
Размер поискового окна имеет по меньшей мере две компоненты, одна из которых относится к геометрическому расстоянию между телефоном и установленным пилот-сигналом, а другая - к эффектам многолучевого распространения для передаваемого пилот-сигнала. Соответственно комбинированное воздействие этих двух компонент минимизирует размер выбранного поискового окна. В системах МДКР пространственное разнесение или разнесение трасс многолучевого распространения получается путем обеспечения прохождения сигналов многолучевого распространения через параллельные линии связи от мобильного телефона через два или более сотовых узла. Кроме того, разнесение трасс распространения может быть получено путем использования многолучевой среды посредством обработки с расширением спектра, когда предусмотрен раздельный прием и обработка сигнала, прибывающего с разными задержками распространения. Примеры разнесения трасс многолучевого распространения приведены в патенте США №5101501, выданном 31 марта 1992 "SOFT HANDOFF IN CDMA CELLULAR TELEPHONE SYSTEM" ("Мягкая передача обслуживания в системе сотовой телефонной связи МДКР") и патенте США №5109390, выданном 28 апреля 1992 года, "DIVERSITY RECEIVER IN A CDMA CELLULAR TELEPHONE SYSTEM" ("Приемник с разнесенным приемом в системе сотовой телефонной связи МДКР"), права на которые принадлежат правопреемнику настоящего изобретения.
В другом варианте параметры поиска также можно выбрать на основе местоположения мобильного телефона. Когда мобильный телефон управляет каналом трафика, базовая станция будет передавать на этот мобильный телефон параметры поиска. Для уточнения и "подгонки" параметров поиска используют данные о местоположении мобильной станции. Такое уточнение используется для оптимизации процедур поиска. Оптимизация размера окна поиска и процедур, используемых искателем для выполнения поиска, приводит к сокращению времени поиска.
В еще одном варианте сразу после определения размера окна, соответствующего географическим зонам в сотовой ячейке, размеры окна запоминаются в блоке памяти. Также можно запомнить параметры поисковых процедур. Если предположить, что сотовые ячейки в беспроводной системе фактически не меняются, размеры поискового окна могут быть переданы на любой мобильный телефон, расположенный в данной географической зоне, для их использования этим мобильным телефоном. Контроллер базовой станции, имеющий информацию о местоположении мобильного телефона, может определить размер окна и/или параметры поисковой процедуры и передать их на мобильный телефон. В другом варианте мобильный телефон может запомнить эту информацию.
Компоненты устройства и соединения между ними.
Ниже обсуждаются различные варианты устройства применительно к системам определения местоположения конкретного мобильного телефона и варианты аппаратных средств поддержки. Однако специалистам в данной области техники очевидно, что можно использовать многие другие системы определения местоположения.
На фиг.2(А) представлена схема реализации базовой станции 202 и мобильного телефона 204 в синхронной сети связи МДКР. Сеть окружена зданиями 206 и расположенными на земле препятствиями 208. Базовая станция 202 и мобильный телефон 204 расположены в зоне действия GPS, имеющей несколько спутников GPS, четыре из которых показаны под ссылочными позициями 210, 212, 214 и 216. Подобное оборудование GPS хорошо известно: смотри, например, Hofmann-Wellenhof, В, и др. GPS theory and practice ("Система глобального позиционирования. Теория и практика") Second Edition, New York, NY: Springer-Verlai Wien, 1993. При обычном применении GPS, для того чтобы определить положение приемника GPS, необходимо иметь по меньшей мере четыре спутника. В противоположность этому положение удаленной станции 204 можно определить, используя сигналы лишь от одного спутника GPS, а в простейшем случае - два других наземных сигнала.
На фиг.2(B) показана блок-схема сети МДКР 220. Сеть 220 включает центр коммутации мобильной связи (ЦКМС) 222, имеющей контроллер базовой станции (КБС) 224. Коммутируемая телефонная сеть общего пользования (КТСОП) 226 направляет вызовы из традиционных наземных телефонных линий и других сетей (не показаны) на ЦКМС 222 и от него. ЦКМС 222 направляет вызовы из КТСОП 226 на исходящую базовую станцию 228, связанную с первой сотовой ячейкой 230 и от нее, и на намеченную базовую станцию 232, связанную со второй сотовой ячейкой 234 и от нее. Кроме того, ЦКМС 222 осуществляет маршрутизацию вызовов между базовыми станциями 228 и 232. Исходная базовая станция 228 направляет вызовы на первый мобильный телефон 236 в первой сотовой ячейке 230 через первый тракт 238 связи. Первый тракт 238 связи представляет собой двустороннюю линию связи, имеющую прямую линию 240 связи и обратную линию 241 связи. Обычно, когда базовая станция 228 установила связь с мобильным телефоном 236, прямая линия связи содержит канал трафика.
На фиг.2(B) показано, что с КБС 224 связана функция беспроводного позиционирования (ФБП) 242, но эта функция может быть непосредственно или косвенно связана с другими элементами сети, к примеру с ЦКМС 222. ФБП 242 в общем случае содержит цифровое устройство обработки, память и другие элементы (не показаны), которые обычно находятся в таких устройствах. ФБП 242 может быть использована для различных целей, таких как оценка односторонней задержки (при прохождении сигнала в одном направлении) для сигнала, пересылаемого между базовой станцией 228 и мобильным телефоном 236, либо контроля и учета временного сдвига между опорной точкой отсчета времени и моментом поступления сигнала.
Хотя каждая базовая станция 228 и 232 связана только с одной сотовой ячейкой, контроллер базовой станции часто управляет, либо связан с базовыми станциями в нескольких сотовых ячейках. Когда мобильный телефон 236 перемещается из первой сотовой ячейки 230 во вторую сотовую ячейку 234, он устанавливает связь с базовой станцией, связанной со второй сотовой ячейкой. Обычно это называют "передачей обслуживания" на намеченную базовую станцию 232. При "мягкой" передаче обслуживания мобильный телефон 236 устанавливает вторую линию 244 связи с намеченной базовой станцией 232 дополнительно к первой линии 238 связи с исходной базовой станцией 228. После того как мобильный телефон 236 войдет во вторую сотовую ячейку 234 и будут установлены каналы связи со второй сотовой ячейкой, удаленная станция может отбросить первую линию 238 связи.
При "жесткой" передаче обслуживания функционирование исходной базовой станции 228 и намеченной базовой станции 232 обычно отличается тем, что линия 244 связи с исходной базовой станцией должна быть отброшена, прежде чем может быть установлена линия связи с намеченной базовой станцией. Например, когда исходная базовая станция находится в системе МДКР, использующей первый частотный диапазон, а намеченная базовая станция находится во второй системе МДКР, использующей второй частотный диапазон, удаленная станция не сможет поддерживать линии связи с обеими базовыми станциями одновременно, поскольку большинство удаленных станций не обладают способностью одновременной настройки на два разных частотных диапазона. Когда первый мобильный телефон 236 перемещается из первой сотовой ячейки 230 во вторую сотовую ячейку 234, линия 238 связи с исходной базовой станцией 228 теряется и создается новая линия связи с намеченной базовой станцией 232.
Обратимся к фиг.3, на которой показан мобильный телефон 300, поддерживающий беспроводную связь с базовой станцией 302 системы беспроводной связи, обозначенной в целом под ссылочной позицией 304. Должно быть понятно, что, хотя на фиг.3 для ясности изложения показана одна базовая станция 302 и один мобильный телефон 300, система 304 обычно содержит и другие мобильные телефоны и базовые станции (не показаны). В приведенном в качестве примера варианте система 304 реализует принципы множественного доступа с кодовым разделением каналов (МДКР) для различения сигналов от разных мобильных телефонов. Подробности предпочтительной системы МДКР изложены в вышеупомянутом патенте США №4901307, выданном 13 февраля 1990 года, "SPREAD SPECTRUM MULTIPLE ACCESS COMMUNICATION SYSTEM USING SATELLITE OR TERRESTRIAL REPEATERS" ("Система связи множественного доступа с расширенным спектром, использующая спутниковые и наземные ретрансляторы"), права на который принадлежат правоприемнику настоящего изобретения. Как показано на фигуре 3, мобильный телефон 300 содержит приемник/передатчик 306, который может осуществлять связь с базовой станцией 302 через беспроводную линию 308 связи. Кроме того, мобильный телефон 300 содержит схемы управления для управления приемом и передачей данных приемником/передатчиком 306. На фиг.3 эти схемы управления представлены для простоты в виде процессора 310 цифровых сигналов. Как показано на фигуре 3, процессор 310 может обращаться к устройству 312 хранения данных. Хотя это не показано, базовая станция 302 может также иметь оборудование для обработки цифровых сигналов и запоминающее устройство. Как более подробно описано ниже, устройство 312 хранения данных содержит команды, выполняемые процессором 310 цифровых сигналов. Соответственно за исключением логической структуры устройства 312 хранения данных мобильный телефон 300 предпочтительно представляет собой мобильный телефон МДКР, известный специалистам в данной области техники.
Мобильный телефон 300 дополнительно содержит внутренний тактовый генератор 314. В одном варианте внутренний тактовый генератор 314 представляет собой термостатированный кварцевый генератор, управляемый напряжением. Однако следует заметить, что для использования с настоящим изобретением равным образом подходят и другие тактовые устройства, не обязательно на основе кристалла кварца. Соответственно выходной сигнал тактового генератора 314 представляет собой последовательность тактовых импульсов, которые поступают в счетчик 316, причем частота выходных тактовых импульсов регулируется напряжением входного сигнала, подаваемого на тактовый генератор 314 от источника 318 питания тактового генератора в соответствии с известными принципами. Тактовый генератор 314 может быть синхронизирован по системному времени посредством приема сообщения для временного согласования от базовой станции, как было описано выше.
Продукт производства
Вышеописанные способы могут быть реализованы, например, в результате функционирования блока обработки цифровых сигналов, выполняющего последовательность машинно-считываемых команд. Эти команды могут находиться в разного рода носителях сигналов. В этом отношении один аспект настоящего изобретения касается продукта производства, включающего носитель сигнала, материально воплощающий программу, состоящую из машинно-считываемых команд, которые выполняет блок обработки цифровых сигналов для реализации способа сокращения времени, необходимого для выполнения поиска пилот-сигнала.
Этот носитель цифровых сигналов может содержать, например, ОЗУ либо специализированную интегральную схему (ни то, ни другое не показано), находящиеся в сети связи. В альтернативном варианте команды могут находиться на другом носителе сигналов, например магнитном носителе для хранения данных, прямо либо косвенно доступном для блока обработки цифровых сигналов. В иллюстративном варианте изобретения машинно-считываемые команды могут содержать строки компилированного машинного кода, к примеру С, C++ или Java, либо другого подходящего языка кодирования, используемого специалистами в данной области техники.
Другие варианты
Хотя то, что здесь было показано, следует рассматривать как примеры вариантов осуществления настоящего изобретения, специалистам в данной области техники очевидна возможность различных изменений и модификаций, не выходящих за рамки объема изобретения, определенного в прилагаемой формуле изобретения.

Claims (2)

1. Способ проведения поиска пилот-сигнала в системе беспроводной связи, заключающийся в том, что определяют местоположение мобильной станции в системе беспроводной связи, определяют в базовой станции множество размеров поискового окна, соответствующих множеству пилот-сигналов, на основании местоположения мобильной станции относительно соответствующего местоположения передающих источников множества пилот-сигналов передают сообщение, включающее в себя множество размеров поискового окна, которые необходимо использовать для поиска множества пилот-сигналов от базовой станции в мобильную станцию, причем размер каждого поискового окна имеет по меньшей мере две компоненты, одна из которых относится к геометрическому расстоянию между мобильной стацией и установленным источником пилот-сигнала, а другая относится к эффектам многолучевого распространения для передаваемого пилот-сигнала, и осуществляют поиск пилот-сигнала для каждого из множества пилот-сигналов на основании соответствующего определенного множества размеров поискового окна.
2. Устройство для проведения поиска пилот-сигнала в системе беспроводной связи, содержащее по меньшей мере одну базовую станцию, содержащую первый блок обработки цифровых сигналов, причем по меньшей мере одна базовая станция передает пилот-сигнал, а первый блок обработки цифровых сигналов выполнен с возможностью использования при определении местоположения мобильной станции в системе связи, и по меньшей мере одну мобильную станцию, содержащую второй блок обработки цифровых сигналов и средство для осуществления поиска пилот-сигнала, причем по меньшей мере одна мобильная станция соединена по меньшей мере с одной базовой станцией для осуществления связи, а второй блок обработки цифровых сигналов выполнен с возможностью использования местоположения мобильной станции, размеров поискового окна и информации о параметрах для минимизации времени поиска, необходимого для поиска всех пилот-сигналов, идентифицированных в наборе пилот-сигналов.
RU2002108002/09A 1999-08-31 2000-08-30 Способ уменьшения времени поиска пилот-сигнала с использованием информации о местоположении мобильной станции и устройство для его осуществления RU2257008C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/387,102 1999-08-31
US09/387,102 US6542743B1 (en) 1999-08-31 1999-08-31 Method and apparatus for reducing pilot search times utilizing mobile station location information

Publications (2)

Publication Number Publication Date
RU2002108002A RU2002108002A (ru) 2003-11-20
RU2257008C2 true RU2257008C2 (ru) 2005-07-20

Family

ID=23528467

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2002108002/09A RU2257008C2 (ru) 1999-08-31 2000-08-30 Способ уменьшения времени поиска пилот-сигнала с использованием информации о местоположении мобильной станции и устройство для его осуществления

Country Status (16)

Country Link
US (2) US6542743B1 (ru)
EP (2) EP1208655B1 (ru)
JP (2) JP4541622B2 (ru)
KR (3) KR100777947B1 (ru)
CN (1) CN100420161C (ru)
AT (1) ATE281715T1 (ru)
AU (1) AU770480B2 (ru)
BR (1) BR0013632A (ru)
CA (1) CA2380994C (ru)
DE (1) DE60015572T2 (ru)
IL (3) IL147795A0 (ru)
MX (1) MXPA02001887A (ru)
NO (1) NO326186B1 (ru)
RU (1) RU2257008C2 (ru)
UA (1) UA71022C2 (ru)
WO (1) WO2001017125A1 (ru)

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MD138Z5 (ru) * 2009-09-11 2010-09-30 Коммерческое Общество "Ideea Prim", Ооо Способ производства сушек и сушки полученные этим способом
US8031610B2 (en) 2002-11-07 2011-10-04 Lg Electronics Inc. Apparatus and method for moving a receive window in a radio access network
US8199634B2 (en) 2000-09-13 2012-06-12 Qualcomm Incorporated Signaling method in an OFDM multiple access system
US8320407B2 (en) 2007-01-05 2012-11-27 Qualcomm Incorporated Mapping of subpackets to resources in a communication system
US8433357B2 (en) 2007-01-04 2013-04-30 Qualcomm Incorporated Method and apparatus for utilizing other sector interference (OSI) indication
US8446892B2 (en) 2005-03-16 2013-05-21 Qualcomm Incorporated Channel structures for a quasi-orthogonal multiple-access communication system
US8457315B2 (en) 2007-01-05 2013-06-04 Qualcomm Incorporated Pilot transmission in a wireless communication system
US8462859B2 (en) 2005-06-01 2013-06-11 Qualcomm Incorporated Sphere decoding apparatus
US8477684B2 (en) 2005-10-27 2013-07-02 Qualcomm Incorporated Acknowledgement of control messages in a wireless communication system
US8565194B2 (en) 2005-10-27 2013-10-22 Qualcomm Incorporated Puncturing signaling channel for a wireless communication system
US8582509B2 (en) 2005-10-27 2013-11-12 Qualcomm Incorporated Scalable frequency band operation in wireless communication systems
US8582548B2 (en) 2005-11-18 2013-11-12 Qualcomm Incorporated Frequency division multiple access schemes for wireless communication
US8599945B2 (en) 2005-06-16 2013-12-03 Qualcomm Incorporated Robust rank prediction for a MIMO system
US8644292B2 (en) 2005-08-24 2014-02-04 Qualcomm Incorporated Varied transmission time intervals for wireless communication system
US8681749B2 (en) 2007-01-04 2014-03-25 Qualcomm Incorporated Control resource mapping for a wireless communication system
US8693405B2 (en) 2005-10-27 2014-04-08 Qualcomm Incorporated SDMA resource management
US8831607B2 (en) 2006-01-05 2014-09-09 Qualcomm Incorporated Reverse link other sector communication
US8879511B2 (en) 2005-10-27 2014-11-04 Qualcomm Incorporated Assignment acknowledgement for a wireless communication system
US8885628B2 (en) 2005-08-08 2014-11-11 Qualcomm Incorporated Code division multiplexing in a single-carrier frequency division multiple access system
US8917654B2 (en) 2005-04-19 2014-12-23 Qualcomm Incorporated Frequency hopping design for single carrier FDMA systems
US9088384B2 (en) 2005-10-27 2015-07-21 Qualcomm Incorporated Pilot symbol transmission in wireless communication systems
US9130810B2 (en) 2000-09-13 2015-09-08 Qualcomm Incorporated OFDM communications methods and apparatus
US9137822B2 (en) 2004-07-21 2015-09-15 Qualcomm Incorporated Efficient signaling over access channel
US9136974B2 (en) 2005-08-30 2015-09-15 Qualcomm Incorporated Precoding and SDMA support
US9143305B2 (en) 2005-03-17 2015-09-22 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9144060B2 (en) 2005-10-27 2015-09-22 Qualcomm Incorporated Resource allocation for shared signaling channels
US9148256B2 (en) 2004-07-21 2015-09-29 Qualcomm Incorporated Performance based rank prediction for MIMO design
US9154211B2 (en) 2005-03-11 2015-10-06 Qualcomm Incorporated Systems and methods for beamforming feedback in multi antenna communication systems
US9172453B2 (en) 2005-10-27 2015-10-27 Qualcomm Incorporated Method and apparatus for pre-coding frequency division duplexing system
US9179319B2 (en) 2005-06-16 2015-11-03 Qualcomm Incorporated Adaptive sectorization in cellular systems
US9184870B2 (en) 2005-04-01 2015-11-10 Qualcomm Incorporated Systems and methods for control channel signaling
US9209956B2 (en) 2005-08-22 2015-12-08 Qualcomm Incorporated Segment sensitive scheduling
US9210651B2 (en) 2005-10-27 2015-12-08 Qualcomm Incorporated Method and apparatus for bootstraping information in a communication system
US9225416B2 (en) 2005-10-27 2015-12-29 Qualcomm Incorporated Varied signaling channels for a reverse link in a wireless communication system
US9225488B2 (en) 2005-10-27 2015-12-29 Qualcomm Incorporated Shared signaling channel
US9246560B2 (en) 2005-03-10 2016-01-26 Qualcomm Incorporated Systems and methods for beamforming and rate control in a multi-input multi-output communication systems
US9307544B2 (en) 2005-04-19 2016-04-05 Qualcomm Incorporated Channel quality reporting for adaptive sectorization
US9461859B2 (en) 2005-03-17 2016-10-04 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9520972B2 (en) 2005-03-17 2016-12-13 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9660776B2 (en) 2005-08-22 2017-05-23 Qualcomm Incorporated Method and apparatus for providing antenna diversity in a wireless communication system

Families Citing this family (158)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8352400B2 (en) 1991-12-23 2013-01-08 Hoffberg Steven M Adaptive pattern recognition based controller apparatus and method and human-factored interface therefore
US10361802B1 (en) 1999-02-01 2019-07-23 Blanding Hovenweep, Llc Adaptive pattern recognition based control system and method
US7018401B1 (en) * 1999-02-01 2006-03-28 Board Of Regents, The University Of Texas System Woven intravascular devices and methods for making the same and apparatus for delivery of the same
US7966078B2 (en) 1999-02-01 2011-06-21 Steven Hoffberg Network media appliance system and method
US6411892B1 (en) * 2000-07-13 2002-06-25 Global Locate, Inc. Method and apparatus for locating mobile receivers using a wide area reference network for propagating ephemeris
US6542743B1 (en) * 1999-08-31 2003-04-01 Qualcomm, Incorporated Method and apparatus for reducing pilot search times utilizing mobile station location information
EP1499150B8 (en) * 1999-09-06 2012-02-08 NTT DoCoMo, Inc. Control method of searching neighbouring cells, mobile station, and mobile communication system
GB9921007D0 (en) * 1999-09-06 1999-11-10 Nokia Telecommunications Oy Quality measurement
GB9921706D0 (en) * 1999-09-14 1999-11-17 Nokia Telecommunications Oy Relocation in a communication system
US20020137513A1 (en) * 1999-12-13 2002-09-26 Koichi Aihara Communication terminal apparatus and radio communication method
US6904079B2 (en) * 2000-02-08 2005-06-07 Ipr Licensing, Inc. Access channel structure for wireless communication system
US7224719B1 (en) * 2000-03-31 2007-05-29 Qualcomm, Incorporated Fast acquisition of a pilot signal in a wireless communication device
US6944143B1 (en) * 2000-03-31 2005-09-13 Qualcomm Incorporated Prioritization of searching by a remote unit in a wireless communication system
KR100393620B1 (ko) * 2000-04-12 2003-08-02 삼성전자주식회사 동시 서비스를 지원하는 이동 통신시스템의 핸드오프 방법
JP3512090B2 (ja) * 2000-05-31 2004-03-29 日本電気株式会社 携帯端末の受信基地局切替システム及び方法
US6826161B1 (en) * 2000-07-20 2004-11-30 Telefonaktiebolaget Lm Ericsson (Publ) Slewing detector system and method for the introduction of hysteresis into a hard handoff decision
US7065446B2 (en) * 2000-08-18 2006-06-20 Geospatial Technologies, Inc. Real-time smart mobile device for location information processing
KR100422236B1 (ko) * 2000-11-08 2004-03-10 주식회사 현대시스콤 이동통신 시스템내 이동국의 파일롯 탐색방법
US20020060998A1 (en) * 2000-11-22 2002-05-23 Hunzinger Jason F. CDMA search processing load reduction
US6957076B2 (en) * 2000-11-22 2005-10-18 Denso Corporation Location specific reminders for wireless mobiles
US6954644B2 (en) * 2000-12-04 2005-10-11 Telefonaktiebolaget Lm Ericsson (Publ) Using geographical coordinates to determine mobile station time position for synchronization during diversity handover
US6980803B2 (en) 2000-12-04 2005-12-27 Telefonaktiebolaget Lm Ericsson (Publ) Using statistically ascertained position for starting synchronization searcher during diversity handover
ES2300304T3 (es) * 2000-12-04 2008-06-16 Telefonaktiebolaget Lm Ericsson (Publ) Uso de la posicion establecida estadisticamente para iniciar el buscador de sincronizacion durante el traspaso con diversidad.
AU2002221223A1 (en) * 2000-12-04 2002-06-18 Telefonaktiebolaget Lm Ericsson (Publ) Using geographical coordinates to determine mobile station time position for synchronization during diversity handover
US20020071403A1 (en) * 2000-12-07 2002-06-13 Crowe M. Shane Method and system for performing a CDMA soft handoff
KR100383619B1 (ko) * 2001-02-03 2003-05-14 삼성전자주식회사 셀룰러 이동통신 시스템의 하드 핸드오프 방법
US6937861B2 (en) * 2001-02-13 2005-08-30 Telefonaktiebolaget Lm Ericsson (Publ) Connection management for dual mode access terminals in a radio network
WO2002087100A1 (en) * 2001-04-19 2002-10-31 Telefonaktiebolaget Lm Ericsson (Publ) A cdma mobile station with power saving using adaptive correlation window in path search
US6795489B2 (en) 2001-08-09 2004-09-21 Qualcomm Inc. Acquisition of a gated pilot
JP3423298B2 (ja) * 2001-09-28 2003-07-07 三洋電機株式会社 携帯電話機、基地局探索方法及びプログラム
CN1292261C (zh) 2002-01-24 2006-12-27 华为技术有限公司 一种移动台定位测量的方法
AU2002244880A1 (en) * 2002-03-22 2003-10-08 Nokia Corporation Method, system and device for controlling a transmission window size
US20030186699A1 (en) * 2002-03-28 2003-10-02 Arlene Havlark Wireless telecommunications location based services scheme selection
US8126889B2 (en) 2002-03-28 2012-02-28 Telecommunication Systems, Inc. Location fidelity adjustment based on mobile subscriber privacy profile
US8918073B2 (en) * 2002-03-28 2014-12-23 Telecommunication Systems, Inc. Wireless telecommunications location based services scheme selection
US8290505B2 (en) 2006-08-29 2012-10-16 Telecommunications Systems, Inc. Consequential location derived information
US8027697B2 (en) * 2007-09-28 2011-09-27 Telecommunication Systems, Inc. Public safety access point (PSAP) selection for E911 wireless callers in a GSM type system
US7426380B2 (en) 2002-03-28 2008-09-16 Telecommunication Systems, Inc. Location derived presence information
US9154906B2 (en) 2002-03-28 2015-10-06 Telecommunication Systems, Inc. Area watcher for wireless network
US7453863B2 (en) * 2002-04-04 2008-11-18 Lg Electronics Inc. Cell searching apparatus and method in asynchronous mobile communication system
AT411948B (de) * 2002-06-13 2004-07-26 Fts Computertechnik Gmbh Kommunikationsverfahren und apparat zur übertragung von zeitgesteuerten und ereignisgesteuerten ethernet nachrichten
JP4016383B2 (ja) * 2002-06-14 2007-12-05 日本電気株式会社 携帯電話機及びこの携帯電話機における通信方法
KR100483511B1 (ko) * 2002-07-26 2005-04-15 엘지전자 주식회사 핸드오프시 이동단말의 탐색 윈도우 사이즈 결정방법
US7420947B2 (en) * 2002-08-30 2008-09-02 Qualcomm Incorporated Communication system performance using position location information
ATE445303T1 (de) * 2002-12-02 2009-10-15 Nokia Corp Schätzung einer signalverzögerung
KR100493109B1 (ko) * 2003-01-29 2005-06-02 삼성전자주식회사 공중 육상 이동통신망 선택을 위한 통신 시스템 및 방법
US7292550B2 (en) * 2003-03-27 2007-11-06 Kyocera Wireless Corp. System and method for minimizing voice packet loss during a wireless communications device candidate frequency search (CFS)
IL155828A0 (en) * 2003-05-09 2003-12-23 Zion Hadad Handoff system and method
BRPI0414097A (pt) * 2003-09-05 2006-11-14 Qualcomm Inc método para reduzir ao mìnimo a incerteza de tempo de sistema máxima para uma estação móvel
KR20060119986A (ko) * 2003-11-24 2006-11-24 인터디지탈 테크날러지 코포레이션 무선 송/수신 유닛에서 지향성 빔 안테나를 이용하기 위한방법 및 장치
US7424293B2 (en) 2003-12-02 2008-09-09 Telecommunication Systems, Inc. User plane location based service using message tunneling to support roaming
US7260186B2 (en) 2004-03-23 2007-08-21 Telecommunication Systems, Inc. Solutions for voice over internet protocol (VoIP) 911 location services
US20080090546A1 (en) 2006-10-17 2008-04-17 Richard Dickinson Enhanced E911 network access for a call center using session initiation protocol (SIP) messaging
US20080126535A1 (en) 2006-11-28 2008-05-29 Yinjun Zhu User plane location services over session initiation protocol (SIP)
US7308264B2 (en) * 2004-02-05 2007-12-11 Interdigital Technology Corporation Method for identifying pre-candidate cells for a mobile unit operating with a switched beam antenna in a wireless communication system, and corresponding system
US7340254B2 (en) * 2004-02-05 2008-03-04 Interdigital Technology Corporation Measurement opportunities for a mobile unit operating with a switched beam antenna in a CDMA system
US7274936B2 (en) * 2004-02-06 2007-09-25 Interdigital Technology Corporation Method and apparatus for measuring channel quality using a smart antenna in a wireless transmit/receive unit
US7324817B2 (en) * 2004-02-07 2008-01-29 Interdigital Technology Corporation Wireless communication method and apparatus for selecting and reselecting cells based on measurements performed using directional beams and an omni-directional beam pattern
US7450541B2 (en) * 2004-03-09 2008-11-11 Qualcomm Incorporated Access channel with constrained arrival times
US7558582B2 (en) * 2004-04-21 2009-07-07 Agilent Technologies, Inc. Method and system for collecting and surveying radio communications from a specific protected area of operations in or around a compound
US20070287395A1 (en) * 2004-08-11 2007-12-13 Lars Karlsson Method and signal intelligence collection system that reduces output data overflow in real-time
US20060212929A1 (en) * 2004-08-11 2006-09-21 Lars Karlsson Method and technique for gathering signal intelligence of all radio communications only originating from specific selected areas
US7113128B1 (en) * 2004-10-15 2006-09-26 Telecommunication Systems, Inc. Culled satellite ephemeris information for quick, accurate assisted locating satellite location determination for cell site antennas
US7629926B2 (en) 2004-10-15 2009-12-08 Telecommunication Systems, Inc. Culled satellite ephemeris information for quick, accurate assisted locating satellite location determination for cell site antennas
US6985105B1 (en) 2004-10-15 2006-01-10 Telecommunication Systems, Inc. Culled satellite ephemeris information based on limiting a span of an inverted cone for locating satellite in-range determinations
US8073470B1 (en) * 2005-01-31 2011-12-06 Jasper Wireless, Inc Paging windows for power conservation in wireless networks
US8073469B2 (en) * 2005-01-31 2011-12-06 Jasper Wireless, Inc. Paging for non-real-time communications wireless networks
US7353034B2 (en) 2005-04-04 2008-04-01 X One, Inc. Location sharing and tracking using mobile phones or other wireless devices
US20060245390A1 (en) * 2005-04-28 2006-11-02 Yukihiro Omoto Base station and mobile station constituting mobile communication system
US8611284B2 (en) 2005-05-31 2013-12-17 Qualcomm Incorporated Use of supplemental assignments to decrement resources
US7110766B1 (en) 2005-05-31 2006-09-19 Motorola, Inc. Method of generating a handoff candidate list
US7609676B2 (en) * 2005-06-30 2009-10-27 Motorola, Inc. Method for preventing reporting of duplicate pilots within a communication system
US8660573B2 (en) 2005-07-19 2014-02-25 Telecommunications Systems, Inc. Location service requests throttling
US9282451B2 (en) 2005-09-26 2016-03-08 Telecommunication Systems, Inc. Automatic location identification (ALI) service requests steering, connection sharing and protocol translation
US7706288B2 (en) * 2005-09-27 2010-04-27 Qualcomm Incorporated RF channel switching in broadcast OFDM systems
US9554319B2 (en) 2005-09-27 2017-01-24 Qualcomm Incorporated Channel handoff methods in wireless broadcast systems
KR100735301B1 (ko) 2005-09-29 2007-07-03 삼성전자주식회사 이동 통신 시스템에서 이동 단말의 셋트 관리 방법과 이를이용한 파일럿 채널 탐색기
US7825780B2 (en) 2005-10-05 2010-11-02 Telecommunication Systems, Inc. Cellular augmented vehicle alarm notification together with location services for position of an alarming vehicle
US7907551B2 (en) 2005-10-06 2011-03-15 Telecommunication Systems, Inc. Voice over internet protocol (VoIP) location based 911 conferencing
US8467320B2 (en) 2005-10-06 2013-06-18 Telecommunication Systems, Inc. Voice over internet protocol (VoIP) multi-user conferencing
US8045512B2 (en) 2005-10-27 2011-10-25 Qualcomm Incorporated Scalable frequency band operation in wireless communication systems
KR101344743B1 (ko) * 2006-01-12 2013-12-26 퀄컴 인코포레이티드 단말의 효율적인 셋 관리에 따른 핸드오프 방법 및 장치
US8150363B2 (en) 2006-02-16 2012-04-03 Telecommunication Systems, Inc. Enhanced E911 network access for call centers
US8059789B2 (en) 2006-02-24 2011-11-15 Telecommunication Systems, Inc. Automatic location identification (ALI) emergency services pseudo key (ESPK)
US9167553B2 (en) 2006-03-01 2015-10-20 Telecommunication Systems, Inc. GeoNexus proximity detector network
US7899450B2 (en) 2006-03-01 2011-03-01 Telecommunication Systems, Inc. Cellular augmented radar/laser detection using local mobile network within cellular network
US7471236B1 (en) * 2006-03-01 2008-12-30 Telecommunication Systems, Inc. Cellular augmented radar/laser detector
US8315274B2 (en) * 2006-03-29 2012-11-20 Honeywell International Inc. System and method for supporting synchronous system communications and operations
US8208605B2 (en) 2006-05-04 2012-06-26 Telecommunication Systems, Inc. Extended efficient usage of emergency services keys
JP4705885B2 (ja) * 2006-06-16 2011-06-22 株式会社日立製作所 無線通信システムの輻輳制御方法及び基地局制御装置
WO2008057477A2 (en) 2006-11-03 2008-05-15 Telecommunication Systems, Inc. Roaming gateway enabling location based services (lbs) roaming for user plane in cdma networks without requiring use of a mobile positioning center (mpc)
US7769380B2 (en) * 2006-12-20 2010-08-03 King Fahd University Of Petroleum And Minerals Method for reducing the rate of registration in CDMA-based mobile networks
US20080167018A1 (en) * 2007-01-10 2008-07-10 Arlene Havlark Wireless telecommunications location based services scheme selection
US8050386B2 (en) 2007-02-12 2011-11-01 Telecommunication Systems, Inc. Mobile automatic location identification (ALI) for first responders
US20080200163A1 (en) * 2007-02-15 2008-08-21 Institute For Information Industry Mobile communication apparatus, method and computer readable medium thereof capable of determining whether to keep searching for available base stations
US8185087B2 (en) 2007-09-17 2012-05-22 Telecommunication Systems, Inc. Emergency 911 data messaging
US7929530B2 (en) 2007-11-30 2011-04-19 Telecommunication Systems, Inc. Ancillary data support in session initiation protocol (SIP) messaging
US9130963B2 (en) 2011-04-06 2015-09-08 Telecommunication Systems, Inc. Ancillary data support in session initiation protocol (SIP) messaging
US20090156205A1 (en) * 2007-12-17 2009-06-18 Douglas Neal Rowitch Method and Apparatus for Establishing a Wireless Network Signal Acquisition Rate
US8467365B1 (en) * 2008-01-24 2013-06-18 Sprint Spectrum L.P. Method and system for defining search windows based on mobile station location
US8055273B1 (en) 2008-02-07 2011-11-08 Sprint Spectrum L.P. Method and system for defining a search window based on a mobile station's direction of motion and speed
TWI381705B (zh) * 2008-04-30 2013-01-01 Qisda Corp 無線行動裝置與其設定通訊網路搜尋時間之方法
US8699450B2 (en) * 2008-05-11 2014-04-15 Qualcomm Incorporated Systems and methods for multimode wireless communication handoff
US20090279503A1 (en) * 2008-05-11 2009-11-12 Qualcomm Incorporated Systems and methods for multimode wireless communication handoff
US9036599B2 (en) * 2008-05-11 2015-05-19 Qualcomm Incorporated Systems and methods for multimode wireless communication handoff
US8891557B2 (en) * 2008-05-21 2014-11-18 Qualcomm Incorporated Method and apparatus for sending information via selection of resources used for transmission
US8380531B2 (en) * 2008-07-25 2013-02-19 Invivodata, Inc. Clinical trial endpoint development process
US8068587B2 (en) 2008-08-22 2011-11-29 Telecommunication Systems, Inc. Nationwide table routing of voice over internet protocol (VOIP) emergency calls
KR101258140B1 (ko) 2008-08-28 2013-04-25 교세라 가부시키가이샤 리피터, 통신 시스템, 기지국, 무선 단말 및 관리 서버
US8892128B2 (en) 2008-10-14 2014-11-18 Telecommunication Systems, Inc. Location based geo-reminders
US8525681B2 (en) 2008-10-14 2013-09-03 Telecommunication Systems, Inc. Location based proximity alert
US8625572B2 (en) * 2008-12-19 2014-01-07 Nokia Corporation Synchronization indication in networks
DE102008063301B4 (de) * 2008-12-29 2012-10-31 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren zur Synchronisation eines Empfängers auf einen Sender in einem digitalen Funknetzwerk
US9374306B1 (en) 2009-03-04 2016-06-21 Sprint Spectrum L.P. Using packet-transport metrics for setting DRCLocks
US9467938B1 (en) 2009-04-29 2016-10-11 Sprint Spectrum L.P. Using DRCLocks for conducting call admission control
US9301191B2 (en) 2013-09-20 2016-03-29 Telecommunication Systems, Inc. Quality of service to over the top applications used with VPN
US8867485B2 (en) 2009-05-05 2014-10-21 Telecommunication Systems, Inc. Multiple location retrieval function (LRF) network having location continuity
US8310929B1 (en) 2009-06-04 2012-11-13 Sprint Spectrum L.P. Method and system for controlling data rates based on backhaul capacity
US8224320B1 (en) 2009-08-25 2012-07-17 Sprint Spectrum L.P. Using RF conditions and handoff state to dynamically adjust a search window size
CN101662308B (zh) * 2009-09-29 2013-01-16 中兴通讯股份有限公司 一种搜索窗中心的设置方法及装置
US8355364B1 (en) 2009-10-02 2013-01-15 Sprint Spectrum L.P. Systems and methods for using topology to determine whether to grant an access request from an access terminal
US8249611B1 (en) 2009-10-02 2012-08-21 Sprint Spectrum L.P. Systems and methods for dynamically adjusting an access search window
JP5556267B2 (ja) * 2010-03-17 2014-07-23 日本電気株式会社 携帯通信端末、移動体通信システム及び携帯通信端末の制御方法
US8270969B1 (en) * 2010-03-24 2012-09-18 Sprint Spectrum L.P. Systems and methods for adjusting an access search window based on movement
US8363564B1 (en) 2010-03-25 2013-01-29 Sprint Spectrum L.P. EVDO coverage modification based on backhaul capacity
US8515434B1 (en) 2010-04-08 2013-08-20 Sprint Spectrum L.P. Methods and devices for limiting access to femtocell radio access networks
US8336664B2 (en) 2010-07-09 2012-12-25 Telecommunication Systems, Inc. Telematics basic mobile device safety interlock
WO2012005769A1 (en) 2010-07-09 2012-01-12 Telecommunication Systems, Inc. Location privacy selector
KR101155644B1 (ko) * 2010-10-21 2012-06-13 성균관대학교산학협력단 무선 통신시스템의 스마트 안테나 빔 형성 방법 및 장치
US8942743B2 (en) 2010-12-17 2015-01-27 Telecommunication Systems, Inc. iALERT enhanced alert manager
US8688087B2 (en) 2010-12-17 2014-04-01 Telecommunication Systems, Inc. N-dimensional affinity confluencer
WO2012087353A1 (en) 2010-12-22 2012-06-28 Telecommunication Systems, Inc. Area event handling when current network does not cover target area
US8682321B2 (en) 2011-02-25 2014-03-25 Telecommunication Systems, Inc. Mobile internet protocol (IP) location
CN102904603B (zh) * 2011-07-28 2016-06-15 中兴通讯股份有限公司 搜索窗处理方法及装置
US8649806B2 (en) 2011-09-02 2014-02-11 Telecommunication Systems, Inc. Aggregate location dynometer (ALD)
US9479344B2 (en) 2011-09-16 2016-10-25 Telecommunication Systems, Inc. Anonymous voice conversation
US8831556B2 (en) 2011-09-30 2014-09-09 Telecommunication Systems, Inc. Unique global identifier header for minimizing prank emergency 911 calls
US9049646B2 (en) 2011-11-01 2015-06-02 Blackberry Limited Methods and apparatus for network searching
US9313637B2 (en) 2011-12-05 2016-04-12 Telecommunication Systems, Inc. Wireless emergency caller profile data delivery over a legacy interface
US9264537B2 (en) 2011-12-05 2016-02-16 Telecommunication Systems, Inc. Special emergency call treatment based on the caller
US8984591B2 (en) 2011-12-16 2015-03-17 Telecommunications Systems, Inc. Authentication via motion of wireless device movement
US9384339B2 (en) 2012-01-13 2016-07-05 Telecommunication Systems, Inc. Authenticating cloud computing enabling secure services
US8688174B2 (en) 2012-03-13 2014-04-01 Telecommunication Systems, Inc. Integrated, detachable ear bud device for a wireless phone
US9307372B2 (en) 2012-03-26 2016-04-05 Telecommunication Systems, Inc. No responders online
US9544260B2 (en) 2012-03-26 2017-01-10 Telecommunication Systems, Inc. Rapid assignment dynamic ownership queue
US8879605B1 (en) 2012-04-02 2014-11-04 Sprint Spectrum L.P. Mobile station time reference that is adjusted based on propagation delay
US9338153B2 (en) 2012-04-11 2016-05-10 Telecommunication Systems, Inc. Secure distribution of non-privileged authentication credentials
US9002359B1 (en) 2012-04-12 2015-04-07 Sprint Spectrum L.P. Method and system for intelligent determination of pseudonoise (PN) offsets
US9313638B2 (en) 2012-08-15 2016-04-12 Telecommunication Systems, Inc. Device independent caller data access for emergency calls
US9208346B2 (en) 2012-09-05 2015-12-08 Telecommunication Systems, Inc. Persona-notitia intellection codifier
US9456301B2 (en) 2012-12-11 2016-09-27 Telecommunication Systems, Inc. Efficient prisoner tracking
US8983047B2 (en) 2013-03-20 2015-03-17 Telecommunication Systems, Inc. Index of suspicion determination for communications request
US9408034B2 (en) 2013-09-09 2016-08-02 Telecommunication Systems, Inc. Extended area event for network based proximity discovery
US9516104B2 (en) 2013-09-11 2016-12-06 Telecommunication Systems, Inc. Intelligent load balancer enhanced routing
US9479897B2 (en) 2013-10-03 2016-10-25 Telecommunication Systems, Inc. SUPL-WiFi access point controller location based services for WiFi enabled mobile devices
US9622207B1 (en) 2016-03-22 2017-04-11 Qualcomm Incorporated Wireless transmit station search window reduction
US20180092029A1 (en) * 2016-09-28 2018-03-29 Intel IP Corporation Extended neighbor list and optimized access point discovery
JP7339356B2 (ja) * 2019-10-04 2023-09-05 株式会社Nttドコモ 端末、通信システム、及び通信方法

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4901307A (en) 1986-10-17 1990-02-13 Qualcomm, Inc. Spread spectrum multiple access communication system using satellite or terrestrial repeaters
US5109390A (en) 1989-11-07 1992-04-28 Qualcomm Incorporated Diversity receiver in a cdma cellular telephone system
US5101501A (en) 1989-11-07 1992-03-31 Qualcomm Incorporated Method and system for providing a soft handoff in communications in a cdma cellular telephone system
US5056109A (en) 1989-11-07 1991-10-08 Qualcomm, Inc. Method and apparatus for controlling transmission power in a cdma cellular mobile telephone system
US5103459B1 (en) 1990-06-25 1999-07-06 Qualcomm Inc System and method for generating signal waveforms in a cdma cellular telephone system
WO1996004716A1 (en) * 1994-07-29 1996-02-15 Qualcomm Incorporated Method and apparatus for performing code acquisition in a cdma communications system
US5577022A (en) * 1994-11-22 1996-11-19 Qualcomm Incorporated Pilot signal searching technique for a cellular communications system
US5627835A (en) * 1995-04-04 1997-05-06 Oki Telecom Artificial window size interrupt reduction system for CDMA receiver
US5781541A (en) * 1995-05-03 1998-07-14 Bell Atlantic Network Services, Inc. CDMA system having time-distributed transmission paths for multipath reception
US5805648A (en) * 1995-07-31 1998-09-08 Qualcomm Incorporated Method and apparatus for performing search acquisition in a CDMA communication system
US5790589A (en) 1996-08-14 1998-08-04 Qualcomm Incorporated System and method for rapidly reacquiring a pilot channel
US5781543A (en) * 1996-08-29 1998-07-14 Qualcomm Incorporated Power-efficient acquisition of a CDMA pilot signal
US6160799A (en) * 1996-09-06 2000-12-12 Motorola, Inc. Method of and apparatus for pilot set maintenance
US6236365B1 (en) * 1996-09-09 2001-05-22 Tracbeam, Llc Location of a mobile station using a plurality of commercial wireless infrastructures
US5999816A (en) * 1997-02-18 1999-12-07 Qualcomm Incorporated Method and apparatus for performing mobile assisted hard handoff between communication systems
US6144649A (en) * 1997-02-27 2000-11-07 Motorola, Inc. Method and apparatus for acquiring a pilot signal in a CDMA receiver
US5995829A (en) * 1997-07-03 1999-11-30 Nokia Mobile Phones Programmable system determination in dual-mode wireless communications systems
US6307840B1 (en) * 1997-09-19 2001-10-23 Qualcomm Incorporated Mobile station assisted timing synchronization in CDMA communication system
US6101175A (en) 1997-10-31 2000-08-08 Motorola, Inc. Method and apparatus for handoff within a communication system
US5995827A (en) 1997-11-20 1999-11-30 Lucent Technologies Inc. Method of muting a non-speaking cellular telephone caller participating in a conference call
US6195342B1 (en) * 1997-11-25 2001-02-27 Motorola, Inc. Method for determining hand-off candidates in a neighbor set in a CDMA communication system
JP3793632B2 (ja) * 1997-12-18 2006-07-05 松下電器産業株式会社 セルサーチ方法及び移動局装置
US6081229A (en) * 1998-03-17 2000-06-27 Qualcomm Incorporated System and method for determining the position of a wireless CDMA transceiver
US6157820A (en) * 1998-06-12 2000-12-05 Ericsson Inc. Pilot strength measurement and multipath delay searcher for CDMA receiver
KR100277761B1 (ko) * 1998-06-25 2001-01-15 윤종용 셀룰러 시스템에서 이동 단말기의 탐색 범위설정 방법
KR100308661B1 (ko) * 1998-08-28 2001-10-19 윤종용 이동통신시스템의핸드오프장치및방법
US6292660B1 (en) * 1998-09-29 2001-09-18 Ericsson Inc. Adaptive site scanning based on fade base estimation
US6278703B1 (en) * 1998-12-09 2001-08-21 Qualcomm Incorporated Method and apparatus for improving neighbor searching performance
KR100378124B1 (ko) * 1998-12-10 2003-06-19 삼성전자주식회사 이동통신시스템에서단말기의위치추정장치및방법
US6188354B1 (en) * 1999-03-29 2001-02-13 Qualcomm Incorporated Method and apparatus for determining the location of a remote station in a CDMA communication network
US6542743B1 (en) * 1999-08-31 2003-04-01 Qualcomm, Incorporated Method and apparatus for reducing pilot search times utilizing mobile station location information
US6191738B1 (en) * 1999-09-30 2001-02-20 Motorola, Inc. Method and apparatus for locating a remote unit within a communication system
US6490313B1 (en) * 1999-12-11 2002-12-03 Verizon Laboratories Inc. System and method for PN offset index planning in a digital CDMA cellular network
US6466606B1 (en) * 1999-12-22 2002-10-15 Qualcomm, Incorporated Method and apparatus for performing search acquisition in a multi-carrier communication system

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8199634B2 (en) 2000-09-13 2012-06-12 Qualcomm Incorporated Signaling method in an OFDM multiple access system
US8218425B2 (en) 2000-09-13 2012-07-10 Qualcomm Incorporated Signaling method in an OFDM multiple access system
US8223627B2 (en) 2000-09-13 2012-07-17 Qualcomm Incorporated Signaling method in an OFDM multiple access system
US8295154B2 (en) 2000-09-13 2012-10-23 Qualcomm Incorporated Signaling method in an OFDM multiple access system
US10313069B2 (en) 2000-09-13 2019-06-04 Qualcomm Incorporated Signaling method in an OFDM multiple access system
US9130810B2 (en) 2000-09-13 2015-09-08 Qualcomm Incorporated OFDM communications methods and apparatus
US8031610B2 (en) 2002-11-07 2011-10-04 Lg Electronics Inc. Apparatus and method for moving a receive window in a radio access network
US10194463B2 (en) 2004-07-21 2019-01-29 Qualcomm Incorporated Efficient signaling over access channel
US9137822B2 (en) 2004-07-21 2015-09-15 Qualcomm Incorporated Efficient signaling over access channel
US9148256B2 (en) 2004-07-21 2015-09-29 Qualcomm Incorporated Performance based rank prediction for MIMO design
US9246560B2 (en) 2005-03-10 2016-01-26 Qualcomm Incorporated Systems and methods for beamforming and rate control in a multi-input multi-output communication systems
US9154211B2 (en) 2005-03-11 2015-10-06 Qualcomm Incorporated Systems and methods for beamforming feedback in multi antenna communication systems
US8547951B2 (en) 2005-03-16 2013-10-01 Qualcomm Incorporated Channel structures for a quasi-orthogonal multiple-access communication system
US8446892B2 (en) 2005-03-16 2013-05-21 Qualcomm Incorporated Channel structures for a quasi-orthogonal multiple-access communication system
US9461859B2 (en) 2005-03-17 2016-10-04 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9143305B2 (en) 2005-03-17 2015-09-22 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9520972B2 (en) 2005-03-17 2016-12-13 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9184870B2 (en) 2005-04-01 2015-11-10 Qualcomm Incorporated Systems and methods for control channel signaling
US9408220B2 (en) 2005-04-19 2016-08-02 Qualcomm Incorporated Channel quality reporting for adaptive sectorization
US9307544B2 (en) 2005-04-19 2016-04-05 Qualcomm Incorporated Channel quality reporting for adaptive sectorization
US8917654B2 (en) 2005-04-19 2014-12-23 Qualcomm Incorporated Frequency hopping design for single carrier FDMA systems
US9036538B2 (en) 2005-04-19 2015-05-19 Qualcomm Incorporated Frequency hopping design for single carrier FDMA systems
US8462859B2 (en) 2005-06-01 2013-06-11 Qualcomm Incorporated Sphere decoding apparatus
US8599945B2 (en) 2005-06-16 2013-12-03 Qualcomm Incorporated Robust rank prediction for a MIMO system
US9179319B2 (en) 2005-06-16 2015-11-03 Qualcomm Incorporated Adaptive sectorization in cellular systems
US8885628B2 (en) 2005-08-08 2014-11-11 Qualcomm Incorporated Code division multiplexing in a single-carrier frequency division multiple access system
US9860033B2 (en) 2005-08-22 2018-01-02 Qualcomm Incorporated Method and apparatus for antenna diversity in multi-input multi-output communication systems
US9660776B2 (en) 2005-08-22 2017-05-23 Qualcomm Incorporated Method and apparatus for providing antenna diversity in a wireless communication system
US9246659B2 (en) 2005-08-22 2016-01-26 Qualcomm Incorporated Segment sensitive scheduling
US9240877B2 (en) 2005-08-22 2016-01-19 Qualcomm Incorporated Segment sensitive scheduling
US9209956B2 (en) 2005-08-22 2015-12-08 Qualcomm Incorporated Segment sensitive scheduling
US8644292B2 (en) 2005-08-24 2014-02-04 Qualcomm Incorporated Varied transmission time intervals for wireless communication system
US8787347B2 (en) 2005-08-24 2014-07-22 Qualcomm Incorporated Varied transmission time intervals for wireless communication system
US9136974B2 (en) 2005-08-30 2015-09-15 Qualcomm Incorporated Precoding and SDMA support
US8582509B2 (en) 2005-10-27 2013-11-12 Qualcomm Incorporated Scalable frequency band operation in wireless communication systems
US9210651B2 (en) 2005-10-27 2015-12-08 Qualcomm Incorporated Method and apparatus for bootstraping information in a communication system
US8477684B2 (en) 2005-10-27 2013-07-02 Qualcomm Incorporated Acknowledgement of control messages in a wireless communication system
US9172453B2 (en) 2005-10-27 2015-10-27 Qualcomm Incorporated Method and apparatus for pre-coding frequency division duplexing system
US8879511B2 (en) 2005-10-27 2014-11-04 Qualcomm Incorporated Assignment acknowledgement for a wireless communication system
US9144060B2 (en) 2005-10-27 2015-09-22 Qualcomm Incorporated Resource allocation for shared signaling channels
US8693405B2 (en) 2005-10-27 2014-04-08 Qualcomm Incorporated SDMA resource management
US8565194B2 (en) 2005-10-27 2013-10-22 Qualcomm Incorporated Puncturing signaling channel for a wireless communication system
US9225416B2 (en) 2005-10-27 2015-12-29 Qualcomm Incorporated Varied signaling channels for a reverse link in a wireless communication system
US9225488B2 (en) 2005-10-27 2015-12-29 Qualcomm Incorporated Shared signaling channel
US9088384B2 (en) 2005-10-27 2015-07-21 Qualcomm Incorporated Pilot symbol transmission in wireless communication systems
US8582548B2 (en) 2005-11-18 2013-11-12 Qualcomm Incorporated Frequency division multiple access schemes for wireless communication
US8681764B2 (en) 2005-11-18 2014-03-25 Qualcomm Incorporated Frequency division multiple access schemes for wireless communication
US8831607B2 (en) 2006-01-05 2014-09-09 Qualcomm Incorporated Reverse link other sector communication
US8693444B2 (en) 2007-01-04 2014-04-08 Qualcomm Incorporated Control resource mapping for a wireless communication system
US8681749B2 (en) 2007-01-04 2014-03-25 Qualcomm Incorporated Control resource mapping for a wireless communication system
US8433357B2 (en) 2007-01-04 2013-04-30 Qualcomm Incorporated Method and apparatus for utilizing other sector interference (OSI) indication
US8457315B2 (en) 2007-01-05 2013-06-04 Qualcomm Incorporated Pilot transmission in a wireless communication system
US8929551B2 (en) 2007-01-05 2015-01-06 Qualcomm Incorporated Pilot transmission in a wireless communication system
US8320407B2 (en) 2007-01-05 2012-11-27 Qualcomm Incorporated Mapping of subpackets to resources in a communication system
MD138Z5 (ru) * 2009-09-11 2010-09-30 Коммерческое Общество "Ideea Prim", Ооо Способ производства сушек и сушки полученные этим способом

Also Published As

Publication number Publication date
IL147795A0 (en) 2002-08-14
UA71022C2 (ru) 2004-11-15
EP1208655B1 (en) 2004-11-03
US6542743B1 (en) 2003-04-01
JP4634425B2 (ja) 2011-02-16
KR100834321B1 (ko) 2008-06-02
JP4541622B2 (ja) 2010-09-08
KR20020027610A (ko) 2002-04-13
IL147795A (en) 2007-06-03
KR100870842B1 (ko) 2008-11-27
KR20070116699A (ko) 2007-12-10
ATE281715T1 (de) 2004-11-15
JP2008061257A (ja) 2008-03-13
EP1501205A1 (en) 2005-01-26
IL179313A0 (en) 2007-03-08
AU770480B2 (en) 2004-02-19
MXPA02001887A (es) 2002-10-31
US20030114172A1 (en) 2003-06-19
CN100420161C (zh) 2008-09-17
US7236796B2 (en) 2007-06-26
WO2001017125A1 (en) 2001-03-08
EP1208655A1 (en) 2002-05-29
DE60015572T2 (de) 2005-11-10
DE60015572D1 (de) 2004-12-09
CA2380994C (en) 2010-03-09
CA2380994A1 (en) 2001-03-08
JP2003524944A (ja) 2003-08-19
NO326186B1 (no) 2008-10-13
AU7096400A (en) 2001-03-26
KR100777947B1 (ko) 2007-11-21
BR0013632A (pt) 2003-07-15
KR20070059218A (ko) 2007-06-11
CN1421071A (zh) 2003-05-28
NO20020965D0 (no) 2002-02-27
NO20020965L (no) 2002-02-27

Similar Documents

Publication Publication Date Title
RU2257008C2 (ru) Способ уменьшения времени поиска пилот-сигнала с использованием информации о местоположении мобильной станции и устройство для его осуществления
US6671514B1 (en) System and method for location positioning a mobile station in a CDMA cellular system
US7013140B2 (en) Mobile terminals and methods for performing fast initial frequency scans and cell searches
KR100602836B1 (ko) 비동기 씨디엠에이 이동통신시스템에서 기지국의 타이밍을손쉽게하는 방법 및 시스템
US7019691B1 (en) Method and apparatus for beacon discovery in a spread spectrum cellular radio communication system
US7324479B2 (en) Cell search method in UMTS
US7447179B2 (en) Methods for synchronizing in a wide band code division multiple access communication system
JP2003524944A5 (ru)
US6205132B1 (en) Method for accessing a cell using two pilot channels in a CDMA communication system of an asynchronous or quasi-synchronous mode
Dev et al. NRPos: A multi-RACH framework for 5G NR positioning
GB2362297A (en) Location based consideration for cellular telephone handoff

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20110831