RU2255123C1 - Способ производства штрипсов из низколегированной стали - Google Patents

Способ производства штрипсов из низколегированной стали Download PDF

Info

Publication number
RU2255123C1
RU2255123C1 RU2003135460/02A RU2003135460A RU2255123C1 RU 2255123 C1 RU2255123 C1 RU 2255123C1 RU 2003135460/02 A RU2003135460/02 A RU 2003135460/02A RU 2003135460 A RU2003135460 A RU 2003135460A RU 2255123 C1 RU2255123 C1 RU 2255123C1
Authority
RU
Russia
Prior art keywords
temperature
strips
rolling
skelps
slabs
Prior art date
Application number
RU2003135460/02A
Other languages
English (en)
Inventor
О.А. Кувшинников (RU)
О.А. Кувшинников
А.М. Ламухин (RU)
А.М. Ламухин
Т.Н. Попова (RU)
Т.Н. Попова
В.И. Ильинский (RU)
В.И. Ильинский
А.А. Кузнецов (RU)
А.А. Кузнецов
А.В. Голованов (RU)
А.В. Голованов
кова Н.Е. Росл (RU)
Н.Е. Рослякова
А.А. Хорева (RU)
А.А. Хорева
А.Д. Краев (RU)
А.Д. Краев
А.И. Трайно (RU)
А.И. Трайно
Original Assignee
Открытое акционерное общество "Северсталь"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Северсталь" filed Critical Открытое акционерное общество "Северсталь"
Priority to RU2003135460/02A priority Critical patent/RU2255123C1/ru
Application granted granted Critical
Publication of RU2255123C1 publication Critical patent/RU2255123C1/ru

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

Изобретение относится к области металлургии, конкретнее к прокатному производству, и может быть использовано при изготовлении электросварных труб для строительства магистральных нефте- и газопроводов в северных широтах. Технический результат, решаемый изобретением, состоит в повышении механических свойств, свариваемости и увеличении выхода годных штрипсов. Для достижения технического результата нагрев слябов производят до температуры 1160-1190°С, а чистовую прокатку проводят с суммарным относительным обжатием не менее 70% при температуре конца прокатки не выше 820°С. Кроме того, после прокатки штрипсы нагревают до температуры 900-950°С и подвергают закалке водой, после чего штрипсы отпускают при температуре 600-730°С. Штрипсы прокатывают из низколегированной стали, содержащей, мас.%: 0,07-0,12 С; 1,4-1,7 Mn; 0,15-0,50 Si; 0,06-0,12 V; 0,03-0,05 Nb; 0,010-0,030 Ti; 0,02-0,05 Al; не более 0,3 Cr; не более 0,3 Ni; не более 0,3 Cu; не более 0,005 S; не более 0,015 Р; не более 0,010 N; остальное Fe. 2 з.п. ф-лы, 3 табл.

Description

Изобретение относится к области металлургии, конкретнее к прокатному производству, и может быть использовано при изготовлении электросварных труб для строительства магистральных нефте- и газопроводов в северных широтах.
Для производства труб магистральных нефте- и газопроводов необходимы горячекатаные листы (штрипсы) толщиной 8-10 мм из низколегированной стали, обладающие следующим комплексом свойств (табл.1):
Таблица 1
Механические свойства штрипсов для труб нефтепровода
σв, МПа σт, МПа KCV-20, Дж/см2 KCU-60, Дж/см2 σтв ИПГ-20, % δ2, % Свариваемость
590-690 480-580 не менее 49 не менее 69 не более 0,90 не менее 70 не менее 26 удовл.
Примечание: ИПГ-20 - доля вязкой составляющей в изломе образца при испытании падающим грузом
Известен способ производства стальных листов, включающий выплавку и непрерывную разливку в слябы низколегированной стали, содержащей по массе, %:
Углерод 0,04-0,10
Кремний 0,01-0,50
Марганец 0,4-1,5
Хром 0,05-1,0
Молибден 0,05-1,0
Ванадий 0,01-0,1
Бор 0,0005-0,005
Алюминий 0,001-0,1
Железо и примеси Остальное
Отлитые слябы нагревают до температуры 1250°С и прокатывают с суммарным обжатием не менее 75%. Прокатанные листы подвергают закалке из аустенитной области и высокотемпературному отпуску [1].
Недостатки известного способа состоят в том, что листовая сталь имеет низкие пластические и вязкостные свойства при отрицательных температурах, неудовлетворительную свариваемость. Дополнительное проведение термического улучшения (закалка+отпуск) штрипсов после прокатки не обеспечивает повышения комплекса механических свойств листов до требуемого уровня. Это делает невозможным применение штрипсов для изготовления труб магистральных нефте- и газопроводов, работающих в северных широтах.
Известен также способ производства толстолистовой низколегированной стали на реверсивном стане, включающий отливку слябов следующего химического состава, мас.%:
Углерод 0,02-0,3
Марганец 0,5-2,5
Алюминий 0,005-0,1
Кремний 0,05-1,0
Ниобий 0,003-0,01
Железо Остальное
Слябы нагревают до температуры 950-1050 С и прокатывают при температуре выше точки Аr3 с суммарным обжатием 50-70%. Прокатанные листы охлаждают на воздухе [2].
При таком способе производства листы имеют недостаточную прочность и пластичность при отношении σтв, превышающем 0,90. Такие листы не удовлетворяют также требованиям по свариваемости и непригодны для изготовления труб нефте- и газопроводов для эксплуатации в северных широтах.
Наиболее близким по своей технической сущности и достигаемым результатам к предлагаемому изобретению является способ производства штрипсов из низколегированной стали марки 17ГС (по ГОСТ 19281-89) следующего химического состава, мас.%:
Углерод 0,14-0,20
Марганец 1,0-1,4
Кремний 0,4-0,6
Хром не более 0,30
Никель не более 0,30
Медь не более 0,30
Фосфор не более 0,035
Сера не более 0,040
Мышьяк не более 0,08
Азот не более 0,008
Железо Остальное
Слябы нагревают в методической печи до температуры 1220-1280°С, подвергают черновой прокатке в температурном интервале 1050-1180°С до промежуточной толщины 30-40 мм и чистовой прокатке в регламентированном температурном интервале 900-1050°С. Для повышения комплекса механических свойств горячекатаные штрипсы подвергают закалке и отпуску (термическому улучшению) [3].
Недостатки известного способа состоят в том, что даже после термического улучшения штрипсы имеют низкие механические свойства и свариваемость. Это, в свою очередь, приводит к снижению выхода годных штрипсов.
Техническая задача, решаемая изобретением, состоит в повышении механических свойств, свариваемости и увеличении выхода годных штрипсов.
Поставленная техническая задача решается тем, что в известном способе производства штрипсов из низколегированной стали, включающем нагрев слябов, их черновую прокатку до промежуточной толщины, чистовую прокатку с регламентированным обжатием и температурой конца прокатки, согласно изобретению нагрев слябов производят до температуры 1160-1190°С, а чистовую прокатку проводят с суммарным относительным обжатием не менее 70% при температуре конца прокатки не выше 820°С. После прокатки штрипсы нагревают до температуры 920-930°С и подвергают закалке водой, после чего штрипсы отпускают при температуре 715-725°С, причем для производства штрипсов используют слябы из низколегированной стали следующего состава, мас.%:
Углерод 0,07-0,12
Марганец 1,4-1,7
Кремний 0,15-0,50
Ванадий 0,06-0,12
Ниобий 0,03-0,05
Титан 0,010-0,030
Алюминий 0,02-0,05
Хром не более 0,3
Никель не более 0,3
Медь не более 0,3
Сера не более 0,005
Фосфор не более 0,015
Азот не более 0,010
Железо Остальное
Сущность изобретения состоит в следующем. Нагрев слябов из низколегированной стали предложенного химического состава до температуры 1160-1190°С обеспечивает ее аустенитизацию, полное растворение в аустенитной матрице сульфидов, фосфидов, нитридов, легирующих и примесных соединений, карбонитридных упрочняющих частиц. Благодаря этому повышается технологическая пластичность и деформируемость слябов при черновой прокатке. Кроме того, поскольку в процессе прокатки происходит непрерывное падение температуры металла, при указанной температуре нагрева к моменту окончания черновой прокатки температура раската снижается до оптимального уровня, необходимого для проведения низкотемпературной чистовой прокатки и обеспечения температуры конца прокатки не выше 820°С.
Последующая чистовая прокатка штрипса с суммарным относительным обжатием не менее 70% при температуре конца прокатки не выше 820°С обеспечивает необходимую степень измельчения микроструктуры стали предложенного состава, полное выпадение из твердого раствора карбонитридных упрочняющих частиц, деформационное упрочнение металлической матрицы. В результате микроструктура штрипса после охлаждения представляет собой ферритно-перлитную смесь с равномерными зернами 11-го балла, и механические свойства штрипса в горячекатаном состоянии полностью соответствуют предъявляемым требованиям (табл.1). Трубы нефте- и газопроводов из таких штрипсов противостоят без разрушения смещениям участков грунта в условиях северных широт, магистральным трещинам и водородному растрескиванию. Помимо этого, штрипсы из низколегированной стали с такой микроструктурой характеризуются высокой свариваемостью: при испытании на разрыв разрушение образцов происходит не по сварному шву, а по основному металлу.
Использование низколегированной стали предложенного состава после горячей прокатки по упомянутым режимам обеспечивает стабильное получение заданных механических свойств штрипсов, высокую свариваемость непосредственно после горячей прокатки.
Если же в процессе изготовления штрипсов, вследствие неизбежных в реальных производственных условиях колебаний технологических режимов, имело место отклонение химического состава выплавленной низколегированной стали или режимов горячей прокатки от предложенных значений, то механические свойства штрипсов будут ниже допустимых. В этом случае нагрев штрипсов до температуры 900-950°С, закалка водой и отпуск при температуре 600-730°С приводит к повышению механических свойств штрипсов до заданного уровня. За счет этого дополнительно увеличивается выход годного, хотя имеет место некоторое удорожание производства.
Экспериментально установлено, что увеличение температуры нагрева слябов из низколегированной стали предложенного состава выше 1190°С не улучшает комплекс механических свойств штрипсов, а лишь увеличивает время нагрева и требует дополнительного подстуживания раската перед чистовой прокаткой, что снижает производительность процесса. Снижение этой температуры ниже 1160°С приводит к неполному растворению в аустените карбонитридных упрочняющих частиц, снижению технологической пластичности, переупрочнению штрипсов, снижению их пластических и вязкостных свойств.
При суммарном относительном обжатии в процессе чистовой прокатки менее 70% или температуре конца прокатки выше 820°С не достигается необходимая степень деформационно-термического упрочнения штрипсов из низколегированной стали предложенного состава. В результате механические свойства штрипсов в горячекатаном состоянии ниже допустимых значений.
Углерод в низколегированной стали предложенного состава определяет прочность штрипсов. Снижение содержания углерода менее 0,07% приводит к падению их прочности ниже допустимого уровня. Увеличение содержания углерода более 0,12% ухудшает пластические и вязкостные свойства штрипсов и их свариваемость.
Снижение содержания марганца менее 1,4% увеличивает окисленность стали, ухудшает свариваемость штрипсов. Повышение содержания марганца более 1,7% увеличивает отношение предела текучести к временному сопротивлению разрыву σтв сверх 0,90, что недопустимо.
При содержании кремния менее 0,15% ухудшается раскисленность стали, снижаются прочностные свойства штрипсов. Увеличение содержания кремния более 0,50% приводит к возрастанию количества силикатных включений, снижает ударную вязкость штрипсов, ухудшает показатель KCV-20 и свариваемость стали.
Ванадий измельчает зерно микроструктуры, повышает прочность и вязкость штрипсов, прокатанных по предложенным режимам. При содержании ванадия менее 0,06% штрипсы имеют недостаточную вязкость при отрицательных температурах. Увеличение содержания ванадия сверх 0,12% оказалось нецелесообразным, так как не улучшало свойств штрипсов.
Ниобий в стали при в чистовой клети с суммарным относительным обжатием не менее 70% и температуре конца прокатки не выше 820°С способствует получению ячеистой дислокационной микроструктуры стали, обеспечивающей сочетание прочностных и пластических свойств штрипсов без дополнительной термообработки. При концентрации ниобия менее 0,03% механические свойства штрипсов в горячекатаном состоянии недостаточно высоки. Повышение концентрации более 0,05% не приводит к дальнейшему повышению механических свойств штрипсов, поэтому нецелесообразно.
Титан является сильным карбидообразующим элементом, упрочняющим сталь. При содержании титана менее 0,010% его упрочняющее влияние проявляется недостаточно, штрипсы имеют низкую прочность и вязкость. Увеличение концентрации титана сверх 0,030% не обеспечивает дальнейшего повышения свойств штрипсов, поэтому нецелесообразно.
Алюминий раскисляет и модифицирует сталь. При концентрации менее 0,02% его воздействие проявляется слабо, что ухудшает механические свойства штрипсов. Увеличение его содержания более 0,05% графитизирует углерод, что также ухудшает качество штрипсов.
Хром, никель и медь являются примесными элементами, они повышают прочность штрипсов. При концентрации каждого из них до 0,3% они не оказывают вредного влияния на вязкостные свойства и свариваемость штрипсов при производстве труб, но расширяют возможности использования металлического лома при выплавке низколегированной стали, что удешевляет производство.
Сталь предложенного состава может содержать в виде примесей не более 0,005% серы, не более 0,015% фосфора и не более 0,010% азота. При указанных предельных концентрациях эти элементы в стали предложенного состава не оказывают заметного негативного воздействия на качество штрипсов, тогда как более глубокое их удаление из расплава при выплавке и внепечной обработке низколегированной стали существенно повышает затраты на производство и усложняет технологический процесс.
Примеры реализации способа
В конвертерном производстве производят выплавку и разливку низколегированных сталей различного состава (табл.2).
Слябы толщиной 200 мм загружают в методические печи и нагревают до температуры аустенитизации Та=1170°С. Разогретые слябы после обжатия в вертикальной клети прокатывают в реверсивной черновой клети дуо 2800 до промежуточной толщины 33 мм. По мере прокатки в черновой клети температура раскатов снижается до 880°С. Затем раскаты передают в чистовую реверсивную клеть кварто 2800. При чистовой прокатке раскаты обжимают в штрипсы конечной толщины 9 мм с относительным суммарным обжатием:
Figure 00000001
. Прокатку штрипсов завершают при температуре Ткп=750°С. Прокатанные штрипсы охлаждают на воздухе, проводят испытания механических свойств и свариваемости, обрезают на ширину 2265 мм. Штрипсы, прошедшие испытания, используют для изготовления электросварных труб для нефте- газопроводов.
В случае, если штрипсы не прошли испытания, например, по причине того, что содержание марганца в стали составляло 1,35% (что ниже допустимого), то такие штрипсы подвергают нагреву до температуры Тз=925°С и закаливают водой в роликовой закалочной печи. После закалки штрипсы отпускают при температуре То=760°С. За счет закалки и отпуска механические свойства штрипсов повышаются до требуемого уровня, увеличивается выход годного.
Варианты прокатки штрипсов по различным режимам из сталей различного состава приведены в табл.3.
Из табл.3 следует, что при реализации предложенного способа (варианты №1-3) достигается улучшение комплекса механических свойств и свариваемости в горячекатаном состоянии, что сопровождается увеличением выхода годного. При этом нет необходимости в проведении закалки с отпуском горячекатаных штрипсов. В случае запредельных значений заявленных параметров (варианты №4 и №5) комплекс механических свойств и свариваемость штрипсов ухудшаются. Также более низкие свойства и свариваемость достигаются даже после термического улучшения штрипсов, полученных согласно способу-прототипу (вариант №6) и при запредельных значениях режимов закалки и отпуска (вариант №7).
Figure 00000002
Figure 00000003
Дополнительная закалка с отпуском по предложенным режимам (варианты №8-10) обеспечивает повышение комплекса механических свойств и выход годных листов, прокатанных с отклонениями температурно-деформационных режимов.
Технико-экономические преимущества предложенного способа заключаются в том, что нагрев слябов из низколегированной стали предложенного состава до температуры 1160-1190°С, черновая прокатка до промежуточной толщины и последующая чистовая прокатка с суммарным относительным обжатием не менее 70% при температуре конца прокатки не выше 820°С обеспечивают формирование оптимальной микроструктуры, высокого комплекса механических свойств и свариваемости штрипсов для труб нефте- и газопроводов, работающих в северных широтах. При этом исключается необходимость в дополнительной термической обработке горячекатаных штрипсов. В случае отклонения фактического химического состава низколегированной стали или деформационно-термических режимов от заданных значений, дополнительная закалка с температуры 900-950°С и отпуск при 600-730°С обеспечивают повышение комплекса механических свойств и увеличение выхода годного.
В качестве базового объекта при расчете технико-экономического преимущества предложенного способа принят способ-прототип. Использование предложенного способа обеспечит повышение рентабельности производства штрипсов для труб диаметром 720 мм на 25-30%.
Литературные источники
1. Заявка Японии №61-163210, МПК С 21 D 8/00, 1986 г.
2. Заявка Японии №61-223125,МПК С 21 D 8/02, С 22 С 38/54, 1986 г.
3. Матросов Ю.И. и др. Сталь для магистральных газопроводов. М.: Металлургия, 1989 г., с.242-244, 268 - прототип.

Claims (3)

1. Способ производства штрипсов из низколегированной стали, включающий нагрев слябов, их черновую прокатку до промежуточной толщины, чистовую прокатку с регламентированным обжатием и температурой конца прокатки, отличающийся тем, что нагрев слябов производят до температуры 1160-1190°С, а чистовую прокатку проводят с суммарным относительным обжатием не менее 70% при температуре конца прокатки не выше 820°С.
2. Способ по п.1, отличающийся тем, что после прокатки штрипсы нагревают до температуры 900-950°С и подвергают закалке водой, после чего штрипсы отпускают при температуре 600-730°С.
3. Способ по п.1 или 2, отличающийся тем, что используют слябы из низколегированной стали следующего состава, мас.%:
Углерод 0,07-0,12
Марганец 1,4-1,7
Кремний 0,15-0,50
Ванадий 0,06-0,12
Ниобий 0,03-0,05
Титан 0,010-0,030
Алюминий 0,02-0,05
Хром Не более 0,3
Никель Не более 0,3
Медь Не более 0,3
Сера Не более 0,005
Фосфор Не более 0,015
Азот Не более 0,010
Железо Остальное
RU2003135460/02A 2003-12-04 2003-12-04 Способ производства штрипсов из низколегированной стали RU2255123C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2003135460/02A RU2255123C1 (ru) 2003-12-04 2003-12-04 Способ производства штрипсов из низколегированной стали

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2003135460/02A RU2255123C1 (ru) 2003-12-04 2003-12-04 Способ производства штрипсов из низколегированной стали

Publications (1)

Publication Number Publication Date
RU2255123C1 true RU2255123C1 (ru) 2005-06-27

Family

ID=35836633

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2003135460/02A RU2255123C1 (ru) 2003-12-04 2003-12-04 Способ производства штрипсов из низколегированной стали

Country Status (1)

Country Link
RU (1) RU2255123C1 (ru)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100463993C (zh) * 2007-02-28 2009-02-25 天津钢管集团股份有限公司 低碳当量微合金钢管及其在线常化工艺
US7670547B2 (en) 2005-07-08 2010-03-02 Sumitomo Metal Industries, Ltd. Low alloy steel for oil country tubular goods having high sulfide stress cracking resistance
RU2442831C1 (ru) * 2010-10-15 2012-02-20 Федеральное государственное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" Способ производства высокопрочной листовой стали
RU2455105C1 (ru) * 2011-05-12 2012-07-10 Открытое акционерное общество "Магнитогорский металлургический комбинат" Способ производства толстолистового проката из свариваемой хромомарганцевой стали
RU2533469C1 (ru) * 2013-08-05 2014-11-20 Открытое акционерное общество "Магнитогорский металлургический комбинат" Способ производства листовой стали с высокой износостойкостью
RU2548536C1 (ru) * 2013-12-06 2015-04-20 Акционерное общество "Выксунский металлургический завод" (АО "ВМЗ") Способ производства толстолистового проката классов прочности к52-к60, х52-х70, l360-l485 для изготовления электросварных труб магистральных трубопроводов
RU2549808C1 (ru) * 2013-12-25 2015-04-27 Публичное акционерное общество "Северсталь" (ПАО "Северсталь") Способ производства толстолистового проката из малоуглеродистой стали на реверсивном стане
RU2578618C1 (ru) * 2014-11-18 2016-03-27 Публичное акционерное общество "Северсталь" (ПАО "Северсталь") Способ производства полос из низколегированной свариваемой стали
RU2629420C1 (ru) * 2016-05-30 2017-08-29 Публичное акционерное общество "Северсталь" (ПАО "Северсталь") Способ производства высокопрочного проката повышенной хладостойкости

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
МАТРОСОВ Ю.И. и др., "Сталь для магистральных газопроводов". М. Металлургия, 1989, с.242-244, 268. *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7670547B2 (en) 2005-07-08 2010-03-02 Sumitomo Metal Industries, Ltd. Low alloy steel for oil country tubular goods having high sulfide stress cracking resistance
CN100463993C (zh) * 2007-02-28 2009-02-25 天津钢管集团股份有限公司 低碳当量微合金钢管及其在线常化工艺
RU2442831C1 (ru) * 2010-10-15 2012-02-20 Федеральное государственное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" Способ производства высокопрочной листовой стали
RU2455105C1 (ru) * 2011-05-12 2012-07-10 Открытое акционерное общество "Магнитогорский металлургический комбинат" Способ производства толстолистового проката из свариваемой хромомарганцевой стали
RU2533469C1 (ru) * 2013-08-05 2014-11-20 Открытое акционерное общество "Магнитогорский металлургический комбинат" Способ производства листовой стали с высокой износостойкостью
RU2548536C1 (ru) * 2013-12-06 2015-04-20 Акционерное общество "Выксунский металлургический завод" (АО "ВМЗ") Способ производства толстолистового проката классов прочности к52-к60, х52-х70, l360-l485 для изготовления электросварных труб магистральных трубопроводов
RU2549808C1 (ru) * 2013-12-25 2015-04-27 Публичное акционерное общество "Северсталь" (ПАО "Северсталь") Способ производства толстолистового проката из малоуглеродистой стали на реверсивном стане
RU2578618C1 (ru) * 2014-11-18 2016-03-27 Публичное акционерное общество "Северсталь" (ПАО "Северсталь") Способ производства полос из низколегированной свариваемой стали
RU2629420C1 (ru) * 2016-05-30 2017-08-29 Публичное акционерное общество "Северсталь" (ПАО "Северсталь") Способ производства высокопрочного проката повышенной хладостойкости

Similar Documents

Publication Publication Date Title
KR101988144B1 (ko) 재질 균일성이 우수한 후육 고인성 고장력 강판 및 그 제조 방법
EP3135787B1 (en) Steel plate and method of producing same
EP2792762B1 (en) High-yield-ratio high-strength cold-rolled steel sheet and method for producing same
RU2519720C2 (ru) Способ производства штрипсов из низколегированной стали
KR20090098909A (ko) 내지연 파괴 특성이 우수한 고장력 강재 그리고 그 제조 방법
EP1375694B1 (en) Hot-rolled steel strip and method for manufacturing the same
CN110551878A (zh) 一种超高强度超高韧性低密度双相层状钢板及其制备方法
KR20190028757A (ko) 고주파 담금질용 강
CN110938773B (zh) 软氮化处理用钢板及其制造方法
RU2442831C1 (ru) Способ производства высокопрочной листовой стали
RU2255123C1 (ru) Способ производства штрипсов из низколегированной стали
JP2017122270A (ja) 冷間加工部品用鋼
RU2463360C1 (ru) Способ производства толстолистового низколегированного штрипса
RU2358024C1 (ru) Способ производства штрипсов из низколегированной стали
RU2346060C2 (ru) Способ производства штрипсов
KR20190034285A (ko) 이음매 없는 강관 및 그 제조 방법
RU2433191C1 (ru) Способ производства высокопрочной листовой стали
RU2241769C1 (ru) Способ производства штрипсов из низколегированной стали
JP2005240135A (ja) 曲げ加工性に優れた耐摩耗鋼の製造方法および耐摩耗鋼
RU2292404C1 (ru) Способ производства полос для изготовления труб
RU2262537C1 (ru) Способ производства штрипсов из низколегированной стали
JP4967356B2 (ja) 高強度継目無鋼管およびその製造方法
RU2696186C2 (ru) Способ производства листового проката из низколегированной трубной стали
JPH07224351A (ja) 冷間加工後の一様伸びの優れた高強度熱延鋼板およびその製造方法
RU2652281C1 (ru) Способ производства горячекатаных листов из высокопрочной стали

Legal Events

Date Code Title Description
PC41 Official registration of the transfer of exclusive right

Effective date: 20111213

QB4A Licence on use of patent

Free format text: LICENCE

Effective date: 20120821